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We show that time-dependent couplings may lead to nontrivial scaling properties of the surface fluctuations
of the asymptotic regime in nonequilibrium kinetic roughening models. Three typical situations are studied. In
the case of a crossover between two different rough regimes, the time-dependent coupling may result in
anomalous scaling for scales above the crossover length. In a different setting, for a crossover from a rough to
either a flat or damping regime, the time-dependent crossover length may conspire to produce a rough surface,
although the most relevant term tends to flatten the surface. In addition, our analysis sheds light into an existing
debate in the problem of spontaneous imbibition, where time-dependent couplings naturally arise in theoretical
models and experiments.
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The theory of surface growth has applications to phenom-
ena that cover a wide range of length scales from nanometers
to millimeters, including the growth of thin films from an
incoming flux of atoms �1–3�, fluid imbibition in porous me-
dia �4�, and propagation of fracture cracks �5�, among many
others. It is often observed that surfaces kinetically roughen
and become scale invariant.

In kinetic roughening details of the interactions are
largely irrelevant in the mathematical description of the criti-
cal properties of the surface at long wavelengths, akin to
critical point phenomena. Therefore, in the hydrodynamic
limit, one can describe surface growth in d+1 dimensions by
the stochastic equation

�h

�t
= G��h� + ��x,t� , �1�

where h�x , t� is the height of the interface at substrate posi-
tion x and time t. The functional G��h� depends on the spe-
cific model and should satisfy all the symmetries and conser-
vation laws. The external noise ��x , t� describes the random
driving forces acting on the surface, for instance, the influx
of particles in a deposition processes.

We shall be discussing here surface growth models with
local coupling among degrees of freedom, i.e., growth equa-
tions that include only terms that depend on derivatives of
the height, �=�h. In the spirit of Ginzburg-Landau-Wilson
theory of critical phenomena, the functional G��� is con-
structed as the leading-order expansion in powers of the ar-
gument �, its derivatives, and combinations thereof. One
explicitly avoids including terms that are incompatible with
the symmetries of the problem. The corresponding expansion
takes the form of a sum, G���=�I�I�I�x , t�, where �I are
the coupling constants and �I�x , t� are the local operators in
the terminology of the renormalization group �RG�. Local
operators correspond to the combinations of degrees of free-
dom and its derivatives, which typically include surface dif-
fusion �2h, curvature diffusion �4h, and in general higher-

order diffusion terms �2mh. Also nonlinear terms usually
appear, ��h�2n, �2n��h�2m, and so on. The asymptotic long
wavelength limit is governed by the most relevant terms in
the RG sense. Higher-order terms are nonetheless important
in describing crossover effects before the truly asymptotic
behavior is reached. This leads to the existence of crossover
length scales and characteristic times at which one can ob-
serve the true asymptotic scaling behavior of the system. In
the case of time-independent coupling parameters the analy-
sis of crossover length scales is relatively simple and very
well studied �1–3�. However, little is known about less com-
mon situations in which the couplings depend explicitly on
time. Examples include the problem of a stable phase grow-
ing at the expense of a metastable phase �6�, and spontaneous
imbibition �4�, among others. Indeed, the problem of spon-
taneous imbibition has been a subject of great interest in the
last few years �4,7–11�. Different theoretical approaches
have arrived at the conclusion that, for small deviations
around of the mean position H�t�, the fluid-fluid interface �in
Fourier space� is given by

�ĥk�t�
�t

= − �K�k�k2ĥk − Ḣ�t��k�ĥk + K�k��̂k, �2�

where � and K are the surface tension and permeability con-
stants, respectively, and the average position follows Wash-
burn’s law H�t�=�H0

2+2at and arises from mass conserva-
tion. There is an interesting debate regarding the role of this
time-dependent coupling in the scaling observed in both
simulations �7,10,11� and experiments �12–14�. This problem
has largely motivated our study of the scaling of the surface
fluctuations in systems where couplings depend explicitly on
time.

In this Rapid Communication we study the interplay be-
tween a crossover length scale growing in time and the dy-
namic correlation length characterizing the kinetic roughen-
ing process. We find nontrivial scaling properties, including
anomalous roughening �15,16�. The long time limit scaling
behavior strongly depends on the nature of the phases that
the dynamic crossover separates. We focus on three typical
cases that cover the most important situations one can find:*lopez@ifca.unican.es
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�i� Crossover between two different rough regimes, �ii�
crossover from a rough to a flat regime, and �iii� the exis-
tence of a damping term, where scale-invariant fluctuations
are damped over a certain length scale that varies with time.
We exemplify our general scaling analysis with simple
model systems in which dimensional analysis gives the exact
exponents. In order to gain analytical understanding we re-
strict ourselves to linear model examples that allow exact
computation of the critical exponents. Results are compared
with numerical simulations.

Crossover between two different rough regimes. Consider
a growing surface described by Eq. �1�. Invariance under
translation along the growth and substrate directions as well
as invariance in the election of the time origin rule out an
explicit dependence of G on h, x, and t. These symmetry
requirements alone lead to scale invariant growth in a ge-
neric fashion �1�. Let us consider the two most relevant terms
in the leading-order expansion of G��h� in the hydrodynamic
limit, so that we have G=�I�I�x , t�+�II�II�x , t�+ higher-
order terms. Let the �I term be more relevant �in the RG
sense� than �II. We first discuss the case in which Eq. �1�
exhibits crossover between two different rough regimes. This
means �II�II�x , t� is relevant at short scales, while �I�I�x , t�
becomes the most dominant in the long wavelength limit.
Hence one expects to find an early times �short scales� re-
gime with scaling exponents ��II� and z�II� that crosses over to
the true asymptotic regime, governed by the operator �I,
with exponents ��I� and z�I�. Dimensional analysis indicates
that there exists a crossover length �����II /�I�1/q for some
exponent q. This is the typical length above which the most
relevant term �I�I takes over. This is likely the most com-
mon situation of crossover behavior in surface growth.

The question we wish to address here is how this picture
is modified when the most relevant operator’s coupling, �I,
decreases in time. The most interesting situation naturally
arises for a power-law decay of the coupling �I�t�� t−	, so
that the term �I�t��I becomes effectively less relevant for
longer times as compared with the �II�II term. In this case
the crossover length diverges in time as a power-law,
���t�� t	/q, and the interplay with the other relevant scale in
the problem, namely, correlation length 
�t�� t1/z, will give
rise to an interesting behavior. On scales smaller than ���t�
the less relevant term II dominates, while we expect a cross-
over to the asymptotic regime I for 
�t�����t�. The caveat is
now that the observable scaling regimes crucially depend on
the exponent of the coupling 	. If 	�q /z�II�, the crossover
does take place as described above. On the contrary, for
	
q /z�II�, the crossover length grows at an exponentially
faster rate than the correlation length. Therefore, in this case
the time-dependent coupling effectively takes the crossover
length to scales much larger than those that can be correlated
by the dynamics at any finite time. As a consequence the
system will never cross over to regime I, and only the “less”
relevant operator II governs the scaling regime observable
for arbitrarily large system sizes.

We now study a simple 1+1 dimensional model that ex-
emplifies the crossover behavior between two different scal-
ing regimes discussed above. We consider Eq. �1� with
�I=�2h and �II=−�4h, describing diffusive coupling. Then
we have the growth equation

�h

�t
= ��t��2h − �4h + ��x,t� , �3�

where we have rescaled all the couplings but ��t�
to unity. The noise is � correlated, 	��x , t���x� , t��

=2��x−x����t− t��. Higher-order diffusion terms, �2nh,
might be present, but are irrelevant for the scaling behavior.
Actually, even the �4h term is irrelevant as compared with
�2h if the couplings are independent of time. Consider now a
decaying coupling ��t�� t−	 �17�. Balancing the two gradient
terms in Eq. �3� one finds that they become comparable at
the typical crossover scale ���t�� t	/2, with the exponent
q=2 in our previous analysis.

Dimensional analysis tells us that the kinetic roughening
process is governed by the fourth derivative term �that we
label as II� on scales smaller than ��, while the diffusion
term should dominate on much larger scales �that we label as
regime I�. Below the crossover, for 
�t�����t�, Eq. �3� has a

correlation length 
�t�� t1/z�II�
, where z�II�=4, given by the

�4h term dynamics. Crossover to the asymptotic regime I
takes place when the correlation length reaches the crossover
length t1/z�II�

� t	/2. Following our previous analysis we ex-
pect that regime I can only be reached if 	�2/z�II�, i.e.,
	�1/2. On the contrary, for 	
1/2 the crossover is wiped
out and the less relevant operator II �in RG sense� does gov-
ern the scaling in the long wavelengths limit as well. This
analysis is in excellent agreement with simulations as shown
in Fig. 1.

Let us now study the scaling properties in the case
	�1/2, where one expects two different regimes with dif-
ferent critical exponents. Smaller scales, regime II, are sim-
ply governed by the dynamics of the curvature diffusion term
�4h and we find the well-known results z�II�=4, ��II�=3/2,
and the local roughness exponent �loc

�II�=1 �15,16�. Above the
crossover, 
�t����, the system is expected to be in regime I,
and a scaling analysis gives the exact global exponents
��I�= �1+	� / �2�1−	��, z�I�=2/ �1−	�, ��I�= �1+	� /4, and the
scaling relation ��I�=z�I���I� is fulfilled. Figure 1 shows that
this scaling analysis is in excellent agreement with a numeri-
cal integration of the model �3�.

However, even for 	�1/2 the asymptotic scaling
behavior is nontrivial, since the time-dependent coupling ��t�
leads to anomalous scaling of the local surface fluctuations.
This is more clearly proved in Fourier space in terms of the
structure factor �or spectral power spectrum�, S�k , t�
= 	ĥ�k , t�ĥ�−k , t�
, where ĥ�k , t� is the Fourier transform of

the surface in a system of lateral size L, ĥ�k , t�
=L−1/2�x�h�k , t�− h̄�t��exp�ikx�. From the growth equation
�3� and neglecting the �4h term we obtain

S�k,t� � k−2t	s�k2t1−	� , �4�

where the scaling function s�u� has the asymptotes s�u��u
for u�1 and s�u��const for u�1 �18�. The temporal shift
in the power spectrum t	 implies anomalous scaling of the
local fluctuations. The theory of anomalous scaling �15,16�
tells us that the scaling relation 	=2���I�−�loc

�I� � /z�I� must be
fulfilled. We then find that, according to the spectral density
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�4�, the scaling in the asymptotic regime �regime I� is anoma-
lous in this case with a local roughness exponent �loc

�I� =1/2.
Note that the local roughness exponent does not depend on
the coupling exponent 	 and self-affinity ��I�=�loc

�I� =1/2 is
recovered whenever the coupling is time independent
�	=0�. A comparison with numerical simulations for 	=0.3
is shown in Fig. 1.

Crossover from a rough to a flat regime. Another interest-
ing situation occurs when the most relevant operator happens
to lead to a flat surface. In this case the crossover is expected
to take place from an early times �short scales� rough regime
II, with roughness exponent ��II�
0 to an asymptotic flat
regime, where ��I�=0. Again, a time-dependent crossover
length leads to nontrivial scaling properties in this case. Be-
low the crossover we expect a rough phase dominated by the
�II term with exponents ��II�
0 and z�II�. Above the cross-
over, however, surface correlations cannot evolve any longer
since the operator �I does not amplify surface fluctuations
�note that ��I�=0 and z�I�=0�. This leads to an asymptotic
roughness exponent identical to that in the early regime.
Moreover, it is worth it to stress here that the dynamical
length scale �t1/z�I�

becomes a constant above the crossover
�note that z�I�=0�. Therefore, above the crossover the only
relevant scale left in the problem scales as �t	/q. This must
be identified with the correlation length 
�t� above the cross-

over. We therefore conclude that the time-dependent cou-
pling leads to an asymptotic regime with exponents �=��II�

and z=q /	, instead of those that would naively arise from
the operator I, ��I�=z�I�=0. It is remarkable that, although the
most relevant term tends to flatten the surface, the time-
dependent coupling conspires to produce a rough surface.
The roughness exponent is inherited from the early time
�short scale� phase. Meanwhile, the time-dependent cross-
over length becomes the only relevant scale above the cross-
over, which is to be associated with the dynamical exponent
z of the system in the long times regime.

To exemplify this general scaling analysis we now study a
simple 1+1 dimensional model system exhibiting a cross-
over between rough regime on short scales to a flat surface
regime in the long wavelengths limit. Let us consider the
same growth model as in Eq. �3�, but the noise is now con-
served, 	�c�x , t��c�x� , t��
=−2�2��x−x����t− t��. Note that
the surface diffusion operator �2h leads to flat surface fluc-
tuations ��I�=z�I�=0 in the presence of conserved noise.

On small scales the surface is expected to be dominated
by the less relevant �4h term, so we obtain z�II�=4 and
��II�=�loc

�II�=1/2 in the early times �short scales� regime.
Above the crossover the �2h term governs the surface
fluctuations and we find z�I�=2/ �1−	� and ��I�

=−�1−3	� / �2�1−	�� by simple power counting. Therefore,
for values 0�	�1/3 we have the desired situation of a
crossover from a rough to a flat regime. According to our
scaling argument we expect scaling in the asymptotic regime
with a roughness exponent �=��II�=1/2 and a dynamical
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FIG. 1. �Color online� Crossover from rough to rough. Numeri-
cal integration of Eq. �3� using a time step �t=10−2 and c=10−3 in
a system size L=1024. All results were averaged over 200 realiza-
tions. �a� Global width of the interface, computed for different
	 values. The theoretical prediction for the growth exponent
��I�= �1+	� /4 for 	�1/2 fully agrees with simulations. For any
	
1/2 we obtain �=3/8, as expected. The curves are vertically
shifted for clarity. �b� Power spectrum for 	=0.3 evaluated at times
10, 102, 103, and 104. Anomalous scaling with a local roughness
exponent �loc

�I� =0.5 is observed. The inset shows a data collapse of
the local width data for ��I�=0.93�1� and z�I�=2.86�4� to be
compared with the predicted values ��I�=0.928 and z�I�=2.857 for
	=0.3.
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FIG. 2. �Color online� Crossover from rough to flat. Numerical
integration of Eq. �3� with conserved noise in a system size
L=1024. Results were averaged over 200 realizations. �a� Global
width for different 	. The growth exponent was found to fit with the
theoretical value �=	 /4. The curves are vertically shifted for clar-
ity. �b� Power spectrum for 	=0.3 at times 103, 104, 105, and
5�105. It shows a roughness exponent �=0.48�3�. The inset shows
a data collapse of the local width data using �=0.51�2� and
z=6.63�4�, which agrees with the scaling prediction z=2/	 for
	=0.3.
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exponent z=2/	, instead of the trivial values ��I�=0 and
z�I�=0 that would naively correspond to the �2h operator
with conserved noise. A comparison with a numerical inte-
gration of the model for a time-dependent coupling with ex-
ponents 0�	�1/3 shows an excellent agreement with this
analysis �see Fig. 2�.

Crossover to a damped regime. Finally, we briefly discuss
the case in which surface fluctuations become damped over a
certain scale. This means that, for small deviations around
the mean surface height, the terms −h ,−h2 , . . . are to be in-
cluded in the growth equation. These terms break the
h→h+c symmetry and therefore also break scale invariance.
Let us consider a growth model with the leading-order ex-
pansion G=−��t�h�x , t�+�II�II�x , t�+ higher-order terms. In
such a way the operator �II is less relevant than the −h
damping term, but it would lead to scale-invariant behavior
in the absence of damping. Following a scaling analysis
similar to that of the previous cases we find that for
z�II��q /	 the crossover to the damping regime will never
take place. So, in all respects, the damping term is irrelevant
and the surface will exhibit the scaling behavior correspond-
ing to the operator II. On the contrary, if z�II�
q /	, the
crossover occurs when 
�t�����t�. The asymptotic regime
in this case does exhibit scaling but with the nontrivial ex-
ponents �=��II� and z=q /	, for the same reasons as in the
previously discussed rough-to-flat case. Simulation results of
the simple model �not shown�, �th=−��t�h+�2h+�, are also

in excellent agreement with this scaling analysis.
We have shown that the presence of time-dependent cou-

pling in nonequilibrium surface roughening has important
implications in the scaling properties of the asymptotic re-
gime. We have focused on local models that include the two
most relevant terms separated by a crossover length scale
growing in time, ���t�� t	/q, which conspires with the cor-
relation length of the system 
�t�� t1/z to give highly non-
trivial scaling properties. In the case of a crossover between
two rough regimes, the surface may exhibit anomalous
roughening, directly related to the value of 	�0. On the
other hand, in the case of a crossover from a rough to either
a flat or damping regime, the dynamical crossover length
���t�� t	/q is the only relevant scale above the crossover and
this immediately leads to an asymptotic rough regime with a
dynamic exponent z=q /	. A rough regime appears despite
the most relevant term that tends to flatten the surface. Re-
markably, this is precisely the numerical result found in re-
cent studies in spontaneous imbibition �4,7,10,11�, where the
interface growth is described by Eq. �2�. Our results show
that these numerical results can be understood in the wider
context of kinetic roughening in systems with time-
dependent couplings.
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