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Slow dynamics in the three-dimensional gonihedric model
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We study dynamical aspects of three-dimensional gonihedric spins by using Monte-Carlo methods. These
models have a purely geometrical motivation, deriving from string and random surface theory. Here, however,
we shall analyze this family of models just from a statistical point of view. In particular, we shall be concerned
with their ability to exhibit remarkably slow dynamics and seemingly glassy behavior below a certain tem-
peratureTy, without the need of introducing disorder of any kind. We consider first a Hamiltonian that takes
into account only a four-spin termkE&0), where a first-order phase transition is well established. By studying
the relaxation properties at low temperatures, we confirm that the model exhibits two distinct regimes. For
Ty<T<T,, with long lived metastability and a supercooled phase, the approach to equilibrium is well de-
scribed by a stretched exponential. Aot T, the dynamics appears to be logarithmic. We provide an accurate
determination ofTy. We also determine the evolution of particularly long lived configurations. Next, we
consider the case=1, where the plaquette term is absent and the gonihedric action consists in a ferromag-
netic Ising with fine-tuned next-to-nearest neighbor interactions. This model exhibits a second order phase
transition. The consideration of the relaxation time for configurations in the cold phase reveals the presence of
slow dynamics and glassy behavior for ahy. T, . Type-Il aging features are exhibited by this model.
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[. INTRODUCTION which have been studied in detail in the past. However, goni-
hedric models correspond to a corner in parameter space of
Glassy systems are very common in nature, yet not quitéhe above models where the usual analysis does not apply,
well understood. Lattice models may serve as good candiperhaps because the model possesses—exactly at that corner
dates to describe some properties of these systems. In receaitparameter space and only there—a rich set of symmetries
years some interest has been raised by remarkably simptbat makes them rather unique. Early studies found that the
Ising spin systems that originated from the consideration of &ritical properties of the model appeared to be nonstandard
model of random surfaces in the context of string theory[3]. Soon afterwards it was realized that the model exhibits
[1,2]. The version of this model in a discretized space defineslow dynamics and seemingly glassy behavior. We shall
the so-called gonihedric spin system, which consists of aglwell more on the specific peculiarities of this family of
Ising model with finely tuned nearest, next-to-nearest neighmodels later. Let us first see the type of models we are talk-
bor, and plaquette interactions. The relation among the coung about.
plings of the Hamiltonian depends also on the dimensionality For the three-dimensional case that is of our concern in
of the system. The geometric origins of the model show up irthis paper, the Hamiltonian of the model takes the form
a remarkable simple way of writing the energy of a given
configuration: the surfaces corresponding to the interfaces __ K RS,
between up and down spins are weighedBbyn,+4xn,, H(o) ZK,% Tr0r+aTy ;%[; TrOrrath
wheren, is the number of edges of such an interface apd
is the number of four plaguettes that share a common link in
the dual lattice. The parametercan thus be interpreted as
an indicator of the self-avoidance of the model. Notice that
the main peculiarity of this family of modelparametrized wherea and 3 are lattice unit vectors. The model is defined
by «) is that the microscopic surface tension vanishes. Flucen an cubic lattice. The system exhibits a very high degree of
tuations do generate a macroscopic string tension, howeveymmetry due to the particular ratio of the couplings. This
[3]. symmetry implies that flipping any plane of spins has no
Originally, the interest of the model lies in its relation to energy cost. This results in a highly degenerate ground state.
the string and random surface theory. Soon it was realize@lve note in passing that this last feature appears to be com-
that the model was, in addition, rather interesting in itself. Itmon in glassy systems.
is, in fact, a special case of a very general family of models Up to now there has been already a substantial amount of
containing nearest, next-to-nearest, and plaquette interactiomsimerical work on the three-dimensional case,which we
shall refer in the following and also some preliminary results
in four-dimensional casgs]. In two dimensions, the model
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with «=0 is actually trivial(no phase transitiof6]) but the  obvious. In fact, the actual role played by the infinite degen-
analytic solution withx# 0 is unknown. In fact, the energy eration in the slow evolution of the gonihedric model de-
can be written aE=n,+ 4«n, because of the specific ratios serves investigation.
between the couplings. Although, so far no one has suc- In Sec. Il we provide a qualitative view of the slow dy-
ceeded in solving the model in three dimensions, this systemamics behavior of the cold phase for tke=0 case by
is s0 “geometric” in nature that some attempts managed taonsidering the relaxation properties where t#wbthe infi-
come remarkably close to thédee e.g., Refl.7]). This fact  nitely many states of the model come in contact. To this end
adds to the interest of the model. we place the system in an initial configuration where it is
Preliminary results foik# 0 were presented in Ref3] in  forced to move towards a particular ground state. Our results
respect of the equilibrium properties. There it was found thatlearly show slow dynamical behavior, not very different
the phase transition turns to second order beyond a certafrom the one previously obtained when the coarsening pro-
value ofx (not precisely determined yethich, according to  cess is observed after quenching a frandom initial con-
the cluster variational method analysis, is most likely a tric-figuration [15]. We are able to analyze the short-time and
ritical proint. This second-order transition holds certain sur-long-time dynamics. An initial readjustment with fast dy-
prises not fully understood at present. First of all, the set ohamics is followed by an extremely slow evolution. At low
exponents determined by finite size scaling in the only caltemperatures, even after long Monte CaildC) times, the
culation so fa3] appears to be nonstandard. Second it washermal fluctuations fail to lead the system to the ground
found that abnormally large relaxation times were present irstate(a fact that could prove useful from a practical point of
the system. view). In addition, we are able to estimate with good accu-
This last feature was not totally unexpected, since theacyT, by measuring the spin-spin autocorrelation functions.
system fork=1 is contained in the family of Hamiltonians We show that there is a dramatic change in the behavior of
described in Ref[8] as a very particular limiting caséln  this function above and beloW,. The temperaturd co-
Ref. [8] logarithmically slow domain growth was found. incides with the onset of metastability and long lived super-
Due to the special ratio of couplings contained in E).  cooled states, a region that extends frd to the (first-
many of the considerations presented in R&]. may not  orde transitionT, and where the dynamics turns from being
apply here. For instance, in the gonihedric model the groungbgarithmic to a stretched exponential type.
state is not necessarily ferromagnetic; rather it can be any of In Sec. Ill we study a different case of the spin gonihedric
the infinitely (in the thermodynamic limjtdegenerate ground action by taking«=1 in Eq. (1), apparently a much simpler
states. Furthermore, in this particular limiting case the slowsystem(the plaquette term in the Hamiltonian is absent for
dynamics is seen to persist all the way up to the thermodythis valug. For that value of the parametef the system is
namic transition, while in Ref[8] only low temperatures described by nearest and next-to-nearest interactions. For
were considered. such a system the ratio of the couplings between the two
Let us turn to the case=0 where the model is known to types of interaction in the Hamiltonian is of great impor-
have a first-order transition at temperaturg, where the tance. In Ref[8] there is an extensive analytical and numeri-
solid to liquid transition is preserijta].2 This is in agreement cal work concerning the dynamics of the model as the ratio
with some theoretical work where the cluster variationalof the two interaction type couplings takes large values and
method[11] was used. These theoretical analyses also showt least greater than 4 in order for the system to have a stable
the singular character of the choice of couplings in B9,  ferromagnetic ground state. Our case lies precisely just out-
dictated by geometry. Good evidence exists for this particuside the domain of applicability of this work as the ratio here
lar value of x (where no competing nearest and next-to-is exactly 4. This is due to the special geometrical character
nearest neighbor interactions are presénat a dynamical of the gonihedric model and is very much related to the high
transition appears at a temperatlig<T., which seems to degeneracy of the ground state. We confirm, by studying the
mark the onset of the glassy behavi@2]. The existence of energy susceptibility, that the system has a second-order
T4 and the study of the dynamical properties of the systenphase transition. Furthermore, we find slow dynamics be-
above and below that value of the temperature have beemavior anywhere in the cold phagkelow the critical tem-
considered in Ref§13—17. Although the model is certainly peraturg. By studying spin-spin autocorrelation function and
very different from the ones considered in RES], one is  the overlap spin distribution function, we provide evidence
tempted to give a similar explanation for the slow dynamicsithat the system exhibits type-1l agifi@9], which is a feature
in the course of the evolution the system finds itself trappedaf glassy systems. Our results indicate that for#t¥el case
in potential wells of its own making—i.e., dynamically the thermodynamical transition temperature coincides with
created—and overcoming such barriers would make the evahe dynamical one and the whole cold phase defines a region
lution slow in any local evolution algorithm. However, this of slow dynamics behavior. Thus, from a purely statistical
explanation may be a bit too simplistic: the large amount ofpoint of view our work for this value of« extends and
symmetry presented in E¢L) makes flipping any number of complements the one presented in R8i.
planes costless, making the dynamical evolution rather non-

3Note that from some preliminary results referred to in Réf,
2An anisotropic version of this model and the phase diagram ighe first order transition present far=0 gets weaker and possibly

studied in Ref[10]. becomes second order @t 0.5.
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FIG. 1. (@ An example showing the presence of metastabilityfer83; (b) the jumping from the supercooled to the equilibrium phase
atT=1.7, forv=24

The physical interest of this model is twofold. On the just belowT. is shown? This figure also gives clear evidence
formal side, the model is of such simplicity that a theoreticalthat there is a first order phase transition. Figui® tonsists
understanding of the mechanisms underlying slow dynamicsf two different curves. One of them corresponds to a heat-
and glassy behavior appears possible. On a more practicéilg process starting from an initial ordered configuration.
side, it would be extremely interesting to be able to under-The other one describes the result of quenching a random
stand and produce magnetic materials and coatings with sudhitial configuration for each temperature value shown. In
finely tuned(or approximately spcouplings. The extremely both cases the simulation has been carried out usingithe
long relaxation times would make them very robust againt§ROPOLIS algorithm on a 2% volume by performing 19
thermal noise and fluctuations, yet encoding informationmeasurements at each temperature value. As we will see be-
there would be as simple as in a normal magnetic materialow, the approach to equilibrium in the regidig<T<T, is
This possibility has been suggested in R&0]. While the  nonstandard and it is well described by a stretched exponen-
plaquette term seems hard to imitate in real materials, th#al, instead of a simple exponential. FOK< T4 one imme-
fact that many of the interesting features persist 4o+ 1 diately sees that the results from the quench of the random

makes perhaps such possibility less remote. configuration after ?DMC steps differ from those obtained
starting from an ordered configurati¢any of the 2- vacua
Il. FOUR-SPIN INTERACTION (x=0) [12]. The difference appears to be constant all over this re-

gion (for a fixed number of thermalization stgpsThis
In this section we will study the case=0, i.e., a spin clearly hints at the coexistence of two different dynamics.
model with only four-spir(plaquett¢ interaction. In this case |njtially fast dynamics quickly brings an initial configuration
the Hamiltonian(1) takes the form that is badly out of equilibrium to some sort of approximate
1 equilibrium. At that point slow dynamics takes over and the
__ - . evolution of the system is considerably freezed.
H="3 F%E TrTr+aTr+atpr+p-: @ Before getting into the more quantitative aspects of these
results, it is perhaps interesting to turn to one of our motiva-
This form of interaction leads to a highly degeneratedtions, namely to test whether the appearence of slow dynam-
ground state. Flipping every spin in any plane of the cubidcs makes the transition between two approximate ground
lattice implies invariant ground state energy. Taking thisstates so slow as to make a given configuration virtually
symmetry into account, the degenerancy of the ground stat@destructible by thermal fluctuations, thus providing a con-
is equal to 2- due to the & diferent planes in a cubic venient way of storing information.
lattice. This degeneracy survives evenTa0. To this end, we simulate the system on a cubic lattice and
It is well known that this model exhibits a first-order we use acLAUBER algorithm[21], which is assumed to pro-
phase transition af,=1.95 along with a dynamical transi- vide a good approximation to the thermal mechanism of fluc-
tion at T4~1.7, which is the temperature where the glassytuations.METROPOLISOr heat bath give very similar results.
behavior shows upl2—14. Even though our main interestis We look at the decay of an artificial initial configuration
the study of the glassy characteristics by looking at the reeonsisting in an inner volume with a chessboardlike arrange-
laxation as well as the autocorrelation of the order paramment of the spins, which is one of the ground states, while
eters(to be defined beloyin the glassy phase, the region the outer volume spins are fixed atl, i.e., they form a
Ty<T<T, is interesting as well. In this region, numerical
simulations clearly indicate the presence of metastability—
This is exemplified by the result presented in Figa) vhere “This simulation refers to the system expressed in dual variables
the time evolution of an 8volume at a temperature value [22] and it has been carried out using a cluster algorithm.
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FIG. 2. The relaxation for two diferent temperatufies 1.0 andT=1.83: (a) 16° lattice volume with an initial chessboardlike configu-
ration in a & volume; (b) 30° lattice volume with an initial chessboardlike configuration in & 26lume.

ferromagnetic ground state. We use fixed boundary condiFig. 3 where long runs are depicted for=1.0, confirming
tions in order to make the system decay to a ferromagnetithat we are in the presence of slow dynamics. This behavior
ground state. Our measured quantity is the number of thean be seen in a more apparent way in Fig. 4 where the
minus spinsN_(t), in terms of the computing time divided results of Fig. 3 are presented in a logarithmic time scale. In
by the number of spins at time=0, N_(0). Thequantity  Fig. 4 the logarithmic decay is present clearly enough.
N_(t) is clearly related to the magnetizatiovi, since M The very distinct dynamics between the glassy phase and
~N;+N_=N;,;—2N_. Two examples of our results are the evolution of the supercooled phase in the metastability
given in Figs. Za) and Zb) what have been produced from regionT <T<T, can be seen in a more definite way in Fig.
simulations over two lattice volumes, namely,®l#nd 3¢ 5. In this plot, the results for four temperatures are presented
which at timet =0 have enclosed®and 2§ lattice volumes,  for the bigger volume used i.e., 30All of them correspond
respectively, with a chessboardlike arrangement for theo a random starting configuration. Foe= 1.83, which lies
spins. in the metastability region, the evolution seems very fast all
The two curves in each panel have been generated aftéiie way to the equilibrium value. On the contrary for the
averaging over a sample of 50-100 copies where eacbther three temperatures, a fast evolution is initially observed
evolves starting from the same initial configuration, in orderfollowed by a very slow one that persists up to very long
to reduce the noise. Two cases are shown. One is for temimes.
peratureT=1.83, in the supercooled phase, while the other These results are very suggestive and indeed show that
one,T=1.0, lies in the glassy phase . The difference on thehe system finds it very difficult to overcome dynamical en-
relaxation time between the two temperatures is obvious. Fogrgy barriers that are created along the evolution and this is
the T=1.83 case the system reaches a stable value relativelyndoubtedly the reason for the slow dynamics. Recall that
fast for both lattice volumes, but this is not the case Tor the energy of the model is concentrated on the edges; the
=1.0. Note that the slope of the curve keeps taking a nonsystem has vanishing microscopic surface tension. To reduce
zero value even for remarkably large times. This is clear irthe volume of the excitation with local moves, the total edge
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FIG. 3. The long-time evolution &= 1.0 for inner chessboardlike configuration in @) and 2§ volume (b).
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FIG. 4. The Fig. 3 results as plotted in a logarithmic time scale.
(8% and 26 initial chessboardlike configurations for total volumes
16° and 3@, respectively.

FIG. 6. Spin-spin autocorrelation function versus time Yor
=40°. The fittings to the points are of the stretched exponential
type.

length must temporarily increase by a substantial amount. o .
o values forC are quite identical as long as the temperature
That makes excitations such as the one we have been ana- " - ) .
. : Ies in the metastability region. In Fig. 6 we present some of
lyzing virtually stable. . .
- our results forC in a 4@ lattice volume and for four tem-

In spite of the unambiguity of the previous results, in i .
order to determine some properties associated to the Veﬁerature values. The fittings are stretched exponentials of the

b . .
slow dynamics observed at low temperatures, we shall prorm ae””". We denote byr the relaxation time. In all
ceed to analyzing several dynamical correlators. cases we found 0.60b<<0.80 with an error smaller than
We shall first study the spin-spin autocorrelation function0-004. Since the fits seem quite good we go on and make a
for temperatures lying in the metastability region after a ranPlot of the resulting values of versus the temperatufe
dom start, thus forcing the system to be in a supercooled N€ resultis shown in Fig. 7 where the corresponding fit to a
phase. Its definition is given by function having the form constl(—T,)® is quite good and
leads to the predictiofy=1.698(1) withc=0.41. AtT, the
autocorrelation time is expected to diverge because of the
> : (3)  onset of the slow dynamics that turns the stretched exponen-
tial behavior into a power lawith a small exponentor a
logarithm.
The brackets mean that we take the average value over cop- plthough that result is in good agreement with previous
ies starting from a random configurati¢gd00—400 in our  sjmylations[12,14] the method relying on the stretched ex-
case¢. The waiting timew is the time for which the system is ponential fit may prove to be too risky for an exact prediction
being thermalized before taking the measurements at subsgt 1. due to ambiguities in the fitting process and perhaps is
quent times denoted by The waiting timew is taken to be ot trustworthy to that accuracy. As an alternative and a cross
about 300 by noticing that, from that value on the resultanEheck' for two different temperature values, namdly

=1.720 andl = 1.695 we show the behavior of tiafor two

r

C(t,w)= %< > ai(w)or(t+w)
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FIG. 5. ForT=1.83 the system with lattice volumé=30° is in 17 175 18 188 19
the supercooled region and exhibits fast relaxation. For the three
other temperature values that tie in the cold phase the slow decay is FIG. 7. Relaxation timer versusT. The fitting procedure leads
obvious when it is presented in logarithmic time scale. to divergentr for T,=1.698.
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FIG. 8. C versus time for two values for the waiting timein FIG. 9. S(E) versusT behavior with the lattice volume.

volume V=40°. For the system in the glassy phase we see the

dependence ow. Ref. [8]. It also exhibits a large degeneration of the ground
state, which is absent in Rd#8].
quite different values of the waiting timey= 300, 2000. We shall proceed to study the dynamical properties of the

One sees that for the higher temperature the behavior of tHeyStém by using Monte-Carlo methods. In performing the
C is identical, but for the smaller one there is a strong deSimulations we used thﬂETROPSO'-'S algogthm for several
pendence orw showing that for larger waiting times the latfice volumes, namely 0 16°, 2¢°, 24, 3C°, 40° and
system exhibits different and, in particular, slow dynamics#6’- We imposed either fixed or periodic boundary condi-
behavior which is a strong signal that the system has passd@ns depending on the kind of the measurement that was
to the glassy phase. Hence we are able to estimate the val@@rformed. During the presentation of our results, the condi-
of T, to lie in the interval 1.695 T,<1.720, which indeed tions we used will be explicitly mentioned.

agrees also with the previously obtained valigse Fig. 8 We begin py giving t'he behavior fo'r the sqsceptibility of
the energy with the lattice volume which is given by

IIl. NEXT AND NEXT-TO-NEAREST NEIGHBOR
INTERACTION (k=1)

As we have indicated the gonihedric spin model is actuWe denote by the lattice volume and by the symbl, the
ally a family of models parametrized by a real quantity — average value over sweeps. In Fig. 9 the susceptibility for the
All the members of this family share the common feature ofsystem energy as a function of the temperature for four lat-
having their spin interfaces weighed with the total edgetice volumes is depicted. For every point in the figure we
length. The value ok simply indicates the degree of self- performed 16 thermalization sweeps followed by more than
avoidance of the surfaces. The plaquette model whose dyt0> measurements, using periodic boundary conditions and
namical properties we just discussed corresponds=d. starting from the ordered configuration. The peak for each
An interesting member of this family is given ly=1. The ~ volume clearly increases with it although with an exponent
degeneracy of the ground state in this caseX28. Other less than one, which is a signal for a second-order phase
values ofx (in particular closer to the presumed tricritical transition. Also, the positions of the peaks for the bigger
point where the transition turns first orglavere tentatively ~Volumes are seen to concentrate around the valge
in\/estiga[ed in Reﬁ3] In view of the results of the present =2.329 which is the pseudocritical value for the volumes we
work, these pre|iminary investigations require a more deused. It should be mentioned that while the second order

S(E)=V((E?)—(E?))

tailed analysis. character of the phase transition was already mentioned in
In the present case the Hamiltonian is given by Refs.[6,18], our prediction forT. gives a somewhat smaller
value.
1 Having estimated the critical temperature value for the
H= —22 (oo i 5 2 OO0t a+4- 4 system, we want now to study the dynamic behavior at low
o rap temperatures, i.e., beloW,. To this end, we use first the

As we see, the spin plaquette term has disappeared. FromSgme method as for the=0 case, described in the previous

practical point of view this model may be particularly inter- section, which consists of choosing an initial chessboardlike

; . ; ; figuration defined in a cubic subvolume of the system.
esting as the plaquette term is obviously hard to get in re ont . . .
materials. From the standpoint of a spin system this is justeé(ve impose fixed boundary conditions and study the behavior

model with nearest and next-to-nearest neighbor interaction%]c the dynamical quantity

(though a finely tuned oneAs it has already been mentioned E() —E
in the Introduction, the gonihedric model wiit+ 1 lies just (t)= M
outside the boundaries of the family of models considered in E(0) —Eeq

®)
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FIG. 10. The relaxation behavior of the initial configuration as seen by the study of quantity defined (#) Eglattice volumeV
=16% (a) for various inner volume sizes at fixed temperatdre,1.1 (from top to bottorrL = 2,3,4,6,8) andb) for fixed inner volume size
(L=3) with decreasing temperatu¢om top to bottomT=0.2,0.5,0.9,1.1).

with time for various temperatures in the cold phase and foe=0.2, the dynamics is so slow that it seems really hard for
different sizes of the inner chessboard-like volume. In Eqthe system to get to the ground state for accessible comput-
(5), E(t) andE(0) denote the energy of the system at time ing times.

and just after the first sweep is performed, respectively, and Next we shall move to a more quantitative study follow-
Eeq is the system energy when an ordered configuration isng the same lines as in the preceding section. We look for
taken as the initial one. In Fig. & we give an example for  aging features by considering the autocorrelation spin-spin
lattice volume 18. We fix the temperature at the valde  function defined by Eq(3). Brackets indicate that we take
=1.1 and we are interested in the behavior as the dimensioe average value over 100-200 trials starting from a random
of the inner chessboard-like volume increases ftom2 t0  configuration.w is the time for which the system is being

L =8. Each curve has been produced after averaging severglermalized before taking the measurements at subsequent
hundreds of repetitions starting from the same initial con+;yas denoted by We follow the same lines of analysis as in

figuration in order for the noise to be reduced. The results, ¢ [14] which concerns the =0 case. In Fig. 11 we show
show a dramatic increase in the relaxation time with increas- _ ' '

. ; ) an example of the behavior of the autocorrelation function
ing system size. For the maximum valuelotised, the ob- (3) for the temperature valu=2.2 and for a 2% lattice
servable(5) shows very slow variation with the time and it _emp ' .
follows a power law behavior with estimated exponent equa}/o'ume‘ S')_( d|ﬁerent_ curves for th€ are depicted, each
to 0.18, s0 a logarithmic behavior cannot be really excludedCOr"eésPonding to a different value of The very slow evo-
We can reach similar conclusions by studying the abovaution of the autocorrelat}on funcuon combmed Wlth the
relaxation quantity for decreasing values of temperature #t/€ar dependence on the timegive strong evidence in favor
fixed L=3. In Fig. 1ab) the corresponding results are de- Of 2ging. In order to determine the agitghether | or I) we
picted for a 18 total volume. In particular for the valug  consider the overlap functiori9)

1
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. . . . C(t,w)
FIG. 11. The spin—spin autocorrelation functionvir= 24° and
for T=2.2 as depicted for different waiting times (from top to FIG. 12. TheQ(t+w,t+w)—0 behavior asC(t,w)—0 is
bottomw=1000,500,200,100,50,10). clearly seen for the four values of (V=24° andT=2.2).
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1 ) @) true thermodynamical transition, (where the system has a
Q(t+w,t+w)=5 > o (t+w)o(t+w) ). (6) first-order transitionthe approach to equilibrium is well de-
' scribed by a stretched exponential, whose characteristic time
The measuring process for the above consists of the rescale diverges a§—>Tg.
laxation of the system for time starting from the random We confirm that for the case=1 the system exhibits a
configuration. At that moment we take two copieS’ and  second-order phase transition. The critical properties of this
o'? each evolving independently for tinteIn Fig. 12 we  transition have not been elucidated yet; a tentative determi-
show the behavior oQ(t+w,t+w) in terms ofC(t,w) for  nation of the exponents using finite size scaling carried out in
the same values of the volume and temperatute as in Fig. I3ef. [3] gives a rather nonstandard set of values. Work on
and for four values of the Waltlng time. It Clearly follows this is in progress, but the pr0b|em is aggravated by the
that asC(t,w)—0, Q(t+w,t+w)—0. The fact that the two presence of slow dynamics. Indeed we have detected very
system copies are moving independently since they shoWlow dynamical behavior, quite similar to that takes place
zero overlapping indicates strong evidence for type-Il agingwith =0 for T<T, in the cold phase of this system. This
dynamical behavior has all features of the type-Il aging and
IV. CONCLUSIONS is again compatible with logarithmic evolution. From our
results we conclude that it extends all the way ufg to
It is interesting to speculate about the role played by the
analysis of the dynamical properties of the gonihedric spir(:ﬂ'pp'r.]g symmetry present in the_: case=0. As has been
) . . . mentioned in the Introduction, this symmetry may make the
model in three dimensions. This model has a clear geometri-

cal inspiration derived from its simplicity and connection to evolution rather nonobviougit is not difficult to come up
P npiictty with configurations where, due to the symmetry, there are
random surface theory. A self-avoidance parametparam-

etrizes different models in this family. Here we have explic-3uPt2ntial domain growths at no energy goblowever, in a
. . Y- PICocal algorith (such asGLAUBER or METROPOLI9 this sym-
itly consideredk=0 andx=1.

metry is presumably largely irrelevant. Indeed, to flip one

narT"nh(:GaIPOdeer:e?;(réglzcjlr?rg;epgt?“?(l) r?arrrcl)iressstha;'laér?r d%/ lane one has to flip each spin in it, one after the other. While
Ically g 9 volution p whiie ying, ‘a “normal” spin system this possibility would be sup-

to adjust to the environment. This is due to the fact that the _L2 . . . .
area term of the interfaces is completely subleading and thB"€SSed by~e =, L being the linear size of the system, in
dynamics is driven by the total edge length of the excitationst"€ gon!hedrlc_LmodeI the suppression would be much
This creates basins of stability, from where it is virtually Smaller, just~e~=. We believe that this is still too small to
impossible to kick out the system by local thermal fluctua-Pl2y @ significant role in the coarsening process after a sud-
tions. This happens both for=0 (a purely plaquette inter- deq quench, for instance, since the typlcal size of the do-
action and =1 (no plagquette interaction and only compet- Mains will b_e much smaller than the linear _sﬂzeBut un-

ing nearest and next-to-nearest neighbor interacdtiorisis ~ doubtedly, it should play a crucial role in determining
latter case lies just outside the boundaries of models of confuilibrium properties of the system. _ . .
peting ferromagnetic nearest interactions and antiferromag- P0SSiPle applications of these simple, but interesting, spin
netic next-to-nearest neighbor interactions previously considn?dels are discussed.

ered. We believe a large amount of additional symmetry is
present in the gonihedric limiting case.

Several algorithms have been used to obtain results: D.E. thanks D. Johnston and A. Lipowski for discussions
Glauber dynamics, heat bath and standamfrrROPOLIS  and the hospitality of the Department of Mathematics of
Modulo an overall rescaling of Monte-Carlo time, the resultsHeriot-Watt University. P.D. is grateful to G. Koutsoumbas
are fully equivalent. for useful discussions and acknowledges support from

For thex=0 case we give evidence of a glassy transition“EUROGRID-Discrete random geometries: from solid state
and we estimate the temperature valyeat which the glassy physics to quantum gravity{Grant No. HPRN-CT-1999-
phase arises being in the interd.695, 1.720. We show 0016J). The support from Grant Nos. MCyT FPA 2001-3598
that the dynamics is almost certainly logarithmic for and CIRIT 200156R-00065 is also acknowledged. Part of
<Ty4. In the mestatability region, abovg, but below the this work was carried out at CESCA.

At this point we would like to summarize our main con-
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