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A Brownian pump of particles powered by a stochastic flashing ratchet mechanism is studied. The pumping
device is embedded in a finite region and bounded by particle reservoirs. In the steady state, we exactly
calculate the spatial density profile, the concentration ratio between both reservoirs and the particle flux. We
propose a simulation framework for the consistent evaluation of such observable quantities.
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I. INTRODUCTION

Free diffusion by itself is not the appropriate physical
mechanism for selective transport processes. The appearance
of net directed motion needs the breaking of detailed balance
and spatial inversion symmetry. Inspired on Feynman’s
ratchet and pawl device �1�, such phenomenon has been
named after the ratchet effect. Moreover, when the environ-
ment is thermally fluctuating, Brownian transport is crucially
affected and controlled by noise �for a broad review, see �2�
and references therein�. Its relevance to molecular machines,
such as motors, pumps, and channels, has been proposed
from the foundation idea of the so-called Brownian motors
�3�.

Brownian pumping is then an active nonequilibrium
transport process in which fluctuations play a very important
role. Regarding experiments, Na,K–ATPase pumps have
been perturbed by an oscillating electric field �4,5�, driving
ions whose net flux was measured as a function of the am-
plitude and frequency of the field. The flux of particles cre-
ated by pumping devices has been studied theoretically in
�6–9�. Generally, a typical ratchet mechanism is assumed
with periodic boundary conditions for the �normalized� prob-
ability distribution of particles, putting the emphasis on the
calculation of the flux as a function of the model parameters.
In this work, the scenario is different and, at the same time,
more suitable to model real pumps. While the ratchet mecha-
nism is still responsible for the transport of particles, we
focus on the nonequilibrium concentration gradient created
and maintained by the pumping device. Thus our system is
not periodic �see Fig. 1�. We consider the unnormalized den-
sity of particles at the boundaries as the main observable
quantity. The flux J of particles, together with the density
profile ��x� in the membrane and the ratio of concentrations
�1 /�0 originated between the particle reservoirs, are studied.

The structure of paper is the following. First we introduce
the model for the Brownian pump by means of a Langevin
equation, which can be mapped into a Seebeck ratchet
�10–12�. In the steady state, a standard theoretical analysis is
carried out to obtain the nonequilibrium density of particles
��x� that is generated at zero and finite flux. The flux J itself
is also determined. Then we present a simple numerical
scheme from which the densities and fluxes can be measured
and satisfactorily compared to the predictions. For a piece-
wise linear saw-tooth potential we calculate explicitly the
expressions derived in the analysis and explore them as a

function of the main parameters of the system. We end with
some conclusions and comments for future work.

II. GENERAL THEORETICAL ANALYSIS

We consider an underdamped Brownian particle moving
on a line under a time dependent potential V�x , t�. The cor-
responding equation of motion for its position is the Lange-
vin equation

mẍ = − �ẋ − V��x,t� + ��t� , �1�

where m is the mass of the particle, � introduces the friction,
and ��t� is a Gaussian white noise accounting for thermal
fluctuations of the environment with the usual autocorrela-
tion

���t���t��� = 2�kBT��t − t�� . �2�

The time dependent potential V�x , t� consists of a ratchet part
V�x� �a spatially asymmetric potential� time modulated by a
stochastic process in the following form:

V�x,t� = V�x��1 + ��t�� , �3�

where ��t� is another Gaussian white noise with zero mean,
uncorrelated with ��t�, whose autocorrelation is

���t���t��� = 2Q��t − t�� . �4�

In the regime in which friction dominates inertia, the Lange-
vin equation reduces to the so-called overdamped limit,

FIG. 1. Scheme of the pumping device: A spatially asymmetric
and time dependent potential V�x , t�, embedded in a finite region of
length L �denoted as the membrane� flashes in time creating a den-
sity profile between the reservoirs of densities �0 and �1.
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ẋ = − V��x� − V��x���t� + ��t� , �5�

where the friction constant � has been set to one.
It is worth remarking here that, due to the inertia term, the

Ito and Stratonovich interpretations of Eqs. �1�–�4� coincide
despite being a stochastic differential equation with multipli-
cative noise. Equation �5�, however, should be treated with
care, since one must decipher first whether it has to be inter-
preted according to either Ito or Stratonovich rules. The or-
der of the limiting procedures from which one arrives to an
overdamped equation from an underdamped equation, hav-
ing assumed first that the noise ��t� is obtained as the limit of
an Orstein-Ulhenbeck process, determines that the appropri-
ate stochastic interpretation is that of Ito �13–15�. Then, Eq.
�5� can be rewritten as

ẋ = − V��x� + g�x���t� , �6�

where

g�x� = �kBT + QV��x�2, �7�

and the new effective noise ��t� has zero mean and correla-
tion ���t���t���=2��t− t��. The continuity equation for the
density of particles ��x , t� is

�t��x,t� = − �xJ�x,t� . �8�

By using Ito’s prescription in Eq. �6�, the expression for the
flux J�x , t� yields �16�

− J�x,t� = V��x���x,t� + �x�g2�x���x,t�� . �9�

Although Eqs. �8� and �9� correspond to the well known
Fokker-Planck equation, here ��x , t� accounts for the physi-
cal density of particles and not the usual �normalized� prob-
ability distribution.

In the steady state the density ��x� is just a function of
space and thus the flux J becomes a constant. The density
follows a first order nonhomogeneous linear differential
equation whose formal solution is

��x� = Z�x,c0,J�exp�− 	
0

x

dz
V��z�
g2�z�

+ 2
g��z�
g�z�

�� , �10�

with

Z�x,c0,J� = c0 − J	
0

x dz

g2�z�
exp
	

0

z

dy�V��y�
g2�y�

+ 2
g��y�
g�y� �� .

�11�

The unknown constant c0 is found by imposing the left res-
ervoir concentration, �0��0−�, as a fixed boundary condi-
tion. Then c0=�0. At each boundary between the membrane
and the reservoirs �at x=0 and x=L� we will distinguish be-
tween approaching from the left and the right side due to
possible discontinuities in the derivatives of the potential.

In what follows, we will study two different situations.
First, we impose a zero total flux: J=0. This corresponds to
the case in which the pump is maintaining the maximum
concentration difference between the two reservoirs across
the membrane with no net leaking of particles. This situation

is analogous to the stalling force in Brownian motors. From
Eq. �10�, the density profile in the membrane is

��x� = ��x0��g�x0�
g�x� �2

exp�− 	
x0

x V��z�
g2�z�

dz� . �12�

The exponent 2 in the prefactor before the exponential is a
characteristic of Ito’s interpretation. It changes to 1 for Stra-
tonovich’s. One can find the expression for the ratio of con-
centrations at both sides of the pumping device by defining
�1��L+�. Assuming no systematic drift in the system, this
is V��L+�=V��0−�; then g�L+�=g�0−� and therefore Eq. �12�
yields

�1

�0
= exp�−

1

kBT
	

0−

L+ V��z�
1 + Q

kBTV��z�2
dz� . �13�

The concentration �0 was fixed in the former case. If we now
impose �1 too, then the flux J is no longer zero in general.
From Eqs. �10� and �11�, one can get the explicit expression

J =

�0 − �1 exp
	
0−

L+

dz�V��z�
g2�z�

+ 2
g��z�
g�z� ��

	
0−

L+ dz

g2�z�
exp
	

0−

z

dy�V��y�
g2�y�

+ 2
g��y�
g�y� ��

. �14�

Substituting J back in Eq. �11� one can obtain, from Eq. �10�,
the steady density ��x� for any choice of �0 and �1.

These two last equations are the main analytical results of
this paper. They will be explicitly evaluated for the piecewise
linear potential of Fig. 1 and compared with numerical simu-
lations.

III. SIMULATION FRAMEWORK

Let us suppose that the analytical solutions for the density
and flux derived in the previous sections are not available.
Then one may need to think of a simulation framework to
numerically obtain those relevant observables for pumps and
channels. A possible option is to solve numerically the dif-
ferential equation for the density ��x� with appropriate
boundary conditions. However, a different and much more
interesting perspective consists in simulating the dynamics of
many noninteracting particles �described by the Langevin
equation� in the membrane and the reservoirs and, afterward,
extracting the concentration profiles directly from their posi-
tions. This approach is much closer to real experiments in
biomembranes. The present section is devoted to describing
in detail such a numerical scheme.

There are multiple choices for a stochastic algorithm to
simulate the particle dynamic equations �5� or �6�. The sim-
plest and good enough for the case under consideration is the
first order Euler’s algorithm. For Eq. �6�, the position x at
time t+�t of the ith particle turns out to be

xi�t + �t� = xi�t� − V��xi�t���t + g�xi�t��Xi�t� , �15�

where �t is the �small� integration time step and the stochas-
tic term Xi�t� is constructed as,
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Xi�t� = 	
t

t+�t

��t��dt� = �2�t�i, �16�

in which �i are independent Gaussian random numbers
N�0,1�. The algorithm used in Eq. �15� corresponds to Ito’s
interpretation for a general model.

The main feature of the simulation framework we present
is the implementation of the boundary conditions that ac-
count for the particle reservoirs at both sides of the mem-
brane. Using an auxiliary length l0, we extend and divide the
spatial domain of the system into three regions: The left res-
ervoir in x� �−l0 ,0�, the membrane in x� �0,L�, and the
right reservoir in x� �L ,L+ l0�. We consider N noninteracting
particles, each one evolving according to Eq. �15�. When a
particle is in a reservoir no deterministic force acts on it. It
diffuses freely; only random kicks due to thermal noise drive
the particle. The numerical simulation starts with particles
distributed randomly in the entire domain. Each particle is
numbered and its position, xi�t�, is stored. First we observe a
transient regime during which �0�t� decreases and �1�t� in-
creases, up to the steady state in which �1	�0 remains con-
stant. Once this stage is reached, the density profile ��x� is
obtained as a histogram of the spatial distribution of par-
ticles. The following typical values of the simulation dimen-
sionless parameters are used: L=1, l0=0.5, �t=0.001, and
N=500 and the overall time of observation in the steady state
is of the order of t=1000. Notice that one can lower such
time by increasing the number of particles �or vice versa�
keeping the statistics constant since, from the ergodicity hy-
pothesis, ensemble averages are equal to time averages.

The two possible situations, J=0 and J�0, need a differ-
ent approach. For the first case �J=0�, we impose reflecting
boundary conditions at the end points �x=−l0 and x=L+ l0�.
This means that if at any integration step the particle crosses
the end points, we restore its position with the specular im-
age with respect to such a boundary. As shown in Fig. 2, the
steady state density of particles at both reservoirs is constant.
Moreover, from this simple histogram of the positions of the
particles, the density profile is obtained.

For the second case �J�0�, we impose periodic boundary
conditions at points −l0 and L+ l0, so that both end points are
connected. At the steady state, �0��1 is observed, with a
linear density profile in the reservoirs which is the signature
of a finite nonzero constant flux J. See Fig. 3. More ad-
vanced and sophisticated studies of simulation of Langevin
trajectories with specific boundary conditions can be found
in Refs. �17–19�. In our method, the pump is moving par-
ticles from the left to the right forcing a concentration gra-
dient in the reservoirs �which are connected only in the nu-
merical scheme�. Accordingly, a net flux appears that fulfills
Fick’s law,

J =
kBT

2l0
��1 − �0� . �17�

This simple and intuitive method is able to generate data of
J, �0, and �1 since, independent of the initial conditions, the
system will evolve to the steady state in which the value of J
in Eqs. �14� and �17� coincides. Then the flux can be mea-
sured either by counting the net number of particles crossing
the point x=L+ l0 �where the periodic condition is imple-
mented� as a function of time or from the histogram of ��x�
on the region �L ,L+ l0�� �−l0 ,0� by fitting Eq. �17�. From
this the concentrations �0 and �1 can be determined as well.
Regarding the effect that the discontinuous forces have on
the accuracy of the simulations, one can see that at the inter-
faces of the reservoir and the membrane the density quickly
falls, trying to mimic jumps in ��x� that come from the
piecewise linear potential. The abrupt changes observed in-
dicate that the time-step is small enough to faithfully repro-
duce the effect of such force discontinuities �see details in
Fig. 4�.

On the whole, the above explained rules and conditions
lead to the physical situation of interest. The quantitative
agreement between theory predictions and simulation results
is good as we will show in the next section.

IV. ANALYTICAL AND SIMULATION RESULTS

In this section we complete the preliminary analytical re-
sults of Ref. �20� and compare them with numerical simula-

ρ(x)
ρ
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ρ
1

l
0Ll

0

J=0

FIG. 2. Histogram of the density profile ��x� in the steady state
at J=0 obtained from numerical simulations. We use the potential
introduced in Sec. IV. Reflecting boundary conditions are imple-
mented at the end of both reservoirs.
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FIG. 3. Histogram of the density profile ��x� in the steady state
at J�0 obtained from numerical simulations. Periodic boundary
conditions are applied at the ends of the reservoirs leading naturally
to a constant flux J everywhere and fixed �1 and �0.
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tions. The explicit model we consider is a piecewise linear
saw-tooth potential depicted in Fig. 1. It is defined in two
regions as

VA�x� = V0
x


L
, x � �0,
L� , �18�

VB�x� = V0
L − x

�1 − 
�L
, x � �
L,L� . �19�

V0 is the height of the potential, 
 �which can only take
values between 0 and 1� controls the asymmetry, and L is the
total length where the pumping device is allocated.

The forthcoming subsections are devoted to calculating
and discussing the exact analytical expressions of the profile
density of particles ��x� and the concentration ratio �1 /�0 at
J=0, as well as the normalized flux J /�0 as a function of
�1 /�0. Since the potential is piecewise linear, the force is
discontinuous, yielding to discontinuities in the density pro-
files, which we will carefully characterize without any fur-
ther problems.

A. Density profile �„x… at J=0

Let us recall expression �12� for the spatial density profile
��x� given a baseline concentration �0 and zero flux condi-
tions J=0. From the potential in Eqs. �18� and �19�, ��x� can
be obtained exactly. Nevertheless, as the potential is piece-
wise linear, we expect discontinuities in ��x�. Thus we have
to evaluate the profile in four different zones denoted by the
subscripts 0, A, B, and 1, whose meaning is clear from Figs.
1 and 4. First we introduce the following dimensionless pa-
rameters:

v0 
V0

kBT
, � 

QkBT

L2 , �20�

where v0 is the relative energy barrier of the potential com-
pared to the thermal energy. The parameter � is a measure of
the strength of the flashing mechanism.

The density profile of particles in region A, this is �A�x�,
in which x� �0+,
L−�, is obtained from Eq. �12� by taking

x0=0−, so that ��x0�=�0 and g�x0�=�kBT. Noticing that g�x�
in region A �denoted by gA�x�� is a constant, one has

gA = g�0+� = g�
L−� = �kBT + Q�V0/
L�2, �21�

which finally yields to

�A�x� =
�0

�1
exp
−

v0

�1

x


L
� , �22�

where, for simplicity in the notation, the following new di-
mensionless quantities have been defined:

�1  1 + �
v0



�2

, �2  1 + �
 v0

1 − 

�2

. �23�

Then the jump of the concentration at x=0 is simply

�1  ��0−� − ��0+� = �0
1 −
1

�1
� . �24�

The density of particles in region B is found similarly. We
recall Eq. �12� and now choose x0=
L−. From the above
expressions and by noticing again that gB�x� is a constant,

gB = �kBT + Q�V0/�1 − 
�L�2, �25�

the concentration profile �B�x� is found to be

�B�x� =
�0

�2
exp
−

v0

�1
�exp
 v0

�2

x − 
L

L − 
L
� . �26�

The jump between zones A and B �at x=
L� is

�2  ��
L+� − ��
L−� = �B�
L� − �A�
L�

= �0 exp
−
v0

�1
�
 1

�2
−

1

�1
� . �27�

The constant density �1 at the other side of the membrane is
discussed in detail in the next section. The jump �3, which
corresponds to x=L, is obtained likewise from the difference
between �1 and �B�L�. In Fig. 4 we show, in logarithmic
scale, the above analytical predictions for ��x� calculated in
every region and the corresponding jumps. Note that every
piece of prediction fits perfectly to the histogram �in gray�
built from the simulation data.

B. Ratio �1 Õ�0 at J=0

We focus now on the value of the ratio of concentrations
at both ends of the membrane that the pumping Brownian
device is able to create and maintain at the stalling regime.
For the linear saw-tooth potential, Eq. �13� gives

�1

�0
= exp�v0
 1

1 + �� v0

1−
�2 −
1

1 + �� v0


 �2�� . �28�

Let us explore the dependence of the above expression on
the parameters v0, �, and 
. In Fig. 5 we check the symmetry
properties of our prediction with respect to the parameter 
.
This figure shows the right-left inversion symmetry of the
problem when we change 
 for 1−
. Note that at 
=0.5,
although there is a time modulation of the potential, the de-

ρ
0

ρ
1

δ1

δ2

δ3

0 Lλ L

ρ
A

(x)

ρ
B
(x)

FIG. 4. Density profile ��x� for v0=8, 
=1 /3, and �=0.01 in
logarithmic scale. The histogram from simulations �in gray� falls
just on top of the theoretical predictions �solid lines�.
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vice does not pump because the spatial inversion symmetry
is not broken and so there is no preferred direction. The more
asymmetric the potential, the greater the pumping capacity
achieved. This does not mean higher efficiencies with respect
to energy consumption. This issue is not studied in this work.

In Fig. 6 the density ratio is studied versus the relative
energetic barrier v0. There is an optimum value which gives
the largest difference. If the barrier height is small with re-
spect the thermal energy, diffusive losses through the pump
are important and the ratio decreases. Note that for v0→0
there is no concentration difference; �1=�0. However, for
very large values of v0, few particles can cross the barrier
and get to the other side despite the flashing of the potential.
The pumping decreases again.

In Fig. 7 we show the ratio of concentrations versus � �we
have varied Q in the � exploration�. For low values of Q, the
potential barely changes in time, diffusion dominates, and
thus particles can scarcely be pumped. For a very strong
flashing the potential is so often distorted that particles do
not have time to cross through the membrane and they are
again poorly pumped. In between both regimes, there is a
region that enhances transport. Such an optimal regime indi-
cates that the flashing intensity Q can be tuned to be optimal.
This is a common feature of flashing ratchets �2�. The maxi-
mum appearing in Figs. 6 and 7 can be compared qualita-

tively with the experimental results of �4,5� for the amplitude
and frequency of the flashing perturbation. Let us analyze in
more detail the case �=0, which gives �0=�1. This limit is
physically interesting because it corresponds to QkBT /L2

→0. When the intensity in the multiplicative noise vanishes
�Q=0�, the breaking of detailed balance does not occur and
so the ratchet effect cannot take place. Moreover, another
way to make � vanish is to set T=0. We have to be very
careful because T also appears in v0=V0 /kBT. In fact, in the
absence of thermal fluctuations, the flashing ratchet mecha-
nism still works because the multiplicative noise does all the
whole job �breaks detailed balance and supplies fluctua-
tions�. Therefore, in the � exploration we have kept T differ-
ent from zero.

C. Flux J Õ�0 versus ratio �1 Õ�0

We can recall expression �14� for the total flux of particles
and rewrite it as

J

�0
=

1 − �1/�1
stall

1

kBT
	

0−

L+

dz exp
	
0−

z

dy
V��y�
g2�y� �

, �29�

where �1
stall is the concentration in the right reservoir when

J=0, which is calculated in Eq. �13�. For the linear saw-tooth
potential, the above formal expression can be explicitly ex-
pressed as

J = 
 kBT

L
��0e−v0/�1 − �1e−v0/�2

N1 + N2
, �30�

where

N1 =
�1

v0

�1 − e−v0/�1� , �31�

N2 =
�2

v0
�1 − 
��1 − e−v0/�2� . �32�

Expression �30� fulfills the symmetry J→−J when 
↔1
−
 and �0↔�1, which means that if we take the mirror
image of the setup, we should see the same flux going to the
opposite direction. Note that when J=0 only the ratio of
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densities is relevant, while, for J�0, both values are needed
separately. There is a decreasing linear behavior of J with
respect to �1, as it is clear from simple inspection of Eqs.
�29� and �30�. If �1	�1

stall the flux is reversed because en-
tropic forces surmount the pumping driving.

In Fig. 8 the normalized flux J /�0 is plotted as a function
of the density ratio �1 /�0. The simulation points are success-
fully obtained from the method explained in the numerical
scheme section. Increasing the length l0 of the left and right
reservoirs, the value of the flux J decreases. We can measure
it from the slope of the linear profile of the density in such
regions and also extract �0 and �1. Despite some small de-
viations due to the finite statistics and finite �t, we can say
that theory and simulations are in agreement. This confirms
the validity of the numerical scheme proposed, which allows
us to measure fluxes and concentrations from simple numeri-
cal simulations which have a clear physical interpretation.

V. CONCLUSIONS

Brownian pumps, unlike typical Brownian motors, do not
aim to create a net flux of particles in periodic boundary

conditions but, instead, to achieve and actively keep a den-
sity gradient between two reservoirs. As a first approach to
theoretically study such devices from this perspective, we
have considered a simple but physically relevant model
based on the ratchet effect with appropriate boundary condi-
tions. It has been characterized and explored from the theo-
retical point of view with analytical exact results. Moreover,
a simulation framework for obtaining the concentration and
the flux predicted theoretically has been proposed. Instead of
numerically solving the differential equation for the density,
we simulate a Langevin dynamics of independent particles.
Albeit the algorithm itself is standard, the suitable implemen-
tation of boundary conditions in every case �J=0 and J�0�
leads naturally to a direct identification of the histogram of
the positions of the particles with the density profile. This
does not require one to insert and remove particles as they
cross the interface that separates the membrane from the par-
ticle reservoirs. The numerical scheme presented can be of
utility in those cases in which analytical predictions are not
possible.

The efficiency of pumps is not easy to investigate since
one should analyze how much energy the fluctuating poten-
tial is inserting into the pump and what is the energetic profit
taken out from such input. This issue together with the use of
parameter values in the biological scale is under study. The
present work is then a starting point for modeling nanometric
biomachines, such as channels and pumps, which control the
flux of particles across the cell membrane.
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FIG. 8. Flux J /�0 as a function of �1 /�0. The system parameters
are 
=1 /3, v0=8, �=0.02, and L=1. Solid line corresponds to
theory, Eq. �30�, and circles to simulation data.

A. GOMEZ-MARIN AND J. M. SANCHO PHYSICAL REVIEW E 77, 031108 �2008�

031108-6


