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We introduce a modification to Hele-Shaw flows consisting of a rotating cell. A viscous fluid~oil! is injected
at the rotation axis of the cell, which is open to air. The morphological instability of the oil-air interface is thus
driven by centrifugal force and is controlled by the density~not viscosity! difference. We derive the linear
dispersion relation and verify the maximum growth rate selection of initial patterns within experimental
uncertainty. The nonlinear growth regime is studied in the case of vanishing injection rate. Several character-
istic lengths are studied to quantify the patterns obtained. Experimental data exhibit good collapse for two
characteristic lengths, namely, the radius of gyration and the radial finger length, which in the nonlinear regime
appear to grow linearly in time.@S1063-651X~96!02511-1#

PACS number~s!: 47.20.Ma, 47.20.Hw, 47.55.Kf, 68.10.2m

I. INTRODUCTION

The study of the morphological instability of an interface
between two immiscible fluids confined in a Hele-Shaw cell
has received a great deal of attention in the past decade as a
prototypical system to study generic features of interfacial
pattern formation in nonequilibrium systems@1#. This fluid
system has in fact important aspects in common with other
more complicated systems from different contexts including
flow in porous media, crystal growth, chemical electrodepo-
sition, flame propagation, etc.@2#. The study of viscous fin-
gering in Hele-Shaw cells has the great advantage of being
the simplest model from both theoretical and experimental
points of view. Studies of Hele-Shaw two-fluid flows can be
grouped into two categories according to the two basic ge-
ometries, namely, the linear or channel geometry and the
radial or circular one. In the former the focus has been on the
study of the mechanisms of steady-state selection@3#,
whereas the latter has focused on the asymptotic morpholo-
gies in connection with the concepts of fractal growth@4#.

The success of the studies of viscous fingering as a pro-
totypical system for interfacial pattern formation has lead
more recently to the introduction of perturbations or modifi-
cations of the problem in order to enrich it in a controlled
way and thus obtain insight into more complicated features
of related problems. A recent review of contributions along
these lines can be found in Ref.@5# and references therein.

In the same spirit we introduce here a controlled modifi-
cation on the radial viscous fingering setup, consisting of a
rotating horizontal Hele-Shaw cell. To some extent this prob-
lem can be seen as the counterpart of the gravity-driven ex-
periment in rectangular Hele-Shaw cells, but now in the cir-
cular geometry. As opposed to the classical case, here the
injected fluid will typically be more dense, for instance, oil
displacing air, in order to obtain a morphological instability
of the interface. It can be argued that Coriolis forces are
negligible within the framework in which the Hele-Shaw ap-
proximation is valid. If they become noticeable at some
point, they would manifest by breaking the radial symmetry
of the problem.

One of the main motivations for this study comes from

the observation of interesting dynamical phenomena for low
viscosity contrast in gravity-driven experiments@6#. In those
cases, the morphological instability is basically originated by
the density difference and not by the viscosity difference of
the two fluids. This allows one to explore the region of low
viscosity contrast. Simulations@7#, experiments@6#, and later
theoretical analysis@8# showed that the viscosity contrast
played a crucial role in the deeply nonlinear regime, with
important consequences, for instance, on the selection of the
single-finger steady state@8#. Since the screening mecha-
nisms of finger competition and the resulting interface mor-
phologies depended strongly on viscosity contrast, the ques-
tion arises as to whether such a parameter plays a crucial role
in the radial nonlinear growth case too.

The relation between injection and centrifugal driving in
the circular geometry introduces some important differences
with respect to the correspondence of injection vs gravity
driving in the channel geometry. In the latter case, an exact
parameter mapping exists between the two cases, which be-
come equivalent in the appropriate dimensionless formula-
tion together with a change of frame of reference. In the
circular geometry this mapping exists only in the linear re-
gime ~small amplitude perturbations of a circular interface!
since the advance of the interface cannot be absorbed in a
change of reference frame. The closest analog to a gravity
driven experiment would be the case of vanishing injection
rate, in which the total mass of the inner fluid is conserved.
Even in this case there is an important difference with the
gravity driven counterpart in that the centrifugal force de-
pends on radial distance, while gravity is constant. This not
only modifies the balance between stabilizing and destabiliz-
ing effects of viscosity and density contrasts, but may lead to
new morphologies in the highly nonlinear regime. An addi-
tional motivation for this experiment is the study of the ex-
istence of topological singularities in Hele-Shaw flows, such
as the breakup of the interface into bubbles. Such phenom-
ena have received much attention from a theoretical point of
view in different circumstances@9# and were significantly
present in experiments of low contrast gravity-driven experi-
ments. In our case they could be potentially more important
due to the growth of the driving force with distance. We will
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not address this point in the present paper and will focus, as
a first step, on the formulation of the problem and the char-
acterization of its basic features in the limit of high viscosity
contrast, deferring a more detailed morphological and dy-
namical study to future work.

Finally, one of the interesting features of the centrifugal
driving of the instability is that it allows one to study the
case of vanishing injection rate. This considerably simplifies
the problem, and data collapse to simple scaling laws seems
more feasible, as suggested by existing results on the circular
geometry@4# and particularly by related experiments such as
in Ref. @10#. In the present paper the study of nonlinear
growth will be restricted to the case of vanishing injection
rate.

The rest of the paper is organized as follows. Section II is
devoted to the formulation of the problem and discussion of
the linear instability. In Sec. III we describe the experimental
setup and in Sec. IV we present the experimental results.
Some final considerations are left for Sec. V.

II. FORMULATION AND LINEAR STABILITY ANALYSIS

Consider two immiscible fluids of viscositiesm1 ,m2 and
densitiesr1 ,r2, between the two glass plates of a Hele-Shaw
cell of gap spacingb. Within the usual high friction approxi-
mation, when the cell rotates with an angular velocityV,
Coriolis forces can be neglected and the flow is potential,
that is,v5“f, where the velocity potentialf is defined for
each fluid by

f i52Mi S pi2 1

2
r iV

2r 2D ~1!

and the mobilityMi is given byMi5b2/12m i . The indexi is
1 for the inner fluid and 2 for the outer one. With the incom-
pressibility condition, the problem is then completely speci-
fied, in its simplest form, by the bulk equation

¹2f i50 ~2!

and the two boundary conditions at the interface

p12p25sk, ~3!

vn5n–¹f15n–¹f2 . ~4!

Equation~3! is the usual Laplace pressure jump at the inter-
face, wheres is surface tension. The sign convention for the
curvaturek is such that a circular interface has positive cur-
vature. Equation~4! is the continuity condition, with the unit
normaln directed from fluid 1 to 2.

For the case of a circular interface of radiusR, the veloc-
ity potential takes the form

f i
~0!5

Q

2p
lnS rRD1f i0 , ~5!

whereQ is the aerial injection rate~area covered per unit
time!. If we now assume an infinitesimal perturbation of the
circular interface of the forma5Ad(t)einu we can derive
the corresponding linear dispersion relationv(n) defined by

ḋ

d
5v~n!1O~d!, ~6!

following the same steps as in Ref.@11#. In the Appendix we
give an alternative formulation of the problem based on con-
formal mapping techniques and outline the derivation of the
linear dispersion relation within that framework. With an an-
satz of the form

f15f1
~0!1bS rRD neinu, ~7!

f25f2
~0!2bSRr D

n

einu, ~8!

the continuity condition Eq.~4! determinesb in terms of the
rest of parameters as

b5
Ad

n F Q

2pR
1R

ḋ

dG . ~9!

Using the pressure drop condition Eq.~3!, we find

v~n!52
Q

2pR2 1Ṽn2
s̃

R3n~n221!, ~10!

where

Ṽ5
V2b2

12

r12r2
m11m2

2
Q

2pR2

m12m2

m11m2
~11!

and

s̃5
b2

12

s

m21m1
. ~12!

Note that, in general, bothQ andR are time dependent, so
the actual relaxation or growth of the modes is not exponen-
tial. In particular, for a circular interface we trivially have
Q/(2pR2)5Ṙ/R. We will be mostly concerned with the
case of positive, constantQ, in which caseR;t1/2. If the
experiment is performed at constant injection pressure, then
we haveR2lnR;t. Equation~10! reproduces the usual result
for a circular geometry whenV50 and reduces to the case
of a planar interface in a channel geometry
v(q)5q@U`(m22m1)/(m21m1)2s̃q2#, in the limits
R→` and uQu→` with uQu/2pR5U` andn/R5q.

The different feature of Eq.~10! is the presence of the first
term on the right-hand side of Eq.~11!, which is proportional
to the density difference. The instability will be governed by
the sign and size ofṼ. For positiveQ, it is clear that for a
typical situation in which the driving fluid is both more vis-
cous and more dense, such as for oil displacing air, the ef-
fects of the viscosity difference and density difference are
opposite. The former is stabilizing and the latter distabiliz-
ing. Moreover, only the stabilizing effect of viscosity de-
pends on the radiusR, so the balance of the two terms will
favor the instability for largeR or equivalently long times.
Finally, the signs of the two terms can be changed separately
so the problem is considerably enriched when an angular
velocity V is introduced, already at the level of the linear
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instability. Notice thatV appears squared, since the effect of
the rotation cannot depend on its sign, so the dependence on
this control parameter is rather strong.

The most important aspect of Eqs.~10! and ~11!, how-
ever, is the fact that the interface may be unstable regardless
of the sign of the viscosity difference, and the nonlinear re-
gime can now be studied in terms of viscosity contrast, in-
cluding the region of low viscosity contrast. For the sake of
simplicity, we will restrict ourselves mostly toQ50, in
which case the viscosity contrast is manifestly irrelevant at
the linear level. The absence of this extra parameter makes
the collapse of the experimental data much simpler, as we
will see in the following sections.

From Eq. ~10! we can also obtain some direct conse-
quences on then dependence of the linear dispersion rela-
tion. The zero mode that corresponds to a uniform expansion
of the circle behaves as in the classical case. It decays
~grows! for positive ~negative! Q as a consequence of mass
conservation and is marginal forQ50. The moden51 cor-
responds to a global off-center shift of the circular interface.
The stability of this mode is given solely by the sign ofṼ
and is independent of surface tension since it preserves the
circular shape. Forn.2 the stability depends on the inter-
play of the two terms of Eq.~10!. As usual, largen is domi-
nated by the stabilizing effect of surface tension, resulting, in
the unstable case, in a finite band of unstable modes. For
positive Ṽ, the most unstable mode is given by the closest
integer to the maximum of Eq.~10! with respect ton, which
reads

nmax5A1

3 S 11
ṼR3

s̃
D . ~13!

Equation~13! is illustrated in Fig. 1.
Finally, for the case Q50, the marginal mode

v(nc)50 is given by

nc5A11
ṼR3

s̃
. ~14!

Note that, contrary to the usual case (Q.0,V50), for posi-
tive Ṽ there is always at least one unstable mode, regardless
of how large ~small! the surface tension~interface radius!
may be.

III. EXPERIMENTAL SETUP

The Hele-Shaw cell used in this investigation is made of
two circular glass plates, 6 mm thick and 40 cm in diameter.
The two plates are placed on top of each other, separated by
a narrow gap, typically between 0.25 and 1.00 mm. The
separation is provided by six calibrated spacers evenly
spaced along the periphery of the cell. We estimate the fluc-
tuations in the gap around 0.05 mm. A viscous fluid, Rhodor-
sil 47 V 50 silicone oil, is injected to the cell by a syringe
pump, through a hole drilled in the center of the top plate,
using a special connector to prevent twisting of the tube
when the cell rotates around its vertical symmetry axis. The
syringe pump operates at injection rates adjustable from 1 to
299 ml/h in steps of 1 ml/h. The oil used has surface tension
s520.7 mN/m, kinematic viscosityn550 mm2/s at 25°C,
and perfectly wets the glass plates.

The cell is mounted on top of a rotating platform driven
by a dc motor and reductor. A scheme of the setup is shown
in Fig. 2. The motor incorporates a tachometer, which is used
by an external, linear, four-quadrant servocontroller to main-
tain highly stable angular velocities independently of load
fluctuations. Available velocities go from 0.0 to
300.0(60.1) rpm. The axis of the horizontal platform has
been machined conical and the setup has been mounted on a
heavy granite table with three adjustable feet in order to have
the cell accurately leveled even at the highest angular veloci-
ties. A proper leveling of the cell is critical during rotation.
In addition, the center of the cell is carefully aligned with the
rotation axis before each run, to a tolerance less than 0.02
mm in the radial direction. The illumination is provided by

FIG. 1. Prediction of a linear stability analysis fornmax, the
most unstable mode, as a function of two control parametersV
~angular velocity of the cell! andQ ~aerial injection rate!. The other
parameters areb50.5 mm,R05100 mm,s520.7 mN/m,n550
mm2/s, andr51000 kg/m3.

FIG. 2. Scheme of the experimental setup. See the text for de-
tails.
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four neon tubes that form a square around the cell, at the
level of the gap.

The patterns obtained are recorded with a JVC TK–S340
charge coupled device camera (5123582 pixels! equiped
with a 8-mm Cosmicar-Pentax objective. The overall illumi-
nation is adjusted to make the electronic shutter of the cam-
era operate at its maximum speed in order to avoid blurring
the images of the rotating pattern. Images are digitized se-
quentially by a Vitec VideoMaker frame grabber and stored
in the memory of a personal computer. The spatial resolution
of the captured images goes from a maximum of 7683576
pixels for a still image down to 2883384 pixels for the
maximum capture rate, 12.5 images/s, with 256 gray levels
per pixel. The number of images in a sequence is limited by
the amount of memory in the computer~currently 16 Mb!.

Before each run, the glass plates are thoroughly cleaned
and dried to avoid memory effects of wetting films from
previous runs. Typically, a stable circular interface is formed
first by injecting oil into the cell. Once the oil circle reaches
a desired radiusR0, the injection rate is adjusted to a prese-
lected value and, at the same time, the motor is switched on
with the servocontroller adjusted to a preselected velocity
V. Then the pattern develops and a sequence of images is
digitally recorded and stored for further analysis.

IV. RESULTS AND DISCUSSION

We have carried out experiments for different values of
the parameters under experimental control. These have been
b50.25, 0.50, and 0.81 mm;Q50, 48, 69, 78, 86, 111,
156, and 222 mm2/s; V530, 60, 75, 80, 90, 100, and 120
rpm; andR0550, 65, 70, 80, 90, 100, and 110 mm. Runs
with Q50 correspond to the spreading of an initially circular
drop upon rotation under conditions of mass conservation.
An example of the patterns obtained is shown in Fig. 3.

A. Linear regime

We focus our attention first on testing the dispersion re-
lation obtained from the linear stability analysis presented in

Sec. II. Our experiments correspond to the limitr1@r2 and
m1@m2 since the inner fluid is a silicone oil and the outer
one is air. In this limit the expression for the number of
fingers developing at a maximum growth rate@Eq. ~13!#,
written in terms of experimental parameters, reads

nmax5A1

3
~11S!, ~15!

whereS is a dimensionless quantity given by

S5
1

s S V2R0
3r2

QR0
2pM D ~16!

andM5b2/12m. We assume thatN, the number of ripples
observed at the onset of instability, is typically of the order
of nmax. The validity of this assumption relies on two uncon-
trolled properties of the initial conditions, namely, that the
noise is sufficiently weak and that its amplitude does not
systematically favor some modes over others. The compari-
son of the number of ripples andnmax is thus not only a test
of the linear dispersion relation but actually of these two
assumptions on the external noise in the initial condition.
Figure 4 presents the comparison between our prediction Eq.
~15! and the results of our observations. The error bars origi-
nate from the uncertainties in the cell gap and the original
radiusDb50.05 mm andDR055 mm. The agreement is
remarkable, particularly considering the wideband character
of the instability and the lack of control of the noise in the
initial condition @12#.

We have purposely distinguished between runs with fluid
injection and runs without, in which mass is conserved
(Q50). Systematically, patterns with mass conservation ex-
hibit a wave number smaller than predicted bynmax and the
discrepancy increases withS. In the linear regime, this ob-
servation can be understood in the following way. For
Q50 the initial drop is unstable for allV ~Fig. 1!. Since the
cell takes a time of the order of 1 s toreach the steady speed

FIG. 3. Typical pattern obtained in our rotating Hele-Shaw cell.
Oil is the inner fluid and air the outer one. HereQ50, b50.5 mm,
and V580 rpm. This single picture is extracted from an actual
sequence of video frames.

FIG. 4. Number of ripples formed at the onset of instabilityN as
a function of the dimensionless quantityS5(1/s)(V2R0

3r
2QR0/2pM ). Filled circles represent measurements withQÞ0
and empty circles measurements withQ50 ~conserved mass!. The
solid line is the prediction of a linear stability analysis fornmax.
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V, the interface feels an effectiveS(t) that grows from zero
to its maximum value. By the timeS reaches that value,
modes with smaller wave number~corresponding tonmax at
the instantaneousV) have been enhanced and may eventu-
ally dominate over the most unstable mode at the steady
V. ForQ.0 this effect is much less pronounced since the
instantaneousS is positive only for a much shorter time.

B. Nonlinear regime with mass conservation„Q50…

Experiments with mass conservation (Q50) correspond
to the most genuine case to explore with a rotating cell since
they correspond to a purely centrifugal driving, with no ana-
log in the usual injection-driven setup. In the rest of this
section we concentrate on this case as the simplest and most
interesting one. The linear regime already shows the particu-
lar simplicity of the caseQ50. R in Eq. ~10! is now a
constant and the growth and decay of modes are truly expo-
nential. The moden50 is now marginal and the linear dis-
persion relation provides us with a natural time scale of the
system

t5
24m

b2V2r
. ~17!

In the linear regime and forQ50 the mobility plays no role
other than setting the time scale of the instability and does
not affect the emerging pattern, which depends only on the
ratio of centrifugal to capillary forces as defined by
S5V2R3r/s in Eq. ~15!. Thusnmax is independent of the
cell gap and viscosity. Measurements of the number of
ripples at the onset of instability, for givenV andR0 but
differentb ~empty symbols of the sameS in Fig. 4!, confirm
this prediction within experimental uncertainty. However,
this is no longer true for well-developed patterns in the non-
linear regime, where substantial differences in morphology
indicate that mobility plays an important dynamic role in the
nonlinear regime, when fingers develop and compete. An
example is shown in Fig. 5, where we compare patterns re-
sulting from two runs for which all parameters have been
taken to be the same, except the gapb.

In order to study more precisely the resulting patterns and
their possible scaling properties we have defined several

quantitative characterizations. Following similar studies in
radial Hele-Shaw cells@4#, we first study the radius of gyra-
tion as the pattern develops in time, as a measure of the mass
distribution. The radius of gyration as a function of time is
shown in the inset of Fig. 6. This quantity starts from the
initial radiusR0 and rises sharply when the instability devel-
ops, at a rate depending on the values of the parameters. We
have rescaled time byt and the radius of gyration byR0 and
found that data from runs with completely different sets of
parameters collapse into a single curve for all the evolution,
as shown in Fig. 6.

We can distinguish three different regimes. First there is a
period of latency of about 0.3 in dimensionless time before
the onset of instability. Next, a relatively short period with
presumably exponential growth follows, and immediately
nonlinear effects take over, setting a growth law that appears
to be consistent with being linear in time. Remarkably
enough, the time of latency itself appears to be a scaling
quantity. This is not expecteda priori since such time de-
pends on the fluctuations present in the initial condition,
which are not controlled in the experiment. In fact, from this
characteristic time for the onset of instability we can get an
estimate of the actual noise amplitude present in our experi-
ments. In dimensionless time this must be of the order of
ln(DRobs/DR0), whereDRobs is the departure from the initial
radius of gyration that is first appreciable~Fig. 6 suggests an
estimate of 0.05 in dimensionless units! andDR0 is the typi-
cal relative fluctuation of the initial radius~typical amplitude
of modes resulting from preparation of the initial condition!.
We thus obtain that the noise amplitude in the initial condi-
tions is roughly proportional toR0 with an estimate of
DR0 of 5% or below.

The second characterization of the emerging patterns is
the so-called interface stretching, which measures the in-
crease of the total perimeter of the inner fluid region. Again,
the evolution for different experimental conditions is remark-
ably distinct, as shown in the inset of Fig. 7. The scaling of
length and time byR0 andt in this case does not produce a

FIG. 5. Two examples of time sequences of the digitized inter-
face.~a! R0581 mm,b50.81 mm,V560 rpm, and the interface is
drawn att50, 15.2, 24.0, 28.8, and 33.2 s after the cell started to
rotate. ~b! R0583 mm,b50.5 mm,V560 rpm, andt50, 40.0,
58.0, 66.0, and 74.0 s. In both runsQ50.

FIG. 6. Collapse of the dimensionless radius of gyration vs di-
mensionless time, for measurements under different experimental
conditions. The inset shows the experimental data before making
the variables adimensional. The gap widthb is given in millimeters
and the angular velocityV in rpm.
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collapse of the experimental data beyond the latency period.
We have not succeeded in finding a reasonably simple scal-
ing that makes our data for the interface stretching collapse
in the nonlinear regime. This may be related to the fact that
surface tension effects are still significant in the present pa-
rameter regime, and there may be more than a single length
scale that is necessary to characterize the pattern. The total
interface length would presumably be much more sensitive
to this fact than other globally averaged quantities such as
the radius of gyration.

The reader will notice that the morphologies observed in
the rotating cell are apparently quite different from the ones
observed in classical radial viscous fingering (V50,
Q.0). Interestingly, a pattern evolution closely resembling
ours was obtained by Thome´ et al. @13# in the reversed ver-
sion of the radial viscous fingering experiment (Q,0,
V50) with a viscous fluid being pumped out at the center as
air fingers invaded from the exterior. In this high viscosity
contrast limit both experiments are quite similar. Our case,
however, provides the means to study the competition of
such inward fingers with no time limitation, in principle,
since the viscous fluid is not being removed from the cell
~and could even be injected!. In any case, the most interest-
ing differences between the two experiments may be ex-
pected at low viscosity contrast.

An interesting way to characterize the competition of in-
ward air fingers, which may be useful to gain some insight
into the nonlinear dynamics, is to compare the patterns ob-
tained with the ones in the case of fingers competing in a
channel geometry. This can be done by mapping the (x,y)
coordinates of the interface into new coordinates
@u,2 ln(r/R0)#, where (r ,u) are the polar plane coordinates.
Applying this conformal mapping to the patterns in Fig. 5
produces the result shown in Fig. 8. In this representation, it
is apparent that the patterns strongly resemble those found in
the classical fingering problem in the channel geometry at
high viscosity contrast~with air invading oil!. Not only the
fingered patterns but the dynamics of competition seem to be

quite similar. In fact, one sees that from a rather noisy initial
pattern a competition between fingers is established in which
shorter fingers are left behind and only a few of them survive
and keep growing. While the pattern in the regions that are
left behind is rather static and irregular, the mechanism of
finger competition of large fingers seems to follow a rather
regular pattern of behavior. This suggests that it is the inward
air fingers in our experiments that may exhibit some sort of
universal dynamical behavior. With this view, the interface
stretching could in fact be too sensitive to the ‘‘nonuniver-
sal’’ regions left out by competition and would then be in-
adequate for the study of the scaling properties of the pat-
terns.

An important difference with respect to the channel ge-
ometry is that the competition process between air fingers
seems to stop after a while, when a reduced number of fin-
gers keeps growing~in the logarithmic representation!, in-
stead of a single finger, as it would be the case in the experi-
ment in the channel geometry@14#. This observation
suggests a scenario in which the competition process is split
into two regimes. In the first regime, neighbor fingers are
close to parallel to each other and compete essentially like in
a channel geometry. After the competition process has elimi-
nated a number of fingers, the angle between them increases
to a point at which screening effects no longer produce the
dynamical elimination of fingers and a reduced number of
them survive, which keep approaching the cell axis.

Within this scenario, the differences between the time se-
quences of the patterns in Fig. 5 can be easily interpreted.
The sequence of interfaces in Fig. 5~a! @and Fig. 8~a!# corre-
sponds to a case in which the number of fingers is small and,
consequently, the period of actual finger competition is very
short. The sequence in Fig. 5~b! @and Fig. 8~b!# instead
would correspond almost entirely to the competition regime
between a large number of fingers. With this view, it seems
that the larger the number of fingers, the longer the compe-
tition regime. A more systematic test of this scenario goes
beyond the scope of the present paper.

The observation of the regularity of the behavior of in-
ward fingers lead us to study a third quantitative character-
ization of the dynamics of fingered patterns in terms of the
radial length of selected air fingers as a function of time. We
have measured this length for many different runs but dis-

FIG. 7. Dimensionless stretching vs dimensionless time, for
measurements under different experimental conditions. The inset
shows the experimental data before making the variables adimen-
sional. The gap widthb is given in millimeters, and the angular
velocity V in rpm.

FIG. 8. Time sequences of the same digitized interfaces shown
in Fig. 5, mapped here to new coordinates@u,2 ln(r/R0)#. The map-
ping reveals that air fingers~outer fluid! penetrate the oil~inner
fluid!. Remember thatQ50.
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carding fingers that grow preferentially in directions other
than the radial direction. The results, presented in the inset of
Fig. 9, clearly show that the radial finger growth is basically
linear in time for all cases once the finger is formed. When
rescaled byRo and t, the data display the remarkable col-
lapse shown in Fig. 9.

V. SUMMARY AND CONCLUSIONS

We have considered a modification of the classical vis-
cous fingering problem in a circular Hele-Shaw cell consist-
ing in a controlled rotation of the cell around its vertical axis.
With this modification the instability can be driven by both
the density difference and the viscosity contrast between the
two fluids. In this sense, our experiments in a rotating cell
draw an analogy with gravity-driven experiments in the
channel geometry.

The linear stability analysis of our problem has been dis-
cussed in detail, showing a rich variety of situations. In the
absence of injection, the linear regime is governed by a di-
mensionless quantityS, a balance between centrifugal and
capillary effects, and independent of mobilityM5b2/12m.
The mobility sets in as a relevant dynamic quantity in the
nonlinear regime and is then needed to scale the patterns.

An interesting aspect introduced by the presence of cen-
trifugal forcing is that the interfacial instability can be driven
without fluid injection (Q50). Scalings of different magni-
tudes of the patterns generated deep into the nonlinear re-
gime seem to be more feasible in this case of conserved
mass. Attempts of obtaining similar scalings forQÞ0, in the
circular geometry, have had different success in collapsing
the experimental data, as discussed in Refs.@4,15#.

Previous simulations in the channel geometry showed that
magnitudes such as the stretching of the interface, the extent
of the mixing zone~equivalent to our finger length!, and the
root-mean-square displacement from planarity~equivalent to
a radius of gyration in the circular geometry! are all equiva-
lent in the sense that mutual linear relations can be estab-

lished@16#. This is not the case in our experiments, where a
good scaling has been found for the finger length and for the
radius of gyration, but not for the stretching of the interface.
In all cases, the nonlinear behavior seems to exhibit a linear
growth law for the scaled lengths. The failure to scale the
interface stretching, however, may be a signal of the exist-
ence of an additional characteristic length scale of the pat-
terns. Finally, it has been observed that inward air fingers
seem to exhibit a more ‘‘universal’’ dynamical behavior than
outward oil fingers in the sense that competition mechanisms
can be compared with their counterparts in the channel ge-
ometry, through an appropriate conformal mapping. Interest-
ingly, the analogy holds only for an intermediate-time re-
gime, when the number of fingers is quite large. When the
pattern has coarsened to a reduced number of penetrating air
fingers, the screening effects are eventually affected by the
angle of competition and the process stops, leaving a reduced
number of active fingers approaching the cell center. Further
study of this aspect is necessary to establish the actual valid-
ity of this scenario.

Except for the linear regime, the present study has con-
centrated on the case of conserved mass patterns. Apart from
the open questions discussed above for that case, there are
many other interesting regimes to be explored. First, we plan
to extend our investigation of the limit of high viscosity con-
trast to the problem withQÞ0. In particular, it is interesting
to look at the different scalings proposed in the literature for
Q.0 and to check the caseQ,0, where the instability is
driven at the same time by the density difference and the
viscosity contrast. A more systematic study of the nonlinear
regime, with focus on asympotic behavior, and quantitative
analysis of morphologies and symmetries is also of interest.
Finally, a slight modification of our setup should make it
possible to vary the viscosity contrast and explore in particu-
lar the low contrast limit. From what is known concerning
the role of viscosity contrast on the mechanisms of finger
competition and in the resulting morphologies, the study of
this aspect in our problem is expected to be one of its most
promising and interesting.
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APPENDIX: CONFORMAL MAPPING FORMULATION

Here we briefly discuss an alternative formulation of the
problem, and a derivation of the linear dispersion relation,

FIG. 9. Collapse of the dimensionless length of individual in-
ward air fingers vs dimensionless time, for measurements under
different experimental conditions. The inset shows the experimental
data before making the variables adimensional. The gap widthb is
given in millimeters and the angular velocityV in rpm.
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based on the conformal mapping approach to Laplacian
growth problems. This formalism has been applied with
great success for high viscosity contrast Hele-Shaw flows
~see, for instance, Ref.@1#!. We apply it in this same limit to
flows in a rotating cell.

The basic idea is to describe the interface dynamics, for
either a channel or a circular geometry, in terms of an evo-
lution equation for the conformal mappingz5 f (w,t), which
maps a prescribed fixed region in the complex planev ~in
our case the interior of the unit circle! into the physical re-
gion corresponding to the viscous fluid, withz5x1 iy , x,y
being Cartesian coordinates. The evolution equation for the
mapping, which contains all the geometric information about
the interface, takes the form

] f ~v,t !

]t
5Df ~v,t !ÃFRe@DF~v,t !#

uDf ~v,t !u2 G , ~A1!

whereD5v]v andÃ@g(s)# is an integral operator that acts
on a real-valued functiong(s), defined on the unit circle
v5eis, whose output is the complex-valued function that is
analytic in the interior of the unit circle and hasg(s) as its
real part at the unit circle. The complex potentialF(v,t) in
the case of a rotating Hele-Shaw cell reads

F~v,t !5
Q

2p
lnv1

b2

12m
sÃ@k~s!#1

b2

24m
rV2Ã@ u f ~s!u2#,

~A2!

wherek(s) is the curvature of the interface, which is ex-
pressed in terms of the mapping ask(s)5

2Im(]s
2f /]sf u]sf u). We can now derive the linear dispersion

analysis for infinitesimal perturbations with integer wave
numbern of the circular interface, inserting the ansatz

f ~v,t !5a~ t !v1d~ t !vn11 ~A3!

into Eq. ~A1!. We then obtain

ȧ5
1

a

Q

2p
1O~d2!, ~A4!

ḋ

d
5v~n!1O~d!, ~A5!

wherev(n) is given by

v~n!52
Q

2pR2 1Ṽn2
s̃

R3n~n221! ~A6!

and

Ṽ5
V2b2

12

r

m
2

Q

2pR2 ~A7!

and

s̃5
b2

12

s

m
. ~A8!
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@13# H. Thomé, M. Rabaud, V. Hakim, and Y. Couder, Phys. Fluids
A 1, 224 ~1989!.

@14# The actual velocity of the fingers at late stages in the channel
representation may be distorted by the fact that they are ap-
proaching the cell axis in the experiment.

@15# J.D. Chen, J. Fluid Mech.201, 223 ~1989!.
@16# D. Jasnow and J. Vin˜als, Phys. Rev. A41, 6910~1990!.

54 6267EXPERIMENTS IN A ROTATING HELE-SHAW CELL


