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Slow dynamics in the three-dimensional gonihedric model

P. Dimopoulos,* D. Espriu,† E. Jane´,‡ and A. Prats§

Departament d’Estructura i Constituents de la Materia, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain
~Received 25 April 2002; revised manuscript received 27 June 2002; published 19 November 2002!

We study dynamical aspects of three-dimensional gonihedric spins by using Monte-Carlo methods. These
models have a purely geometrical motivation, deriving from string and random surface theory. Here, however,
we shall analyze this family of models just from a statistical point of view. In particular, we shall be concerned
with their ability to exhibit remarkably slow dynamics and seemingly glassy behavior below a certain tem-
peratureTg , without the need of introducing disorder of any kind. We consider first a Hamiltonian that takes
into account only a four-spin term (k50), where a first-order phase transition is well established. By studying
the relaxation properties at low temperatures, we confirm that the model exhibits two distinct regimes. For
Tg,T,Tc , with long lived metastability and a supercooled phase, the approach to equilibrium is well de-
scribed by a stretched exponential. ForT,Tg, the dynamics appears to be logarithmic. We provide an accurate
determination ofTg . We also determine the evolution of particularly long lived configurations. Next, we
consider the casek51, where the plaquette term is absent and the gonihedric action consists in a ferromag-
netic Ising with fine-tuned next-to-nearest neighbor interactions. This model exhibits a second order phase
transition. The consideration of the relaxation time for configurations in the cold phase reveals the presence of
slow dynamics and glassy behavior for anyT,Tc . Type-II aging features are exhibited by this model.

DOI: 10.1103/PhysRevE.66.056112 PACS number~s!: 05.50.1q, 75.40.Cx, 75.40.Gb, 75.70.Kw
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I. INTRODUCTION

Glassy systems are very common in nature, yet not q
well understood. Lattice models may serve as good ca
dates to describe some properties of these systems. In re
years some interest has been raised by remarkably sim
Ising spin systems that originated from the consideration
model of random surfaces in the context of string the
@1,2#. The version of this model in a discretized space defi
the so-called gonihedric spin system, which consists of
Ising model with finely tuned nearest, next-to-nearest nei
bor, and plaquette interactions. The relation among the c
plings of the Hamiltonian depends also on the dimensiona
of the system. The geometric origins of the model show up
a remarkable simple way of writing the energy of a giv
configuration: the surfaces corresponding to the interfa
between up and down spins are weighed byE5n214kn4,
wheren2 is the number of edges of such an interface andn4
is the number of four plaquettes that share a common lin
the dual lattice. The parameterk can thus be interpreted a
an indicator of the self-avoidance of the model. Notice t
the main peculiarity of this family of models~parametrized
by k) is that the microscopic surface tension vanishes. F
tuations do generate a macroscopic string tension, how
@3#.

Originally, the interest of the model lies in its relation
the string and random surface theory. Soon it was reali
that the model was, in addition, rather interesting in itself
is, in fact, a special case of a very general family of mod
containing nearest, next-to-nearest, and plaquette interac
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which have been studied in detail in the past. However, go
hedric models correspond to a corner in parameter spac
the above models where the usual analysis does not a
perhaps because the model possesses—exactly at that c
of parameter space and only there—a rich set of symme
that makes them rather unique. Early studies found that
critical properties of the model appeared to be nonstand
@3#. Soon afterwards it was realized that the model exhib
slow dynamics and seemingly glassy behavior. We sh
dwell more on the specific peculiarities of this family o
models later. Let us first see the type of models we are t
ing about.

For the three-dimensional case that is of our concern
this paper, the Hamiltonian of the model takes the form

H~s!522k(
rW,aW

s rWs rW1aW 1
k

2 (
rW,aW ,bW

s rWs rW1aW 1bW

2
12k

2 (
rW,aW ,bW

s rWs rW1aW s rW1aW 1bW s rW1bW , ~1!

whereaW andbW are lattice unit vectors. The model is define
on an cubic lattice. The system exhibits a very high degre
symmetry due to the particular ratio of the couplings. Th
symmetry implies that flipping any plane of spins has
energy cost. This results in a highly degenerate ground s
We note in passing that this last feature appears to be c
mon in glassy systems.

Up to now there has been already a substantial amoun
numerical work on the three-dimensional case,1 to which we
shall refer in the following and also some preliminary resu
in four-dimensional case@5#. In two dimensions, the mode

1For the interesting case of the four-spin model where rando
distributed couplings are considered, see~Ref. @4#!.
©2002 The American Physical Society12-1
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DIMOPOULOSet al. PHYSICAL REVIEW E 66, 056112 ~2002!
with k50 is actually trivial~no phase transition@6#! but the
analytic solution withkÞ0 is unknown. In fact, the energ
can be written asE5n214kn4 because of the specific ratio
between the couplings. Although, so far no one has s
ceeded in solving the model in three dimensions, this sys
is so ‘‘geometric’’ in nature that some attempts managed
come remarkably close to that~see e.g., Ref.@7#!. This fact
adds to the interest of the model.

Preliminary results forkÞ0 were presented in Ref.@3# in
respect of the equilibrium properties. There it was found t
the phase transition turns to second order beyond a ce
value ofk ~not precisely determined yet! which, according to
the cluster variational method analysis, is most likely a tr
ritical proint. This second-order transition holds certain s
prises not fully understood at present. First of all, the se
exponents determined by finite size scaling in the only c
culation so far@3# appears to be nonstandard. Second it w
found that abnormally large relaxation times were presen
the system.

This last feature was not totally unexpected, since
system fork51 is contained in the family of Hamiltonian
described in Ref.@8# as a very particular limiting case.~In
Ref. @8# logarithmically slow domain growth was found!
Due to the special ratio of couplings contained in Eq.~1!
many of the considerations presented in Ref.@8# may not
apply here. For instance, in the gonihedric model the gro
state is not necessarily ferromagnetic; rather it can be an
the infinitely~in the thermodynamic limit! degenerate ground
states. Furthermore, in this particular limiting case the s
dynamics is seen to persist all the way up to the thermo
namic transition, while in Ref.@8# only low temperatures
were considered.

Let us turn to the casek50 where the model is known to
have a first-order transition at temperatureTc , where the
solid to liquid transition is present@9#.2 This is in agreemen
with some theoretical work where the cluster variation
method@11# was used. These theoretical analyses also s
the singular character of the choice of couplings in Eq.~1!,
dictated by geometry. Good evidence exists for this parti
lar value of k ~where no competing nearest and next-
nearest neighbor interactions are present! that a dynamical
transition appears at a temperatureTg,Tc , which seems to
mark the onset of the glassy behavior@12#. The existence of
Tg and the study of the dynamical properties of the syst
above and below that value of the temperature have b
considered in Refs.@13–17#. Although the model is certainly
very different from the ones considered in Ref.@8#, one is
tempted to give a similar explanation for the slow dynami
in the course of the evolution the system finds itself trapp
in potential wells of its own making—i.e., dynamicall
created—and overcoming such barriers would make the e
lution slow in any local evolution algorithm. However, th
explanation may be a bit too simplistic: the large amount
symmetry presented in Eq.~1! makes flipping any number o
planes costless, making the dynamical evolution rather n

2An anisotropic version of this model and the phase diagram
studied in Ref.@10#.
05611
c-
m
o

t
in

-
-
f
l-
s
in

e

d
of

y-

l
w

-
-

en

:
d

o-

f

n-

obvious. In fact, the actual role played by the infinite dege
eration in the slow evolution of the gonihedric model d
serves investigation.

In Sec. II we provide a qualitative view of the slow dy
namics behavior of the cold phase for thek50 case by
considering the relaxation properties where two~of the infi-
nitely many! states of the model come in contact. To this e
we place the system in an initial configuration where it
forced to move towards a particular ground state. Our res
clearly show slow dynamical behavior, not very differe
from the one previously obtained when the coarsening p
cess is observed after quenching a hot~random! initial con-
figuration @15#. We are able to analyze the short-time a
long-time dynamics. An initial readjustment with fast d
namics is followed by an extremely slow evolution. At lo
temperatures, even after long Monte Carlo~MC! times, the
thermal fluctuations fail to lead the system to the grou
state~a fact that could prove useful from a practical point
view!. In addition, we are able to estimate with good acc
racyTg by measuring the spin-spin autocorrelation functio
We show that there is a dramatic change in the behavio
this function above and belowTg . The temperatureTg co-
incides with the onset of metastability and long lived sup
cooled states, a region that extends fromTg to the ~first-
order! transitionTc and where the dynamics turns from bein
logarithmic to a stretched exponential type.

In Sec. III we study a different case of the spin gonihed
action by takingk51 in Eq. ~1!, apparently a much simple
system~the plaquette term in the Hamiltonian is absent
this value!. For that value of the parameterk, the system is
described by nearest and next-to-nearest interactions.
such a system the ratio of the couplings between the
types of interaction in the Hamiltonian is of great impo
tance. In Ref.@8# there is an extensive analytical and nume
cal work concerning the dynamics of the model as the ra
of the two interaction type couplings takes large values a
at least greater than 4 in order for the system to have a st
ferromagnetic ground state. Our case lies precisely just
side the domain of applicability of this work as the ratio he
is exactly 4. This is due to the special geometrical chara
of the gonihedric model and is very much related to the h
degeneracy of the ground state. We confirm, by studying
energy susceptibility, that the system has a second-o
phase transition.3 Furthermore, we find slow dynamics be
havior anywhere in the cold phase~below the critical tem-
perature!. By studying spin-spin autocorrelation function an
the overlap spin distribution function, we provide eviden
that the system exhibits type-II aging@19#, which is a feature
of glassy systems. Our results indicate that for thek51 case
the thermodynamical transition temperature coincides w
the dynamical one and the whole cold phase defines a re
of slow dynamics behavior. Thus, from a purely statistic
point of view our work for this value ofk extends and
complements the one presented in Ref.@8#.

is

3Note that from some preliminary results referred to in Ref.@9#,
the first order transition present fork50 gets weaker and possibl
becomes second order atk;0.5.
2-2
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FIG. 1. ~a! An example showing the presence of metastability forV583; ~b! the jumping from the supercooled to the equilibrium pha
at T51.7, for V5243.
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The physical interest of this model is twofold. On th
formal side, the model is of such simplicity that a theoreti
understanding of the mechanisms underlying slow dynam
and glassy behavior appears possible. On a more prac
side, it would be extremely interesting to be able to und
stand and produce magnetic materials and coatings with
finely tuned~or approximately so! couplings. The extremely
long relaxation times would make them very robust aga
thermal noise and fluctuations, yet encoding informat
there would be as simple as in a normal magnetic mate
This possibility has been suggested in Ref.@20#. While the
plaquette term seems hard to imitate in real materials,
fact that many of the interesting features persist fork51
makes perhaps such possibility less remote.

II. FOUR-SPIN INTERACTION „kÄ0…

In this section we will study the casek50, i.e., a spin
model with only four-spin~plaquette! interaction. In this case
the Hamiltonian~1! takes the form

H52
1

2 (
rW,aW ,bW

s rWs rW1aW s rW1aW 1bW s rW1bW . ~2!

This form of interaction leads to a highly degenerat
ground state. Flipping every spin in any plane of the cu
lattice implies invariant ground state energy. Taking t
symmetry into account, the degenerancy of the ground s
is equal to 23L due to the 3L diferent planes in a cubic
lattice. This degeneracy survives even atTÞ0.

It is well known that this model exhibits a first-orde
phase transition atTc51.95 along with a dynamical trans
tion at Tg;1.7, which is the temperature where the glas
behavior shows up@12–14#. Even though our main interest i
the study of the glassy characteristics by looking at the
laxation as well as the autocorrelation of the order para
eters~to be defined below! in the glassy phase, the regio
Tg,T,Tc is interesting as well. In this region, numeric
simulations clearly indicate the presence of metastabi
This is exemplified by the result presented in Fig. 1~a! where
the time evolution of an 83 volume at a temperature valu
05611
l
s

cal
r-
ch

s
n
l.

e

c
s
te

y

-
-

y.

just belowTc is shown.4 This figure also gives clear evidenc
that there is a first order phase transition. Figure 1~b! consists
of two different curves. One of them corresponds to a he
ing process starting from an initial ordered configuratio
The other one describes the result of quenching a rand
initial configuration for each temperature value shown.
both cases the simulation has been carried out using theME-

TROPOLIS algorithm on a 243 volume by performing 104

measurements at each temperature value. As we will see
low, the approach to equilibrium in the regionTg,T,Tc is
nonstandard and it is well described by a stretched expon
tial, instead of a simple exponential. ForT,Tg one imme-
diately sees that the results from the quench of the rand
configuration after 104 MC steps differ from those obtaine
starting from an ordered configuration~any of the 23L vacua!
@12#. The difference appears to be constant all over this
gion ~for a fixed number of thermalization steps!. This
clearly hints at the coexistence of two different dynami
Initially fast dynamics quickly brings an initial configuratio
that is badly out of equilibrium to some sort of approxima
equilibrium. At that point slow dynamics takes over and t
evolution of the system is considerably freezed.

Before getting into the more quantitative aspects of th
results, it is perhaps interesting to turn to one of our moti
tions, namely to test whether the appearence of slow dyn
ics makes the transition between two approximate gro
states so slow as to make a given configuration virtua
indestructible by thermal fluctuations, thus providing a co
venient way of storing information.

To this end, we simulate the system on a cubic lattice a
we use aGLAUBER algorithm@21#, which is assumed to pro
vide a good approximation to the thermal mechanism of fl
tuations.METROPOLIS or heat bath give very similar results
We look at the decay of an artificial initial configuratio
consisting in an inner volume with a chessboardlike arran
ment of the spins, which is one of the ground states, wh
the outer volume spins are fixed at11, i.e., they form a

4This simulation refers to the system expressed in dual varia
@22# and it has been carried out using a cluster algorithm.
2-3
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FIG. 2. The relaxation for two diferent temperaturesT51.0 andT51.83: ~a! 163 lattice volume with an initial chessboardlike configu
ration in a 83 volume; ~b! 303 lattice volume with an initial chessboardlike configuration in a 203 volume.
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ferromagnetic ground state. We use fixed boundary co
tions in order to make the system decay to a ferromagn
ground state. Our measured quantity is the number of
minus spins,N2(t), in terms of the computing time divide
by the number of spins at timet50, N2(0). Thequantity
N2(t) is clearly related to the magnetizationM, since M
'N11N25Ntot22N2 . Two examples of our results ar
given in Figs. 2~a! and 2~b! what have been produced from
simulations over two lattice volumes, namely, 163 and 303

which at timet50 have enclosed 83 and 203 lattice volumes,
respectively, with a chessboardlike arrangement for
spins.

The two curves in each panel have been generated
averaging over a sample of 50-100 copies where e
evolves starting from the same initial configuration, in ord
to reduce the noise. Two cases are shown. One is for t
peratureT51.83, in the supercooled phase, while the oth
one,T51.0, lies in the glassy phase . The difference on
relaxation time between the two temperatures is obvious.
theT51.83 case the system reaches a stable value relat
fast for both lattice volumes, but this is not the case forT
51.0. Note that the slope of the curve keeps taking a n
zero value even for remarkably large times. This is clea
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Fig. 3 where long runs are depicted forT51.0, confirming
that we are in the presence of slow dynamics. This beha
can be seen in a more apparent way in Fig. 4 where
results of Fig. 3 are presented in a logarithmic time scale
Fig. 4 the logarithmic decay is present clearly enough.

The very distinct dynamics between the glassy phase
the evolution of the supercooled phase in the metastab
regionTg,T,Tc can be seen in a more definite way in Fi
5. In this plot, the results for four temperatures are presen
for the bigger volume used i.e., 303. All of them correspond
to a random starting configuration. ForT51.83, which lies
in the metastability region, the evolution seems very fast
the way to the equilibrium value. On the contrary for th
other three temperatures, a fast evolution is initially obser
followed by a very slow one that persists up to very lo
times.

These results are very suggestive and indeed show
the system finds it very difficult to overcome dynamical e
ergy barriers that are created along the evolution and th
undoubtedly the reason for the slow dynamics. Recall t
the energy of the model is concentrated on the edges;
system has vanishing microscopic surface tension. To red
the volume of the excitation with local moves, the total ed
FIG. 3. The long-time evolution atT51.0 for inner chessboardlike configuration in a 83 ~a! and 203 volume ~b!.
2-4
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SLOW DYNAMICS IN THE THREE-DIMENSIONAL . . . PHYSICAL REVIEW E 66, 056112 ~2002!
length must temporarily increase by a substantial amo
That makes excitations such as the one we have been
lyzing virtually stable.

In spite of the unambiguity of the previous results,
order to determine some properties associated to the
slow dynamics observed at low temperatures, we shall p
ceed to analyzing several dynamical correlators.

We shall first study the spin-spin autocorrelation functi
for temperatures lying in the metastability region after a r
dom start, thus forcing the system to be in a supercoo
phase. Its definition is given by

C~ t,w!5
1

N K (
rW

s rW~w!s rW~ t1w!L . ~3!

The brackets mean that we take the average value over
ies starting from a random configuration~200–400 in our
case!. The waiting timew is the time for which the system i
being thermalized before taking the measurements at su
quent times denoted byt. The waiting timew is taken to be
about 300 by noticing that, from that value on the result

FIG. 4. The Fig. 3 results as plotted in a logarithmic time sca
(83 and 203 initial chessboardlike configurations for total volum
163 and 303, respectively.!

FIG. 5. ForT51.83 the system with lattice volumeV5303 is in
the supercooled region and exhibits fast relaxation. For the th
other temperature values that tie in the cold phase the slow dec
obvious when it is presented in logarithmic time scale.
05611
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values forC are quite identical as long as the temperatu
lies in the metastability region. In Fig. 6 we present some
our results forC in a 403 lattice volume and for four tem-
perature values. The fittings are stretched exponentials o
form ae2(t/t)b

. We denote byt the relaxation time. In all
cases we found 0.60,b,0.80 with an error smaller than
0.004. Since the fits seem quite good we go on and ma
plot of the resulting values oft versus the temperatureT.
The result is shown in Fig. 7 where the corresponding fit t
function having the form const/(T2Tg)c is quite good and
leads to the predictionTg51.698(1) withc50.41. AtTg the
autocorrelation time is expected to diverge because of
onset of the slow dynamics that turns the stretched expon
tial behavior into a power law~with a small exponent! or a
logarithm.

Although that result is in good agreement with previo
simulations@12,14# the method relying on the stretched e
ponential fit may prove to be too risky for an exact predicti
of Tg due to ambiguities in the fitting process and perhap
not trustworthy to that accuracy. As an alternative and a cr
check, for two different temperature values, namelyT
51.720 andT51.695 we show the behavior of theC for two

.

e
is

FIG. 6. Spin-spin autocorrelation function versus time forV
5403. The fittings to the points are of the stretched exponen
type.

FIG. 7. Relaxation timet versusT. The fitting procedure leads
to divergentt for Tg51.698.
2-5
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DIMOPOULOSet al. PHYSICAL REVIEW E 66, 056112 ~2002!
quite different values of the waiting time,w5300, 2000.
One sees that for the higher temperature the behavior o
C is identical, but for the smaller one there is a strong
pendence onw showing that for larger waiting times th
system exhibits different and, in particular, slow dynam
behavior which is a strong signal that the system has pa
to the glassy phase. Hence we are able to estimate the v
of Tg to lie in the interval 1.695,Tg,1.720, which indeed
agrees also with the previously obtained value,~see Fig. 8!.

III. NEXT AND NEXT-TO-NEAREST NEIGHBOR
INTERACTION „kÄ1…

As we have indicated the gonihedric spin model is ac
ally a family of models parametrized by a real quantityk.
All the members of this family share the common feature
having their spin interfaces weighed with the total ed
length. The value ofk simply indicates the degree of sel
avoidance of the surfaces. The plaquette model whose
namical properties we just discussed corresponds tok50.
An interesting member of this family is given byk51. The
degeneracy of the ground state in this case is 332L. Other
values ofk ~in particular closer to the presumed tricritic
point where the transition turns first order! were tentatively
investigated in Ref.@3#. In view of the results of the presen
work, these preliminary investigations require a more
tailed analysis.

In the present case the Hamiltonian is given by

H522(
rW,aW

s rWs rW1aW 1
1

2 (
rW,aW ,bW

s rWs rW1aW 1bW . ~4!

As we see, the spin plaquette term has disappeared. Fr
practical point of view this model may be particularly inte
esting as the plaquette term is obviously hard to get in
materials. From the standpoint of a spin system this is ju
model with nearest and next-to-nearest neighbor interact
~though a finely tuned one!. As it has already been mentione
in the Introduction, the gonihedric model withk51 lies just
outside the boundaries of the family of models considere

FIG. 8. C versus time for two values for the waiting timew in
volume V5403. For the system in the glassy phase we see
dependence onw.
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Ref. @8#. It also exhibits a large degeneration of the grou
state, which is absent in Ref.@8#.

We shall proceed to study the dynamical properties of
system by using Monte-Carlo methods. In performing t
simulations we used theMETROPOLIS algorithm for several
lattice volumes, namely 103, 163, 203, 243, 303, 403 and
463. We imposed either fixed or periodic boundary con
tions depending on the kind of the measurement that
performed. During the presentation of our results, the con
tions we used will be explicitly mentioned.

We begin by giving the behavior for the susceptibility
the energy with the lattice volume which is given by

S~E!5V~^E2&2^E2&!

We denote byV the lattice volume and by the symbol^&, the
average value over sweeps. In Fig. 9 the susceptibility for
system energy as a function of the temperature for four
tice volumes is depicted. For every point in the figure w
performed 105 thermalization sweeps followed by more tha
105 measurements, using periodic boundary conditions
starting from the ordered configuration. The peak for ea
volume clearly increases with it although with an expone
less than one, which is a signal for a second-order ph
transition. Also, the positions of the peaks for the bigg
volumes are seen to concentrate around the valueTc
52.329 which is the pseudocritical value for the volumes
used. It should be mentioned that while the second or
character of the phase transition was already mentione
Refs.@6,18#, our prediction forTc gives a somewhat smalle
value.

Having estimated the critical temperature value for t
system, we want now to study the dynamic behavior at l
temperatures, i.e., belowTc . To this end, we use first the
same method as for thek50 case, described in the previou
section, which consists of choosing an initial chessboard
configuration defined in a cubic subvolume of the syste
We impose fixed boundary conditions and study the beha
of the dynamical quantity

e~ t !5
E~ t !2Eeq

E~0!2Eeq
~5!

e

FIG. 9. S(E) versusT behavior with the lattice volume.
2-6



SLOW DYNAMICS IN THE THREE-DIMENSIONAL . . . PHYSICAL REVIEW E 66, 056112 ~2002!
FIG. 10. The relaxation behavior of the initial configuration as seen by the study of quantity defined in Eq.~5! in lattice volumeV
5163: ~a! for various inner volume sizes at fixed temperature,T51.1 ~from top to bottomL52,3,4,6,8) and~b! for fixed inner volume size
(L53) with decreasing temperature~from top to bottomT50.2,0.5,0.9,1.1).
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with time for various temperatures in the cold phase and
different sizes of the inner chessboard-like volume. In E
~5!, E(t) andE(0) denote the energy of the system at timt
and just after the first sweep is performed, respectively,
Eeq is the system energy when an ordered configuratio
taken as the initial one. In Fig. 10~a! we give an example for
lattice volume 163. We fix the temperature at the valueT
51.1 and we are interested in the behavior as the dimen
of the inner chessboard-like volume increases fromL52 to
L58. Each curve has been produced after averaging sev
hundreds of repetitions starting from the same initial co
figuration in order for the noise to be reduced. The res
show a dramatic increase in the relaxation time with incre
ing system size. For the maximum value ofL used, the ob-
servable~5! shows very slow variation with the time and
follows a power law behavior with estimated exponent eq
to 0.18, so a logarithmic behavior cannot be really exclud

We can reach similar conclusions by studying the ab
relaxation quantity for decreasing values of temperature
fixed L53. In Fig. 10~b! the corresponding results are d
picted for a 163 total volume. In particular for the valueT

FIG. 11. The spin–spin autocorrelation function inV5243 and
for T52.2 as depicted for different waiting timesw ~from top to
bottomw51000,500,200,100,50,10).
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50.2, the dynamics is so slow that it seems really hard
the system to get to the ground state for accessible com
ing times.

Next we shall move to a more quantitative study follow
ing the same lines as in the preceding section. We look
aging features by considering the autocorrelation spin-s
function defined by Eq.~3!. Brackets indicate that we tak
the average value over 100-200 trials starting from a rand
configuration.w is the time for which the system is bein
thermalized before taking the measurements at subseq
times denoted byt. We follow the same lines of analysis as
Ref. @14# which concerns thek50 case. In Fig. 11 we show
an example of the behavior of the autocorrelation funct
~3! for the temperature valueT52.2 and for a 243 lattice
volume. Six different curves for theC are depicted, each
corresponding to a different value ofw. The very slow evo-
lution of the autocorrelation function combined with th
clear dependence on the timew give strong evidence in favo
of aging. In order to determine the aging~whether I or II! we
consider the overlap function@19#

FIG. 12. The Q(t1w,t1w)→0 behavior asC(t,w)→0 is
clearly seen for the four values ofw (V5243 andT52.2).
2-7
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Q~ t1w,t1w!5
1

N K (
rW

s rW
(1)

~ t1w!s rW
(2)

~ t1w!L . ~6!

The measuring process for the above consists of the
laxation of the system for timew starting from the random
configuration. At that moment we take two copiess (1) and
s (2) each evolving independently for timet. In Fig. 12 we
show the behavior ofQ(t1w,t1w) in terms ofC(t,w) for
the same values of the volume and temperatute as in Fig
and for four values of the waiting timew. It clearly follows
that asC(t,w)→0, Q(t1w,t1w)→0. The fact that the two
system copies are moving independently since they s
zero overlapping indicates strong evidence for type-II agi

IV. CONCLUSIONS

At this point we would like to summarize our main co
clusions. In this work we have carried out a rather compl
analysis of the dynamical properties of the gonihedric s
model in three dimensions. This model has a clear geom
cal inspiration derived from its simplicity and connection
random surface theory. A self-avoidance parameterk param-
etrizes different models in this family. Here we have expl
itly consideredk50 andk51.

The model exhibits large potential barriers that are
namically generated along the evolution process while try
to adjust to the environment. This is due to the fact that
area term of the interfaces is completely subleading and
dynamics is driven by the total edge length of the excitatio
This creates basins of stability, from where it is virtua
impossible to kick out the system by local thermal fluctu
tions. This happens both fork50 ~a purely plaquette inter
action! andk51 ~no plaquette interaction and only compe
ing nearest and next-to-nearest neighbor interactions!. This
latter case lies just outside the boundaries of models of c
peting ferromagnetic nearest interactions and antiferrom
netic next-to-nearest neighbor interactions previously con
ered. We believe a large amount of additional symmetry
present in the gonihedric limiting case.

Several algorithms have been used to obtain resu
Glauber dynamics, heat bath and standardMETROPOLIS.
Modulo an overall rescaling of Monte-Carlo time, the resu
are fully equivalent.

For thek50 case we give evidence of a glassy transit
and we estimate the temperature valueTg at which the glassy
phase arises being in the interval@1.695, 1.720#. We show
that the dynamics is almost certainly logarithmic forT
,Tg . In the mestatability region, aboveTg but below the
G

B
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05611
e-

11

w
.

e
n
ri-

-

-
g
e
e

s.

-

-
g-
d-
is

s:

s

true thermodynamical transitionTc ~where the system has
first-order transition! the approach to equilibrium is well de
scribed by a stretched exponential, whose characteristic
scale diverges asT→Tg

1 .
We confirm that for the casek51 the system exhibits a

second-order phase transition. The critical properties of
transition have not been elucidated yet; a tentative dete
nation of the exponents using finite size scaling carried ou
Ref. @3# gives a rather nonstandard set of values. Work
this is in progress, but the problem is aggravated by
presence of slow dynamics. Indeed we have detected
slow dynamical behavior, quite similar to that takes pla
with k50 for T,Tg in the cold phase of this system. Th
dynamical behavior has all features of the type-II aging a
is again compatible with logarithmic evolution. From o
results we conclude that it extends all the way up toTc .

It is interesting to speculate about the role played by
flipping symmetry present in the casek50. As has been
mentioned in the Introduction, this symmetry may make
evolution rather nonobvious~it is not difficult to come up
with configurations where, due to the symmetry, there
subtantial domain growths at no energy cost!. However, in a
local algorith ~such asGLAUBER or METROPOLIS! this sym-
metry is presumably largely irrelevant. Indeed, to flip o
plane one has to flip each spin in it, one after the other. W
in a ‘‘normal’’ spin system this possibility would be sup
pressed by;e2L2

, L being the linear size of the system,
the gonihedric model the suppression would be mu
smaller, just;e2L. We believe that this is still too small to
play a significant role in the coarsening process after a s
den quench, for instance, since the typical size of the
mains will be much smaller than the linear sizeL. But un-
doubtedly, it should play a crucial role in determinin
equilibrium properties of the system.

Possible applications of these simple, but interesting, s
models are discussed.
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