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Two-finger selection theory in the Saffman-Taylor problem
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~Received 1 September 1998; revised manuscript received 12 January 1999!

We find that solvability theory selects a set of stationary solutions of the Saffman-Taylor problem with
coexistence of twounequalfingers advancing with the same velocity but with different relative widthsl1 and
l2 and different tip positions. For vanishingly small dimensionless surface tensiond0, an infinite discrete set
of values of the total filling fractionl5l11l2 and of the relative individual finger widthp5l1 /l are
selected out of a two-parameter continuous degeneracy. They scale asl21/2;d0

2/3 and up21/2u;d0
1/3. The

selected values ofl differ from those of the single finger case. Explicit approximate expressions for both
spectra are given.@S1063-651X~99!50611-9#

PACS number~s!: 47.54.1r, 47.20.Ma, 47.20.Hw, 47.20.Ky
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The Saffman-Taylor problem has played a central role
the field of interfacial pattern selection in the last few d
cades@1#. It deals with the morphological instability of th
interface between two immiscible fluids confined in a qua
two-dimensional~Hele-Shaw! cell, when the less viscou
fluid is displacing the more viscous one in a channel geo
etry @2#. In particular, in their seminal work@3# Saffman and
Taylor called the attention to the so-called selection proble
namely, the fact that a unique fingerlike steady state solu
is observed, whereas a continuum of solutions is possib
surface tension is neglected. Full analytical understandin
the subtle role of surface tension acting as the relevant se
tion mechanism was not achieved until much more rece
@4–8#. The resulting scenario of selection has been show
apply with some generality to other interfacial pattern for
ing systems, most remarkably in dendritic growth@1,9#. On
the other hand, despite the relative analytical tractability
the problem, thedynamicsof competing fingers is far from
being understood even at a qualitative level. Recently, it
been shown that in general surface tension may affect
long time dynamics in an essential way@10#. In the case of
the dynamics of finger arrays, the effect of surface tens
becomes particularly dramatic, showing that the qualitat
picture of finger competition based solely on the concep
screening of the Laplacian field or the global instability@11#
of a periodic finger array is insufficient@12#.

Existence of multifinger stationary solutions of the ze
surface tension problem has been known for a long time
Ref. @12# it has been emphasized that multifinger station
solutions are relevant to the issue of the dynamical role
surface tension. In particular the equal-finger fixed point
been pointed out as the relevant saddle point to desc
competition dynamics. In connection with the phase fl
structure around this fixed point, the problem of existence
unequal-finger fixed points withnonzerosurface tension ha
been posed@12#. Here we will extend selection theory t
search for such solutions in the case of two fingers. We
follow the formulation of Hong and Langer@5#, which is
based on a Fredholm solvability analysis of a non-s
adjoint problem defined through linearization about the z
surface tension solution, together with WKB and steep
descent techniques. Despite the admitted objections to
full quantitative validity of the approximations involved i
PRE 601063-651X/99/60~5!/5013~4!/$15.00
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this method@6,8#, it has been shown that it leads to th
correct qualitative picture of selection and the correct sca
of solutions@8#. It is therefore suitable, for simplicity of cal
culus and presentation, for an exploration of situations s
as the present one.

Our starting point is the dynamical equation for the co
formal mappingf (w,t), which maps the interior of the uni
circle in the complex planew into the viscous fluid region,
with the unit circlew5eif being mapped into the interface
Without loss of generality, we will assume a channel wid
W52p in the y direction ~with periodic boundary condi-
tions! and a velocityU`51 of the fluid at infinity. We define
the velocity of the stationary solutions of the interface asU
51/l wherel is the total filling fraction of the channel by
the invading fluid. The Cartesian coordinates in the fra
moving with velocity U are given byz5x1 iy5 f (w,t)
2Ut. The mappingf (w,t) contains a logarithmic singularity
which is due to the fact that we are mapping an unboun
domain~the semiinfinite strip! into the unit circle, in such a
way that f (w,t)1 ln w is always an analytic funtion in the
interior of the unit circle. The exact dynamical equation f
the mapping can be written in the form

Re@ i ]f f ~f,t !] t f * ~f,t !#512Ud0]fHf@k#, ~1!

which can be easily derived, for instance, from Ref.@2#. Here
d0 is a dimensionless surface tension defined asd0
5sb2/12mU, wheres is the surface tension,b is the gap,
andm is the viscosity. The curvaturek can be expressed in
terms ofx(f) andy(f) as

k~f!5
]f

2 x]fy2]f
2 y]fx

@~]fy!21~]fx!2#3/2
. ~2!

H is a linear integral operator~Hilbert transform! which acts
on a real 2p-periodic functiong(f) according to the defini-
tion

Hf@g#5
1

2p
PE

0

2p

g~s!cotg
1

2
~f2s!ds. ~3!
R5013 © 1999 The American Physical Society
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It follows from Eq. ~3! that the functionA(w) defined by
A(eif)5g(f)1 iH f@g# is analytic in the interior of the uni
circle, and Im@A(0)#50.

In the steady state we will have] t f * (f,t)5U, and Eq.
~1! will read

2U
dy

df
512Ud0

dHf@k#

df
. ~4!

We search for solutions of the generic type described in F
1. The total filling fractionl is split into two contributions
l11l25l, and we define as a new selection parameter
relative finger widthp5l1 /l. For simplicity we will con-
sider fingers which are axisymmetric and for convenience
will fix the tip positions atf5p/2,3p/2, for all l andp. The
filling fraction l ranges from 0 to 1. We takel2<l1 so that
p ranges from 1/2 to 1. In these conditions the two fing
correspond to the intervalsf15(p/2)(122p) to f2
5(p/2)(112p) andf2 to f352p1f1 respectively.

After integration overf of Eq. ~4! we obtain

2Uy~f!5f2Ud0Hf@k#1c~f!, ~5!

wherec(f) is a piecewise constant function. The values
takes at the intervals (f1 ,f2) and (f2 ,f3) differ by the
finite amountp(U21), which accounts for the discontinuit
of y and the finite flux at the pointsf1 ,f2.

After Hilbert transform of Eq.~5! and using thatHf
2 @g#

52g(f), we obtain

2d0k~f!1x~f!5x0~f!, ~6!

y~f!1f5const1Hf@x#, ~7!

where Eq.~7! is just an expression of analyticity off (w,t)
1 ln w. The function x0(f) is found explicitly asx0(f)
5Hf@g# with g(f)5(l21)f1c(f), and by construction
it corresponds to the solution of the zero surface tens
case. In our case it reads

x0~f!5~12l!ln~2usinf2cosppu!. ~8!

Completed withy0(f)52l@f1c(f)#, this gives a two
parameter class of exact solutions of the type of Fig. 1,

FIG. 1. Typical configuration of a two-finger stationary solutio
g.
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d050. Bothl andp can be varied continuously within the
natural range. The differenceDx between thex coordinate of
the two tips is given by

Dx5~12l!ln
12cospp

11cospp
. ~9!

These solutions are precisely those studied in Ref.@12#.
The present formulation has some interesting advanta

over the traditional approach of McLean and Saffman@4#, for
instance, in that the zeroth order solution is obtained na
rally as an explicit outcome of the method and that it is mo
amenable to generalization, for instance to a larger num
of fingers@13#.

We now proceed by assumingx(f)5x0(f)1d0x1(f)
and linearizing onx1(f) but keeping all singular terms nec
essary for selection.~Nonlinear effects are expected to intro
duce only a slight quantitative correction to the final spe
trum of selection@6,8#.! Using the relationy1(f)5Hf@x1#
we get

d0

d2x1

df2
1d0p~f!

d2Hf@x1#

df2
1r ~f!x15m~f!, ~10!

wherer (f) andp(f) are given by

r ~f!5l2
uq~f!u

q4~f!
S @q~f!#21

1

b2
cos2f D 3/2

, ~11!

p~f!5
1

b

cosf

q~f!
, ~12!

with q(f)5sinf2cospp and b5l/(12l). Explicit
knowledge of m(f) is not necessary for the solvabilit
analysis. First order derivatives are subdominant asd0→0
and have been omitted@5#.

The linear operator on the lhs of Eq.~10! can be seen as
232 matrix operator acting on a vector of two compone
x1

1(f) and x1
2(f), which are defined respectively on th

intervals (f1 ,f2) and (f1 ,f3). Inserting an ansatz of WKB
form with a point of stationary phase of the solution in t
upper ~or lower! complex plane@5# one can show, using
steepest descent techniques, that the off-diagonal term
Eq. ~10! lead to exponentially small contributions. As a co
sequence, to leading order the problem is decoupled into
separate problems defined in two disjoined intervals. Si
larly, neglecting exponentially small terms, the integral p
of the diagonal terms takes a purely differential form in t
complex plane @5#. The change of variablesh
52b21cosf/(sinf2cospp) maps separately each of th
two disjoint intervals above into the whole real ax
he(2`,`). Therefore, to leading order we end up with tw
~complex! differential equations of the form

d0

d2x1
6

dh2
1Q6~h!x1

65R6~h!, ~13!
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which are mutually independent but linked through the
pendence on the parametersl and p. More details of this
derivation will be presented elsewhere@13#. We define two
solvability functions as

L6~l,p;d0!5E
2`

`

x̃6~h!R6* ~h! dh, ~14!

where x̃6(h) are eigenfunctions of the null space of th
adjoint operators of the respective homogeneous equa
@13#. To enforce solvability we now have to impose the
multaneous vanishing of the two solvability function
L6(l,p;d0)50. These two conditions will fix the discret
spectra of possible values of bothl andp.

Within the WKB approximation, the two solvability func
tions take the form

L6~l,p;d0!5E
2`

`

G6~h!e(1/Ad0)C6(h) dh, ~15!

where

C6~h!5 ilbE
0

h~12 ih8!1/4~11 ih8!3/4

11b2h82

3S 17
cospp

A11h82b2 sin2 pp
D dh8. ~16!

In order to estimate the solvability functions in the steep
descent approximation, only the form ofC6(h) is required.
The singularity structure ofC6(h) is such that the casesp
51/2 andpÞ1/2 must be treated separately. The first ca
~two identical fingers! degenerates into the usual single fi
ger problem. Forp. 1

2 , a more complicated singularity struc
ture is revealed. In the upper half complex plane ofh, we
find that dC1(h)/dh has a new branch point ath
5 i /b sinpp, in addition to the singularities that were prese
in the single finger problem, namely, a branch point ath
5 i and a pole ati /b. On the other hand,dC2 (h)/dh has
the branch point ath5 i and the new one ath5 i /b sinpp,
whereas the pole ati /b is suppressed. Since 1/b sinpp
.1/b, we obtain thatb.1 is a necessary condition for th
first solvability functionL1(l,p;d0) to oscillate, and there
fore generate zeroes. We thus recover the conditionl.1/2
of the single finger case, but now for the total filling fractio
The equivalent condition forL2(l,p;d0) is b sinpp.1 so
that the new singularity ath5 i /b sinpp stands belowh
5 i . This condition also implies that in the contour integr
tion for L1(l,p;d0) we will always pick up a contribution
from this new singularity.

By deforming the contour integral as indicated in Fig.
and following Ref.@5# in identifying the crossover from os
cillating to nonoscillating behavior of the solvability func
tions, we obtain the scaling of bothl and p with d0 to be
(l2 1

2 );d0
2/3 and up2 1

2 u;d0
1/3. According to Eq.~9!, the

resulting scaling for the tip difference isDx;d0
1/3.

An explicit ~approximate! discrete spectrum of selecte
values ofl andp for smalld0 will be given by the condition
cos@„C6( i 10)2C6( i 20)…/2iAd0#50.

From the conditionL2(l,p;d0)50 we thus obtain
-

ns
-

t

e

t

-

,

1

Ad0

~12l!2

l
I ~b,p!5m2

1

2
, ~17!

with m51,2, . . . andwhere

I ~b,p!52
1

2p
cotgppE

0

u1 u3/4H~u;b,p!

~u32u!~u12u!1/2
du ~18!

with the regular part of the integrandH(u;b,p)5(2
2u)1/4(u42u)21(u22u)2(1/2) and u1,25171/b sinpp,
u3,45171/b.

Finally, from conditionL1(l,p;d0)50, expressing Eq.
~17! to leading order and using properties of hypergeome
functions, the two selection conditions can be combined
read@13#

1

Ad0

~2l21!3/45n, ~19!

S~a!5
1

n S m2
1

2D , ~20!

with n51,2, . . . andwhere

S~a!5
3A2p

5G2S 1

4D 2F1S 5

4
,
1

2
;
9

4
;12a D ~12a!5/4. ~21!

2F1 is a hypergeometric function@14# and a5(p2/4)(p
2 1

2 )2/(2l21) is of order (d0)0 and ranges from 0 to 1.
Equation ~19! determines a set of discrete values ofl.

Notice that these are given independently ofp but the set of
values are inserted between those of the single finger
(p51/2), which in the same approximation are given
(2l21)3/4/Ad05n2 1

2 in place of Eq.~19!. On the other
hand, the left-hand side~lhs! of Eq. ~20! is a monotonically
decreasing function ofa which varies continuously from 1/4
~at a50) to 0 ~at a51) @14#. Solving Eq.~20! for a pro-
duces solutions withpÞ1/2. These will exist whenever (m
2 1

2 )/n, 1
4 . For a givenn, the solutions are labeled bym

51,2, . . . up to theinteger part of (n11)/4. Therefore, the
first solution withpÞ1/2 will appear atn53 and givesup
2 1

2 u.0.3886 d0
1/31 . . . . For fixed m, p is an increasing

function of n ~like l), but for fixed n, p has its maximum
value atm51 and then decreases withm ~see Fig. 3!. The
spectra derived here must be taken with some caution, s

FIG. 2. Deformation of the steepest descent contour of integ
tion in the complexh plane withb.1 andp.

1
2 ~a! for L1 , ~b!

for L2 .
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they are only approximate. An exact calculation to low
order in d0 should include nonlinear effects and a prop
treatment of the turning points in the WKB analysis, but t
corrections are expected to be quantitatively small@15#.
More details will be presented elsewhere@13#.

Concerning the stability of these solutions, it is reasona
to presume that, in general, they will be globally unstab
such as established numerically for the equal finger a
(p51/2) in Ref.@11#. This implies that they would only be
directly observable as a transient slowing down of the co
petition dynamics whenever an initial condition is prepar
close to any of those solutions. From a dynamical syste
point of view, we would like to emphasize that the know
edge of the fixed points, even if unstable, is always relev
to elucidate the topological features of the phase space fl

FIG. 3. Spectrum ofp as a function ofn for different values
of m.
.
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and therefore to gain insight into and qualitative understa
ing of the dynamics. In particular, the location of these n
fixed points will definitely affect the path in phase spa
describing the transient dynamics from a nearly equal fin
array towards the single finger attractor. This point of vie
was developed in Ref.@12# to study the dynamical role o
surface tension. In that spirit it was pointed out that a gen
alized solvability scenario of selection@1,4# could hold to
some extent for the dynamics@12,13#.

We conclude by remarking that, although the pres
solvability analysis is not a rigorous proof of the existence
solutions, it reveals by itself a quite unexpected richness
the problem. It would be interesting to search for these so
tions numerically or by other more rigorous means@6,8#. The
sole existence of the predicted solutions and its presum
generalization to a larger number of fingers has import
consequences on the physical picture of finger competit
which turns out to be much more complex than comm
arguments of Laplacian screening seem to suggest. The c
mon picture, according to which fingers slightly ahead
cape from their neighbors, is not necessarily valid in gene
because of the existence of growth modes with unequalnon-
competingfingers. For vanishingly small surface tensio
however, these modes collapse and only the equal-fin
multifinger mode (p51/2) survives as a stationary state. F
nally, given the genericity of the solvability mechanism
selection, this opens the possibility of finding similar sol
tions in related problems such as needle crystal growth
viscous fingering in circular geometry.
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