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We have systematically analyzed six different reticular models with quenched disorder and no thermal
fluctuations exhibiting a field-driven first-order phase transition. We have studied the nonequilibrium transition,
appearing when varying the amount of disorder, characterized by the change from a discontinuous hysteresis
cycle (with one or more large avalanches) to a smooth one (with only tiny avalanches). We have computed
critical exponents using finite size scaling techniques and shown that they are consistent with universal values

depending only on the space dimensionality d.

PACS number(s): 05.50.+q, 64.60.My, 75.60.Ej, 81.30.Kf

Since the proposal of self-organized criticality (SOC) by
Bak et al. [1] a number of experiments and models have
claimed to exhibit such critical behavior. In spite of the ini-
tially large number of examples, only a few of them remain
clear [2]: these are real earthquakes [3] and some cellular
automata models driven by a continuous flux of particles
(sandpile models) [4]. When such systems are pulled by a
nonlimited external field or flux, they evolve through ava-
lanches which have no characteristic size or duration and
thus can be described by power-law distributions [5].

Other examples that were originally presented as realiza-
tions of SOC cannot strictly be included in this category
since the dynamics through avalanches stops when the exter-
nal force or field reaches a finite upper or lower value. Nev-
ertheless they share with SOC systems most of the other
features. Some of these examples can be included under the
common name of “fluctuationless first order phase transi-
tions.” The prototypical example is the behavior of a ferro-
magnetic material at low temperature under an applied mag-
netic field [6,7], but similar behavior has been found in
athermal martensitic transformations [8], adsorption of liquid
He on porous media [9], precipitation of H on Nb [10], and
superconductivity in granular Al films [11]. The transition
takes place between two phases which are stabilized for very
high and very low values of an external applied field. It can
be monitored by measuring an order parameter characteriz-
ing the amount of each phase (magnetization, amount of
martensitic phase, amount of adsorbed He or H, resistivity,
etc.). In all these cases, when sweeping the control parameter
the order parameter shows hysteresis (which usually does not
appear in real SOC systems since the external field cannot be
reversed [12]). Hysteresis has almost no temporal depen-
dence and is reproducible from cycle to cycle. As a conse-
quence, in some cases, the interesting “return point
memory” effect [12—14] appears. A detailed analysis shows
that the evolution proceeds through avalanches joining a se-
quence of metastable multidomain states. This behavior is a
consequence of the existence of disorder in the system and
the practical absence of thermal fluctuations. Initially, frozen
disorder decides the nucleation of the first domains. This
disorder includes magnetic impurities, vacancies, concentra-
tion fluctuations, or the random nature of the substrate in the
case of adsorption on porous media. After the first nucle-
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ation, the following sequence of metastable states can be
very complicated. One reason is the existence of forces be-
tween domains: magnetic interactions, elastic interactions
due to shape or volume changes, etc.; the other is that the
disorder itself can change because of the domain evolution.
Sometimes the avalanches can be directly observed
(Barkhausen effect in ferromagnetic materials [7], acoustic
emission in martensitic transformations [15], precipitation of
H on Nb [10], and resistivity jumps in superconducting Al
films [11], etc.) and some of their properties (size, durations,
etc.) characterized. The most striking feature is that the sta-
tistical distributions of sizes and durations of the avalanches
show power-law behavior which indicates the existence of
criticality in a similar way to what happens in real SOC
systems. Such avalanche distributions can be characterized
by means of “critical exponents.” In this paper we propose
that such exponents exhibit universal behavior in analogy
with equilibrium critical phenomena. This hypothesis is for-
mulated based on the analysis of a number of models for this
phenomena. As will be discussed at the end of this paper,
experimental values are still too scarce to test such univer-
sality.

Different models can be proposed in order to account for
such physical properties. A first set of simple models are the
zero temperature ferromagnetic Ising models [14,16] with
disorder, defined on a d-dimensional square lattice with lin-
ear size L. These models are well suited to reproduce the
experiments on magnetic systems. The Hamiltonian can be
generally written as

i,j i

where S; is a spin variable taking values * 1, the first sum
extends over all nearest neighbor pairs, H is an external field,
and ) is a term including the quenched disorder. At zero
temperature, for high values of H (H>H,,,,), the + 1 phase
is stabilized. When sweeping the field towards lower values,
a pure relaxational dynamics (acceptance of all the spin flips
decreasing the local energy) will drive the system through a
sequence of metastable states, connected by avalanches, until
for H<H,;, the pure —1 phase is reached. We have used
the synchronous dynamics (all unstable spins are updated
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simultaneously) which allows one to define independently
the size (number of spins reversed) and duration (number of
updating steps) for each avalanche [16]. The behavior of the
system will depend on the nature and the particular realiza-
tion of the quenched disorder. We can distinguish two kinds
of disorder: random bonds (nonsymmetry breaking terms)
which can be written as # f,= 2;7ijS:S;, and random
fields (symmetry breaking terms) like 9% 4=3.H,S;. In or-
der to get extended hysteresis cycles the simplest choice is
that J;; and H; have a Gaussian distribution with zero mean
and standard deviation o; and oy, respectively. Possible
variations of these models are the change to the antiferro-
magnetic case, which we have tried and which shows no
critical behavior for the avalanche distribution, the change to
non-Gaussian distributions of disorder, and the inclusion of
interaction to more neigboring cells which could introduce
interesting competition phenomena.

A second set of interesting models are the Blume-Emery-
Griffiths [17] models with disorder, in which the spins take
the three values #1,0. They are very promising in describing
a first order transition towards a new phase which is degen-
erated, as happens in thermally induced martensitic transfor-
mations. These Hamiltonians can be written as

H=—2, SiS;—K2, SISI-HD, S;—AY, S+, ,
L) LJ 14 4
@)

where K is an interaction constant and A is a field acting on
the S? variables. In addition to the random terms defined
previously, two new .9, terms are possible: % 5
=2i,jKijSi2S12» and %ﬁziiAiSiz, where K;; and A; are ran-
dom with Gaussian distributions with zero mean and typical
deviations og and o, , respectively. We generalize the syn-
chronous dynamics choosing, among the three possible states
for each variable S;, the one minimizing the local energy.

In this paper we present results from a systematic analysis
of the random bond (RBIM) and random field (RFIM) Ising
models in d=2 and d=3 dimensions and of the downwards
(decreasing A) and upwards (increasing A) transformation
in the two-dimensional (2D) random field Blume-Emery-
Griffiths model (RFBEG-down and RFBEG-up, respec-
tively) [18] with the disorder terms %[A, , K=1, and H=0.
The .95, for the RFBEG model has been selected to be the
simplest one which is different from the #, used in the
Ising models.

For each model we have studied the hysteresis loop of the
order parameter (m=2XS; or M =ES,-2) when the external
field (H or A) is swept from +o to —oo and back. Figure 1
shows as an example results for the 2D RBIM. For small
values of the standard deviation of the disorder distribution
o, the hysteresis loops show a discontinuous jump (size pro-
portional to L) while for a larger amount of disorder the
loops are smooth (formed by a sequence of tiny jumps). This
behavior is acknowledged to be a nonequilibrium phase tran-
sition induced by the amount of disorder o [14,16]. Different
parameters can be measured and averaged ({---);) over a
set of replicas of the system corresponding to different real-
izations of the random distribution of bonds or fields. The
transition takes place at a value of the disorder (o.(L))
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FIG. 1. Hysteresis cycles corresponding to the 2D RBIM for
three different values of the amount of disorder o, obtained by
numerical simulation of a system with size L=40: (a)
0=045<0.(L); (b) 0=0.55=0.(L); (c) o=1.5>0.(L).

where the mean size of the largest avalanche in the hysteresis
cycle ({mg);) shows an inflexion, the mean duration of the
largest avalanche ({#¢);) shows a maximum, and the distri-
bution of avalanche sizes [p;(m)] shows power-law behav-
ior. Actually, o (L) is not the same for the singular behavior
in the three magnitudes, but tends to a unique value o, for
L —oo. For the infinite system, inspired on the usual equilib-
rium critical phenomena relations, we assume that

o.—al™”
&~ o , 3)

4 e g.— O By
(mg)/ LA~ & P~ p for o<o. , 4)
<t0>~§2~‘”j;0‘ : 5)
p(m)~m™" (6)

where ¢ is the correlation length and v, B, z, and 7 are
critical exponents characterizing the transition. They can be
obtained from numerical simulations of finite systems as-
suming finite size scaling relations: (mg); /L4YE and
(toyr /L* should scale when represented as a function of the
scaling variable LY(o0— o .(L))/a.(L). The relation of the
scaling properties of the replica averages for a finite system
with the behavior of a single system in the thermodynamic
limit for such a nonequilibrium problem is, to our knowl-
edge, not clearly stablished. A possible connection may go
along the lines of a recently proposed dynamical model for
spin glasses [19]. The details of the procedure used to fit the
exponents and the extrapolation to the infinite system are
given in [14] for the case of the 3D RFIM and in [16] for the
case of the 2D RBIM. In Fig. 2, we present, as another ex-
ample, results for the RFBEG-down and RFBEG-up models:
the scaling of (z¢); and (mg); , the behavior of o.(L), and
the critical distributions of the avalanches p(m) are shown.
A summary of the results for the six models mentioned
above is presented in Table I. They have been obtained by
numerical simulations of systems of sizes up to L =100 and
averaging over ~ 500 replicas. Values within parentheses are
taken from the data in Ref. [14]. Error bars are very conser-
vative, including the deviations arising from different fitting
(linear or logarithmic) and scaling methods (using the height
or the curvature of (#y); and the height or slope of (mg);).
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FIG. 3. Hysteresis cycles corresponding to the 2D RFBEG
Dng model for three different values of the amount of disorder o, ob-
° tained by numerical simulation of a system with size L =100: (a)
00 1 l ‘ . . . ‘ 0=0.6<0(L)"?; (b) 0=0.8; (c) o=1.3>0,(L)%"".
20 > ways of introducing disorder affect differently the standard
15 rad critical phenomena [20]. It is worthwhile to notice that the
15l 1.0 //"' ) different disorder terms in the Hamiltonians (1) and (2) ex-
05 r ,o° hibit different symmetry properties under the change
oo ; ’,/' S;——S;. As a consequence, the two branches of the hys-
N | /"" teresis cycle are exactly symmetric for the RBIM, statisti-
210t b cally symmetric for the RFIM, and not symmetric for the
A . \ y sy y
V" %.0 01, 02 RFBEG model. For this last model the upward and down-
X %omn,m L ward branches of the hysteresis cycle show critical behavior
05 L i at different o, . This can be seen in Fig. 3 where a sequence
o o7 of hysteresis cycles corresponding to different o is dis-
° played. The downward branch corresponds to a jump from a
pure O phase to a degenerated phase with mixed 1 and —1,
0.0 ' 0 16 hile th d branch d i f h
2120 -8.0 40 00 40 80 12.0 16.0 20.0 while the upward branch corresponds to a jump from the

L"(o-0,(L))/o (L)

FIG. 2. Results for the RFBEG-down and RFBEG-up (shifted-
up) models. We show the behavior of {m); /L? (a) and (to), /L?
(b) vs the scaling variable. The different symbols correspond to
L=20(0), 30 (<), 40 (A), and 50 (X). The inset above shows
the behavior of the critical distribution of avalanches with the
power-law fit, and the inset below the dependence of o.(L), com-
puted using the inflexion in (my); () and the maximum in
{to)r (O), in front of L™,

The results are compatible with the existence of a set of
universal values for the exponents, only depending on the
lattice dimensionality.

The same exponent values have been obtained for random
bonds and random fields, although it is known that these two

degenerated phase to the O phase.

Two points about the numerical values of the exponents
should be made. First, the value of the exponent B for the
dependence of the size of the biggest avalanche when
aproaching o, is very small, and the statistical uncertainties
do not enable us to discard a value of 8=0 (scaling in Fig. 2
has been done using 8=0). The same has been found by
other authors [21] for the RFIM in d= 3. Second, the values
of the exponent 7 for the critical distribution of avalanche
sizes (corresponding to a complete branch) fit well with the
relation 7=2—[(5—d)/(2d+2)] for the integrated distribu-
tion of avalanches in the depinning transition [22]. Indeed,
the local advance of the avalanches in the fluctuationless
first-order phase transitions is closely related to the depin-
ning problem [23] but, to our knowledge, there is a lack of a
detailed exact mapping.

TABLE 1. Ciritical exponents from zero temperature simulations of the disorder induced phase transition for the RBIM, the RFIM, and the

RFBEG in 2D and 3D. Values in parentheses correspond to Ref. [14].

2D 3D
Exponent RFIM RBIM RFBEG-down RFBEG-up RFIM RBIM
1.3x0.1 1.2x0.1 1.3*0.1 1.2x0.1 1.6x+0.1 1.6+0.1
1.6+0.1 1.4%0.1 1.4x0.1 1.5+0.1 1.15*+0.1 1.06*+0.1
(1.0x0.1)
D=B+d 22%0.2 2.0x0.1 22*0.2 24*0.4 3.0%0.1 3.0x0.1
(3.17%0.07)
T 1.3+0.2 1.45*0.1 1.3*0.1 1.5*0.1 1.8*0.1 2.0x0.2
(2.03%£0.03)
o, 0.75+0.03 0.44%+0.03 0.51+0.03 0.42+0.02 2.18+0.08 1.12*+0.05

(2.25+0.05)
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Comparison of the simulation values with the experimen-
tal ones is difficult. First, although the critical region for
these systems is large [21], it might well be that the mea-
sured exponents are modified by the existence of an expo-
nential prefactor to the power law. To ellucidate this point,
data extending over several decades would be required. Sec-
ond, the measured exponents correspond to distributions
of magnitudes that are related to the avalanche size
[p(m)~m~"] but not always in a known way. For experi-
ments on reversal of magnetic domains [6], a value of 2.5 for
the distribution of avalanche “sizes” has been found by op-
tical photography. In fact, such measured sizes are not di-
rectly related to the real avalanche sizes. For martensitic
transformations [8] a value of ~3 has been found for the
distribution of amplitudes of acoustic emission signals. The

relation between these amplitudes and avalanche sizes is still
unclear. The same happens for the value of 1.9 measured
from the acoustic emission generated by the cracks produced
by H precipitation in Nb [10]. These few examples show the
diversity of physical magnitudes measured and techniques
used in the experimental search for power-law distributions
in real systems. We believe that an experimental test of the
universality proposed in this work will only be possible
when many different systems are interrogated for the same
physical magnitudes.
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