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Brownian motion in short range random potentials
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A numerical study of Brownian motion of noninteracting particles in random potentials is presented. The
dynamics are modeled by Langevin equations in the high friction limit. The random potentials are Gaussian
distributed and short ranged. The simulations are performed in one and two dimensions. Different dynamical
regimes are found and explained. Effective subdiffusive exponents are obtained and commented on.
@S1063-651X~98!01809-1#

PACS number~s!: 05.40.1j, 66.10.Cb
m
n
n

ffi
he
m
e
le
d
i

.
n

ills
th
i

th
p

ing
ti
in
n

a

ri
tt

t o
on
fo

d as
s

red

of
in a
r-
ed.

rac-
nd

re-
ed
dis-

n

oise

and

ted
po-
in-
I. INTRODUCTION

Since the pioneering work of Einstein@1#, it has been well
known that the motion of a free Brownian particle is rando
and isotropic. It is of diffusive nature, with a bare diffusio
coefficientn, determined by the mean square displaceme

(
1

d

^Dxi
2~ t !&5^Dr 2~ t !&52dnt, ~1!

whered is the dimension of the space. The diffusion coe
cient n is proportional to the absolute temperature of t
system, indicating which is the origin of this type of rando
motion. The brackets indicate statistical ensemble averag
many independent particles. The distribution of partic
spreads homogeneously in all directions, as in a normal
fusion process. A very simple way to describe this motion
to use a Langevin equation in the Schmoluchowsky limit

In this paper we consider the motion of the same Brow
ian particles in a random potential formed of wells and h
whose location and magnitude are random quantities. In
case, particles do not move randomly in all directions as
the former example, but they follow, mostly, the easier pa
connecting wells, remaining long time intervals in the dee
est wells. The mechanism of the motion is barrier cross
So, when we consider an ensemble of these noninterac
particles, instead of a homogeneous distribution spread
through all space, what we find is a set of localized regio
~wells! where particles spend most of the time.

For very large temperature values (n), with respect to the
relative magnitude of the potential wells, one can define
effective diffusion coefficient such as in Refs.@2,3#. Never-
theless, a consistent analysis of the numerical trajecto
seems to indicate that the regime is subdiffusive with a be
description in terms of effective exponents,

^Dr 2~ t !&;tzeff. ~2!

Diffusion in random static potentials has been a subjec
a rich variety of studies, most of them using master equati
@4–6#. Very powerful theoretical tools have been applied
PRE 581063-651X/98/58~3!/2833~5!/$15.00
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this problem where Langevin equations have been use
the basic model@6–9#, but only a few numerical simulation
have been reported up to now@6#. Thus there is very little
information on how the theoretical results can be compa
with real simulations.

In this work, we present an extended numerical study
the random diffusion of independent particles embedded
random correlated potential. A key point, which is the co
rect statistical generation of the potential, is also discuss
The roles of the potential parameters, intensity and cha
teristic length are studied. Numerical simulations for one a
two dimensions are performed.

In Sec. II, the model and noise characteristics are p
sented. In Sec. III, we explain the numerical algorithms us
and the simulation set up. Results are presented and
cussed in Sec. IV.

II. MODEL

Our starting point is a Langevin equation for Brownia
particles in the high friction limit~the Smoluchouski limit!

ẋ52V8~x!1j~ t !, ~3!

where the Cartesian components of the Gaussian white n
(j) have zero mean value and correlation

^j i~ t !j j~ t8!&52nd i j d~ t2t8!. ~4!

The potential we will consider hereV(x) is a Gaussian
short ranged correlated variable, with zero mean value
correlation

^V~x!V~x8!&5g~x2x8!d . ~5!

This is a nonidealized potential such as white correla
noise, and it can represent more realistic situations. The
tential is described by only two parameters: its effective
tensitye,

e5E
0

`

ddx g~x!d , ~6!
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FIG. 1. Comparison of the correlation function,g(r ), from the predicted theoretical form and our simulation for the one- and t
dimensional cases 1D~a! and 2D~b!.
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and its correlation lengthl,

l25
1

eE0

`

ddx x2g~x!d . ~7!

In this way, for l→0, it is possible to recover the whit
noise limit for the same intensitye.

In what follows we will assumeg to be of the form

g~ ux2x8u!5g~0!de2ux2x8u2/~2l2!,

g~0!d5
e

~2p!d/2ld
. ~8!

This is a short range potential with characteristic lengthl
and strength controlled by the parametere.

In Refs.@6,8,9# a different prescription was taken. Instea
of the potentialV(x), they took the forceF(x). The equiva-
lence between both descriptions is easily seen,

s~ ux2x8u!5^F~x!F~x8!&5
]2

]x]x8
g~ ux2x8u!. ~9!

Nevertheless, no correlation length appears explicitly in th
approach. We will comment on this point below.

III. NUMERICAL ALGORITHM AND
POTENTIAL GENERATION

Now we will review the main steps in the numeric
implementation of the problem we are studying. The eq
tion of motion ~3! is numerically solved by means of a se
ond order predictor-corrector algorithm@10#. The motion
will take place in ad-dimensional space discretized inNd

cells of sizeDxd. The linear size of the system isL5NDx.
Initially, 250 particles are uniformly randomly located

each one of four domains of linear sizeL/4, covering the
whole system. The simulation is stopped when a first part
runs a distance of the order ofL/4.

Here we present details for the one-dimensional case~see
Fig. 2!. The two-dimensional case is easily generalized~see
Fig. 1!. The position of each particle for each time step
integrationD is obtained as
ir

-

le

f

x̄5x~ t !1F~x!D1j, ~10!

x~ t1D!5x~ t !1$F@x~ t !#1F~ x̄!%
D

2
1j, ~11!

whereF(x)52dV(x)/dx is the force, andj ’s are Gaussian
random numbers of zero mean and variance (2nD)1/2, con-
structed with standard Gaussian random number genera

The generation of a random potential with prescrib
characteristics is not as standard as the generation of w
noises suchj. We assume that the potential is defined in t
corners of each cell and we haveNd values of it, with peri-
odic boundary conditions@11#. The potential is constructed
in the corresponding Fourier spaceV(k),

V~k!5„g~k!d…
1/2 h~k!, ~12!

whereg(k)d is the Fourier transform of the correlation fun
tion ~5!, and h(k) are Gaussian random numbers of ze
mean and correlation,

^h~k!h~k8!&5dk1k8,0 . ~13!

In order to obtain this type of anticorrelation,h variables are
constructed in the following way:

h~k!5
1

21/2
@x r~k!1 ix i~k!#,

~14!

h~0!5x r~0!,

where x are Gaussian random numbers of zero mean
variance equal to 1, and the subindexesi and r indicate the
real and imaginary parts ofh. The Fourier inverse transform
of V(k) will give the potential values at the corner cells. Th
procedure guarantees the statistical properties@12# of defini-
tion ~5!.

The force values in the corner cells are calculated fr
the discrete symmetric derivative ofV(x),

F~xi !5
V~xi 21!2V~xi 11!

2D
. ~15!
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However, during the numerical integration of Eq.~3!, we
need to evaluate the force values for any point inside
simulation region. These values are generated by linear
terpolation from the last obtained discrete forces as

F~x!5
F~xi !~xi 112x!1F~xi 11!~x2xi !

2
,

~16!

xe~xi ,xi 11!.

This numerical scheme can be improved, but as long asDx
!l no important errors are made.

IV. NUMERICAL RESULTS AND THEORETICAL
PREDICTIONS

For the stochastic dynamics of an overdamped Brown
particle in a random potential, in our numerical simulatio
we have observed several time regimes. In the early stag
the evolution, one can identify two different regimes as fun
tion of the noise: a deterministic regime for very small no
intensities, and a bare diffusion regime for large noise.
later stages, one can observe two other regimes: eith
subdiffusive regime for noise intensities that are not
small, or a frozen regime if noise is very small.

These different dynamical regimes can be clearly s
with an appropriate selection of the parameters. Here we
review the theoretical and numerical aspects of the first th
regimes. The last one is commented upon later in this s
tion.

A. Deterministic short time regime

For a very small noise intensity@a small bare diffusionn
compared with„g(0)d…

1/2# particles behave deterministically
relaxing from their initial position (x0) to the bottom of the
nearest well of the stochastic potential. This behavior can
understood if every particle is assumed to relax to a poten
well approximated by a parabola. The parameters defin
the parabolic geometry are taken from the potential aver
height @a5g(0)d

1/2# and potential average width (2l):

V~x!;
1

2
a

x2

l2
. ~17!

FIG. 2. Potential in one dimension~dashed line! and the density
of particles after some time.r(0) is the uniform initial particle
density.
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The solution of the deterministic equation of motio
when j(t)50 in Eq. ~3!, shows that the mean square di
placement, over the initial densityr(0), is

^Dx~ t !2&5^x0
2&~e2at/l2

21!2. ~18!

A uniform initial distribution r(0) in the interval (2l,l)
shows that̂ x0

2&5(l2)/3. Then two limiting behaviors are
extracted from Eq.~18!.

~a! For early times, we have that

^Dx~ t !2&;
e

l3
t2. ~19!

~b! For large times we obtain a frozen regime, which sa
rates to values

^Dx~ t !2&;l2. ~20!

In Fig. 3, our numerical simulations show these two
gimes. In particular, the early regime described by Eq.~19! is
seen in the trajectories label byb andb8 of this figure. Both
cases have the same value fore/l3, and therefore they ex
hibit the same short time behavior. Also, thet2 power law is
also clear in these trajectories.

The long time regime of Eq.~20! is also present in the
trajectories labeled byb andb8 in Fig. 3. It is clear that the
final frozen mean square displacement values are contro
only by l. In particular, with the data used, the final value
^Dr 2(t)& for caseb (l58) is four times the one correspond
ing to caseb8 (l54).

B. Bare diffusion regime

Here we consider the case of the short time regime fo
noise intensity that is not very small. Within the same a
proximation used in the deterministic regime, a parabo
potential, particles relax to the bottom of the well, but t
influence of the noise is manifested and the particles perf
a Brownian motion. The equation of motion with the a
sumed potential~17! is now

ẋ52
ax

l2
1j~ t !. ~21!

FIG. 3. Average mean square displacements. (l58 for a andb,
l54 for a8 andb8.)
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The mean square displacement, over the noise realiza
and the initial density distribution, is then

^Dx~ t !2&5^x0
2&~e2at/l2

21!21n
l2

a
~12e22at/l2

!,

~22!

and two more limiting behaviors, can be appreciated.
~a! For times larger thanat/l2, we find that

^Dx~ t !2&;2nt. ~23!

~b! For very large times, we recover the same satura
values as in Eq.~20!.

So, independently of the potential parameters (e,l), for
neither small nor large times there exists a diffusive regi
with the bare diffusionn.

The regime described by Eq.~23! is seen in cases labele
by a anda8 in Fig. 3. We see how the early stages are clea
diffusive with the bare diffusion parametern. The theoretical
result~22! saturates as in Eq.~20!, but this regime is not see
now because a new physical mechanism starts, which is
rier crossing. The subdiffusive character of the new regim
manifested for large times of the trajectories in Fig. 3.

C. Subdiffusive regime

This is the most important regime in our study. When t
noise intensity is not too small@g(0)d /n2,40.0#, the system
clearly exhibits, in our numerical simulations, a subdiffusi
regime. It starts when the bare diffusion regime saturate
seen in Fig. 3. In other words, it starts when particles are a

FIG. 4. Effective exponents vs the adimensional parame
Solid symbols refer to the 2D case, and open symbols to the
case.
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to overpass the barriers limiting the well in which they we
initially located. In this regime, depending on the noise
tensity, particles can visit several wells by a barrier cross
process. We expect that this regime is not of a diffus
nature with effective exponents depending on the system
rameters: the bare diffusion coefficient (n), the potential
strength (e), and its characteristic length (l). With these
three parameters, the only possible adimensional comb
tion is

e

ldn2
;

g~0!d

n2
. ~24!

This quantity has to be considered as the most relevant
rameter for this problem.

Numerical simulations have been performed, in one a
two dimensions, for different values of the system para
eters. The effective exponents have been extracted from
trajectories of the mean square displacement by nume
fitting of a power lawA1Btzeff. The set of exponents versu
the adimensional quantity@Eq. ~24!# is presented in Fig. 4.

According to renormalization group calculations@6,8,9#, a
linear dependence of the type

zeff
215a1b

g~0!2

n2
~25!

is expected ford52. Numerical fitting in thed52 case
gives the following values for the free parameters:a51.01
andb50.023. The value obtained forb is almost two times
smaller than the theoretical calculated valueb51/8p @6,8#.

Equation~25! looks very similar to the theoretical predic
tion expression, withs(0) instead ofg(0) @see Eq.~9!#;
however the theoretical result does not make any referenc
the characteristic lengthl @6,8#. This could explain the dif-
ference between the numerical value and the one obta
from the theory. The characteristic length should be expl
in any short range force or potential.

The data dispersion in Fig. 4 gives an idea of the er
bars. In general, the errors are lower than 5% ind52, and all
our data correspond to a unique potential. So our statist
average is over an ensemble of ‘‘particles’’~1000! and not
over an ensemble of different ‘‘potentials.’’ If the syste
size is large enough, with many wells and hills, a seco
average over different potentials is not a crucial point. Ne
ertheless, for very small values of the intensity of the noi
particles ‘‘see’’ very few wells and the statistic is poorer.

In Fig. 5, d52 potential level curves and particles loc

r.
D

ree
FIG. 5. Position of 1000 particles att58000
in the same potential (e524.0, l54.0) with a
differentn. n50.245~a! andn50.1 ~b!. Particles
are initially uniformly randomly located at the
central square. Contour lines correspond to th
levels of the underlined potential wells.
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tion are shown with high and low noise intensities@compared
with g(0)2#. In Fig. 5~a!, particles spread out, covering
considerable space distance from the initial location as in
homogeneous diffusion case. In Fig. 5~b!, this quasihomoge-
neity is lost, and particles mimic the underlining potent
pattern. In this last case, many more statistics would
needed to obtain reliable values for the effective expone
due to the small number of wells explored. In any case,
general trend of the nondiffusive behavior is clear in o
simulations.

Simulation results ford51, plotted for reference in Fig
4, deserve an explicit discussion. A linear fitting, like in E
~25!, for parametersa andb gives the values 1.01 and 0.03
respectively. Moreover, theoretical studies@6# predict that,
for this dimensionality, no expression like Eq.~25! is to be
expected. Instead of the power law with an effective ex
nent, a logarithmic power laŵ Dx2&;(lnt)4 has been
proved. This last behavior is not clear in our simulations, d
to the special restrictive characteristic of the motion. Inde
in d51, a very deep well would act as a trap or reflecti
wall, bounding the motion. On the other hand, ford52, the
particle would have more possible ways to escape from
trapping case. This contrasts with thed51 case, where
larger simulations would be needed to discriminate the
gime.

Summarizing the main results of this work, we have do
numerical simulations of Brownian particles under a sh
.
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ranged potential. The earlier stage of the motion has b
satisfactorily explained as a function of the system para
eters. The later subdiffusive character of the motion is clea
seen in two dimensions. The effective exponents obtai
agree with existing theoretical predictions, provided the d
ferent system parameters~noise intensity, potential strength
and characteristic length! are properly taken into accoun
With respect to the one-dimensional case, numerical sim
tions do not match theoretical predictions very well. To s
the effects predicted by the theory, very long time simu
tions in larger systems and ensemble potential avera
would be required.
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