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    Abstract  

 

The present study uses Gaussian Process regression models for 

generating density forecasts of inflation within the New Keynesian 

Phillips curve (NKPC) framework. The NKPC is a structural model 

of inflation dynamics in which we include the output gap, inflation 

expectations, fuel world prices and money market interest rates as 

predictors. We estimate country-specific time series models for the 

19 Euro Area (EA) countries. As opposed to other machine learning 

models, Gaussian Process regression allows estimating confidence 

intervals for the predictions. The performance of the proposed 

model is assessed in a one-step-ahead forecasting exercise. The 

results obtained point out the recent inflationary pressures and 

show the potential of Gaussian Process regression for forecasting 

purposes. 
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 25 

1. Introduction 26 

 27 

Understanding the driving forces of inflation, as well as providing reasonably accurate inflation forecasts, have always been 28 

among the major topics of policy analysis. However, recent supply chain disruptions, the recovery in aggregate demand after 29 

the initial pandemic lockdowns around the world, and the fear of rising interest rates after a long period of cheap money, 30 

have increased inflation expectations and brought inflation to the sole spotlight of academic interest once again. After several 31 

decades of stable inflation, euro area (EA) countries have recorded an abrupt price boom in the last months. Moreover, the 32 

European Central Bank (ECB) has recently changed the declared definition of price stability (medium-term inflation below, but 33 

close to 2%). As of July 2021, the ECB defines its main policy goal as medium term inflation of exactly 2% [1]. The above 34 

described circumstances act as an ideal setup for an intensification of research efforts in inflation forecasting. 35 

 36 

In parallel to the recent inflationary pressures, the methodological approach to time series forecasting is becoming more and 37 

more inclined to large, complex datasets and modern machine learning techniques. In recent years, several large-scale time 38 

series forecasting competitions have emerged, aiming to compare the accuracy of an array of novel machine learning (ML) 39 

techniques to conventional time series models [2–7]. These competitions were conducted on a wide set of economic time 40 

series of different frequencies, trending properties, seasonal patterns, etc. Although the choice of optimal forecasting model 41 

is extremely context-dependent, a common conclusion can be drawn that ML specifications typically outperform the classical 42 

econometric models. However, the literature on forecasting the EA inflation rate using ML techniques is very scarce. 43 

 44 

This is exactly where we aim to contribute to the literature. We focus on forecasting inflation in 19 EA countries using Gaussian 45 

Process regression (GPR) and applying different sets of kernels. The main aim of this study is to provide researchers with a 46 

novel approach for modelling and predicting inflation rates within the New Keynesian Phillips Curve (NKPC) framework. The 47 

most important contribution of this paper is that the proposed GPR model generates not only a vector of predictions, but 48 

estimates confidence intervals, as opposed to other mainstream ML techniques. Additionally, to the best of our knowledge, 49 

this study provides a pioneering effort to use GPR for causal estimation within the NKPC, and to estimate confidence intervals 50 

of the obtained vectorial predictions. Finally, we considerably widen the geographical scope of previous ML-based inflation 51 

forecasting studies, focusing not only on the EA aggregate, but on all of its member states individually. 52 

 53 

The remainder of the paper is structured as follows. Next section reviews the most recent literature on inflation forecasting 54 

and the Phillips curve. Section 3 presents the data. Section 4 describes the methodological approach as well as the design of 55 

the experiment. Empirical results are provided in Section 5. Finally, some concluding remarks are presented. 56 

 57 

2. Literature Review 58 

 59 

This section firstly provides a brief overview of literature related to the NKPC as the underlying theoretical model for the 60 

forecasting exercise presented in this paper. Secondly, we present the few ML contributions to inflation forecasting, and dis-61 

cuss the gaps in the literature that we aim to fill within this study. 62 

 63 

2.1. Empirical testing of the NKPC 64 

 65 

Ever since the seminal paper of [8], the hypothesized trade-off between unemployment and inflation has received attention 66 

from both policymakers and academics. In [9], the authors augmented the model further and developed the micro foundations 67 

of the so called NKPC: 68 

𝜋𝑡 = 𝜆𝜅𝑥𝑡 + 𝛽𝐸𝑡{𝜋𝑡+1}, (1) 

where 𝜋𝑡 is the actual inflation rate, 𝑥𝑡 is the output gap, 𝜅 is the output gap elasticity to marginal cost, 𝐸𝑡{𝜋𝑡+1} de-69 

notes inflation expectations, while 𝜆 and 𝛽 are structural parameters. 70 

 71 

Over time, the Phillips curve has become the workhorse model of monetary analysis and it has stimulated an entire branch of 72 

literature dealing with EA inflation. Even the ECB [10] has formally recognised the Phillips curve as representative for the EA 73 

inflation generating process. Depending on the selected model specification, choice of covariates, time period and the utilized 74 

methodology, the applicative value and forecasting accuracy of the Phillips curve in the EA context is quite heterogeneous. 75 

The empirical evidence found is mixed, there are studies where evidence is found in favour [11–13], while others find results 76 

against the original inflation-unemployment relationship [14]. Very similar context-dependent features are observed for the 77 
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EA NKPC specification, finding both confirmatory [15–17], and contrary evidence [18–20]. Despite all scepticism, the Phillips 78 

curve has stood the test of time and is still one of the most widely utilised macroeconomic models overall (see [21] and [22] 79 

for excellent surveys of related literature). 80 

 81 

There is a wide debate in the literature over the right proxy variable for marginal cost in equation (1). The choice commonly 82 

comes down to the unit labour cost or output gap. As highlighted by [9], in the standard sticky price framework, output gap is 83 

proportional to the marginal cost. Moreover, Eurostat does not offer unit labour cost data in monthly frequency (analogous 84 

to inflation), so empirical studies of the NKPC mostly resort to output gap as a measure of economic slack [15,20,23]. In ac-85 

cordance with this empirical framework, GPR estimations in this paper are also based on the NKPC model given in equation 86 

(1), using output gap and inflation expectations as input data for inflation forecasts. 87 

 88 

2.2. Recent ML advances in forecasting inflation 89 

 90 

The advances over the past decade have proven the potential of ML techniques for time series forecasting [24–27]. Moreover, 91 

several extensive forecasting competitions have emerged, assessing the predictive accuracy of ML approaches in comparison 92 

to conventional time series modelling. For example, in [3], the authors utilise, inter alia, a rich set of different neural networks 93 

specifications and regression-based models, with the goal to forecast around a thousand different economic time series (the 94 

so called M3 forecasting competition). Their results show a dominance of multilayer perceptron and the Gaussian process 95 

regression. In [28], the authors analyse 111 time series (NN5 forecasting competition), obtaining the optimal forecasts via 96 

neural networks, Gaussian process regression estimates, and multiple regression models. On the other hand, in [4], the au-97 

thors also assess the NN5 competition data, but they focus on comparing different strategies of input selection and forecast 98 

combinations. They find that Multiple-Output strategies (applied on seasonally adjusted data) perform significantly better 99 

than any other specification. 100 

 101 

However, not many of these methods have been utilised to forecast the EA inflation rates. Apart from the Phillips curve-102 

related papers covered in the previous section, the existing studies mostly trust conventional time series models such as VARs, 103 

ARIMA models and their extensions (e.g. [29]), factor models [30], or they follow the standard leading indicator approach [31]. 104 

To the best of our knowledge, there are only a few papers specifically tackling forecasting the EA inflation using ML techniques. 105 

Their contributions are briefly described as follows. 106 

 107 

In [32], the authors present a pioneer utilization of then emerging class of neural network models. To be specific, they assess 108 

the feed-forward network with jump connections, using current and lagged values of inflation and unemployment as inputs 109 

to produce inflation forecasts for the US, Japan, and the EA. They apply “thick modelling”, i.e. they combine forecasts of an 110 

ensemble of neural networks obtained with different starting values and different network architectures. The authors perform 111 

a set of goodness-of-fit assessments and diagnostic tools (both in sample and out of sample), finding that the obtained neural 112 

network forecasts are either comparable to the benchmark autoregressive processes, or they outperform them (depending 113 

on the analysed country, examined period, and the chosen inflation subcategory). 114 

 115 

In [33], the authors provide another meticulous analysis of neural networks’ performance when it comes to EA inflation fore-116 

casting. They asses as many as 540 different neural networks, differing in maximum number of iterations, learning rate, 117 

weighting schemes, and the number of hidden neurons; using lagged inflation, unit labour cost, nominal exchange rate, and 118 

monetary aggregate M3 as input variables. The obtained results speak in favour of Jordan neural networks over feed-forward 119 

ones (both in terms of forecasting accuracy and parsimony). 120 

 121 

In [34], the authors compare the predictive accuracy of genetic algorithms and two other heuristic optimization methods, 122 

along with several dimension reduction techniques in an attempt to forecast the EA inflation rate. They apply the stated 123 

methods to an array of as many as 195 economic variables, finding that heuristic optimization techniques (sequential testing 124 

and a Bayesian model averaging approach in particular) outperform all other examined methods. 125 

 126 

All three stated papers find ML-based inflation forecasting to be a promising field of research, so we aim to build upon their 127 

efforts even further. Acknowledging the dominance of Gaussian process regression in terms of predictive accuracy 128 

[3,28,35,36], we aim to provide the initial contribution of that sort to inflation forecasting. Our main contribution within this 129 

paper is presenting the mathematical foundations of GPR-based confidence intervals. Within this paper the stated methodol-130 

ogy is utilized for inflation forecasting, but the applicative potential of this framework is much wider. 131 

 132 

  133 
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 134 

3. Data 135 

 136 

In this study we aim to forecast monthly inflation data (year-on-year percentage changes obtained via the Harmonized Index 137 

of Consumer Prices) for the 19 EA countries, provided by Eurostat. See Figure 1 and Table 1. Our focal independent variables 138 

are output gap and inflation expectations, both stemming from the NKPC theoretical specification. Since 𝜋𝑡 is of monthly 139 

frequency, this has conditioned our operationalization of independent variables. Output gap is obtained via the Hodrick-Pres-140 

cott filter on the monthly industrial production index (provided by Eurostat), while inflation expectations are derived from the 141 

Joint Harmonised EU Consumer Survey conducted by the European Commission [37]. To be specific, we focus on question 6 142 

from the consumer survey: 143 

 144 

Q6. In comparison with the past 12 months, how do you expect consumer prices will develop in the next 12 months? They will: ++) 145 
Increase more rapidly, +) Increase at the same rate, =) Increase at a slower rate, −) Stay about the same, − −) Fall, N) Don’t 146 
Know. 147 

 148 

This question is asked on a regular monthly basis to consumers in each of the 19 EA member states assessed in this paper. 149 

There is a wide variety of quantification techniques that can be utilized to obtain an economy-wide numerical measure of 150 

inflation expectations. There is no consensus in the literature about the optimal quantification method and the results of these 151 

methods often heavily depend on the underlying (often non-realistic) assumption (see [38–40] for a discussion). Therefore, 152 

instead of arbitrarily choosing a particular method, we opt for utilizing a simple response balance1 of question 6. 153 

 154 

As additional control variables we use crude oil prices at the global market (in USD; accounting for cost-push inflation) and the 155 

EA 3-month money market interest rate as a monetary indicator (see Figure 1). The former variable is obtained from the US 156 

Energy
 
Information

 
Administration, while the latter is gathered from Eurostat. 157 

 158 

 159 

 
 

(a) (b) 

Figure 1. Inflation and interest rates in the EA (2000:01-2021:07) (a) Inflation; (b) Interest rates. 160 

 161 

 162 

The entire dataset is seasonally adjusted (see e.g. [4,41] for a thorough exposition on the beneficial impact of seasonal adjust-163 

ment on forecasting accuracy). The dataset spans at most from January 2000 to August 2021. Table 1 shows the descriptive 164 

statistics. 165 

 166 

  167 

                                                           
1 A response balance (B) is the difference between the percentages of positive and negative responses to a particular survey question. In 
the case of Q6 from the consumer surveys,  𝐵 = (𝑃𝑃 + 0,5𝑃) − (0,5𝑀 +𝑀𝑀), where PP is the proportion of ++ replies, P is the percent-
age of + replies, MM is the percentage of − − replies, and M  is the proportion of − replies. It is a customary method for quantifying 
consumer survey results (European Commission, 2021) [37]. 
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 168 

Table 1. Descriptive statistics (2000:01-2021:07). 169 

Country  Inflation Output gap Expectations 

Austria mea

n 

1.874 0.032 27.929 

 SD (0.805) (3.969) (8.544) 

Belgium mea

n 

1.891 0.000 17.060 

 SD (1.183) (4.044) (10.577) 

Cyprus mea

n 

1.595 0.000 11.567 

 SD (1.964) (4.773) (26.142) 

Estonia mea

n 

3.262 0.037 32.992 

 SD (2.695) (4.727) (21.629) 

Finland mea

n 

1.601 0.063 28.715 

 SD (1.121) (4.317) (13.953) 

France mea

n 

1.524 0.035 17.773 

 SD (0.881) (3.926) (9.865) 

Germany mea

n 

1.493 0.033 32.495 

 SD (0.824) (4.468) (11.930) 

Greece mea

n 

1.778 0.000 17.560 

 SD (2.063) (3.402) (18.076) 

Ireland mea

n 

1.553 – 24.470 

 SD (1.977) – (14.267) 

Italy mea

n 

1.689 0.038 -0.632 

 SD (1.149) (5.466) (13.921) 

Latvia mea

n 

3.423 0.000 26.649 

 SD (3.955) (3.831) (20.518) 

Lithuania mea

n 

2.385 -0.023 43.166 

 SD (2.762) (4.106) (13.923) 

Luxemburg mea

n 

2.162 0.000 16.326 

 SD (1.481) (4.816) (12.218) 

Malta mea

n 

1.953 0.000 22.380 

 SD (1.241) (5.226) (19.984) 

Nether-

lands 

mea

n 

1.857 0.000 20.307 

 SD (1.230) (3.159) (17.178) 

Portugal mea

n 

1.766 0.000 22.612 

 SD (1.526) (4.124) (15.073) 

Slovakia mea

n 

3.311 0.000 35.424 

 SD (3.230) (4.975) (18.378) 

Slovenia mea

n 

2.936 0.034 39.627 

 SD (2.811) (4.508) (14.333) 

Spain mea

n 

1.981 0.021 9.071 

 SD (1.622) (5.075) (14.306) 

EA mea

n 

1.673 -0.006 18.759 

 SD (0.963) (3.193) (9.546) 
Note: SD denotes standard deviation. SD values in parentheses. 170 

 171 

  172 
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4. Methods 173 

 174 

GPR was originally devised for interpolation. The works by [42–44] have been key in the development of GPR models. By 175 

expressing the model in a Bayesian framework, the authors extend GPR applications beyond spatial interpolation to regression 176 

problems. GPR models are supervised learning methods based on a generalized linear regression that locally estimates fore-177 

casts by the combination of values in a kernel [45]. Thus, GPR models can be regarded as a non-parametric tool for regression 178 

in high dimensional spaces. GPR models present one fundamental advantage over other ML techniques: they provide full 179 

probabilistic predictive distributions, including estimations of the uncertainty of the predictions. These features make GPR an 180 

ideal tool for forecasting purposes. 181 

 182 

4.1. Definition of a Gaussian Process 183 

A Gaussian Process (GP) is a stochastic process in which we have a random distribution over a space of functions that we will 184 

denote as f(x)2. This distribution over the function space f(x), with x ∈ ℝd  will be defined by a specific function that deter-185 

mines the mean value of the realizations, which we will denote as, 186 

m(x) = E(x), (2) 

and a covariance function denoted as3, 187 

k(x, x′) = E[(𝑓(𝑥) − 𝑚(𝑥))(𝑓(𝑥´) − 𝑚(𝑥´))] (3) 

The function f(x) is distributed as a GP, 𝑓(𝑥) ∼ 𝒢𝒫(𝑚(𝑥), 𝑘(𝑥, 𝑥′)). Therefore, for a finite subset of observations {𝑥1…𝑥𝑛}, 188 

where xi ∈ ℝ
d the marginal distribution for this subset of observations is a multivariate Gaussian distribution, 189 

𝑓(𝑋) ∼ 𝒩(𝑚(𝑋), 𝑘(𝑋, 𝑋)), (4) 

defined by the mean vector, 𝑚(𝑋) = [m(𝑥1),…m(𝑥𝑛)]
T ∈ ℝn; and the covariance matrix 𝑘(𝑋, 𝑋)  ∈ ℝnxn is a matrix de-190 

fined in an analogous manner. 191 

 192 

The covariance function k(x,x') allows the introduction of a priori information about the problem, i.e. a model of how the 193 

samples are related, or of the process that has generated them. Formally, the function K(x,x') defines the joint variance of the 194 

random variables associated with the GP, i.e. it models the covariance between (x,x'). This relationship or similarity between 195 

the two observations is specified by a kernel-like function (see for example [46])4. 196 

 197 

An alternative might be to model the fact that there might be a correlation between the input features that is certain directions 198 

which might have different variation. In order to model this anisotropy, one might use instead an inner product with a 199 

weighting matrix M that takes into account this fact, defining the dot product as5, 200 

〈𝑥, 𝑥´〉 𝑀 = 𝑥
𝑇𝑀𝑥´ (5) 

 201 

A natural weighting matrix is the inverse of the correlation matrix in the feature space, i.e.,𝐶𝑥
−1, so in this case the metric 202 

would be as follows: 203 

〈𝑥, 𝑥´〉 𝐶𝑥−1 = 𝑥
𝑇𝐶𝑥

−1𝑥´ (6) 

 204 

Another way to way to implement the metric is to construct a change of basis, on the axes of the weighting matrix M, under-205 

standing the new basis as a selection of either the eigenvectors of M or a rotated version of them. That is, the observation 206 

x ∈ ℝd could be projected, by means of a transformation U ∈ ℝdxk, into a subspace of dimension k, that encompasses di-207 

rections of interest for the task at hand. 208 

 209 

                                                           
2 The presentation and notation that we will follow is based on the texts of Williams and Rasmussen (2006) and MacKay (2003) [43,44]. 
3 This covariance has the property of being positive definite. The covariance function will be defined for all possible combinations of input 
observations (x,x'). 
4 The specification of a kernel allows the introduction of the functional form of dependence between the variables, the only limitation being 
that to be a valid covariance function it must generate positive definite matrices for sets of samples. 
5 Note that one source of confusion is to mistake the two types of correlation. The correlation K(x,x'), which indicates the similarity between 
two observations, corresponds to Gram's matrix, whereas for a natural weighting measure in the inner product, the covariance matrix of 
the observations X could be used to model the correlations between features. 
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This projection, for example, could be onto the eigenvectors associated with the highest eigenvalues of 𝐶𝑥 , which would be 210 

the basis of Principal Component Analysis (PCA), or onto a basis such as the one provided by Factor Analysis (FA), with the 211 

appropriate rotation. 212 

 213 

Since the change of basis can be understood as a preprocessing applied to the observations for each kernel, without changing 214 

the form of the kernel, in this work we will distinguish the kernel k(x,x') on the original space from the kernel that works with 215 

the data projected on a subspace of interest that we will denote as kp(x,x'). 216 

 217 

The regression analysis using GP incorporates a kernel function, which provides a similarity of the training data to each other 218 

and the similarity to the observations to be regressed on. We will compute a posterior distribution conditioned on the obser-219 

vations on which we want to perform the regression. The result will be that for each sample on which we calculate the regres-220 

sion we have a Gaussian distribution6. The prediction is the mean value of the distribution conditioned on the observation. 221 

Note that by having a distribution for each observation, confidence intervals can be calculated. 222 

 223 

4.2. Process for making the prediction from the posterior distribution 224 

One distinguishing feature of GP as opposed to other machine learning methods is that the model of the observations is done 225 

jointly (i.e. simultaneously) for the training and test samples. Note that we reserve a different part of the database for model 226 

validation, which enables the adjustment of kernel types and hyper parameters. 227 

 228 

We create a partition of the database into two sets of size {𝑛1, 𝑛2}, [(X1,Y1),(X2,Y2)], where (X1,Y1) are the 𝑛1 training ob-229 

servations, and (X2,Y2) are the 𝑛1 test observations. The inputs X2 will be used to create the model, i.e. the model will be 230 

created using only, [(X1,Y1),(X2,.)]. Therefore, the reference Y2 will not be used to estimate the model, but to validate the 231 

prediction. 232 

 233 

Thus, for the regression over the new samples we create the function y2=f(X2), where f(.) is the mean value of the joint 234 

distribution for all test samples. In fact, the GP provide much more information, as provides the conditional distribution, 235 

p(y2∣y1,X1,X2), which actually gives us how the response Y2 of the process is jointly distributed given the training observations 236 

(X1, Y1) and the inputs (X2,.) on which we want to make the prediction. 237 

 238 

First, we will jointly model the probability distribution over the training and test outputs {Y1, Y2}, in the form of a Gaussian 239 

distribution as follows, 240 

[
𝐲1
𝐲2
] ∼ 𝒩 ([

𝜇1
𝜇2
] , [
Σ11 Σ12
Σ21 Σ22

]) (7) 

 241 

Each component of the Gaussian distribution above being of the form: the vector of joint means will have two components 242 

𝜇1 and 𝜇2 of size equal to the sample cardinality, 243 

𝜇1 = 𝑚(𝑋1)  ∈ ℝ
(𝑛1×1) 

𝜇2 = 𝑚(𝑋2)  ∈ ℝ
(𝑛2×1) 

(8) 

 244 

The joint covariance matrix will consist of four components, 245 

Σ11 = 𝑘(𝑋1, 𝑋1)  ∈ ℝ
(𝑛1×𝑛1) 

Σ22 = 𝑘(𝑋2, 𝑋2)  ∈ ℝ
(𝑛2×𝑛2) 

Σ12  = 𝑘(𝑋1, 𝑋2)  ∈ ℝ
(𝑛1×𝑛2) 

(9) 

 246 

By the symmetry in the definition of the kernels we will have that the cross-covariance matrix satisfies that Σ12  =  Σ21
𝑇. 247 

The prediction will be made from the conditional probability 𝑝( 𝐲2 ∣∣ 𝐲1, 𝑋1, 𝑋2 ) defined as follows: 248 

𝑝( 𝒚2 ∣∣ 𝒚1, 𝑋1, 𝑋2 ) = 𝒩(𝜇2|1, 𝛴2|1) (10) 

 249 

                                                           
6 The prediction is the mean value of the distribution conditioned on the observation. Note that by having a distribution for each observation, 
confidence intervals can be calculated. 
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The mean of the distribution of the reference Y2, conditional on the training data, will depend on the cross-covariance be-250 

tween the training and test inputs, together with the covariance of the training inputs themselves, as follows: 251 

𝜇2|1 = 𝜇2 + Σ21Σ11
−1(𝐲1 − 𝜇1) (11) 

Assuming we have de-meaned the process as part of the data preprocessing, i.e. we assume that global mean is, 𝜇 = 0, the 252 

prediction is simplified as follows 253 

𝜇2|1 = Σ21Σ11
−1𝐲1 (12) 

The covariance matrix of the test inputs conditional on the covariance of the train inputs, is estimated as follows 254 

Σ2|1 = Σ22 − Σ21Σ11
−1Σ12 (13) 

By knowing the  𝑝( 𝐲2 ∣∣ 𝐲1, 𝑋1, 𝑋2 ) distribution, it is possible to make a point estimate using the, 𝜇2|1, and/or it is possible 255 

to estimate in intervals, for example by providing the interval between the 5% and the 95% percentile, which would be ob-256 

tained from the diagonal of the Σ2|1 matrix. 257 

 258 

A property of interest associated with point prediction 𝜇2|1 = Σ21Σ11
−1𝐲1  is that the prediction consists of a linear combina-259 

tion of the training samples 𝐲1, weighted by the similarity between the test inputs and the training inputs, provided by the 260 

Σ21 matrix, discounting the autocorrelation of the input matrix, provided by the Σ11
−1-factor. 261 

 262 

4.3. Model fitting—Estimation of the hyper parameters 263 

The distribution of the target values 𝑦2 will depend on the marginal likelihood𝑝(𝑦/𝑋, θ), which is a function of the θ pa-264 

rameters of the kernels, and on the mean function that we decide for our model. 265 

 266 

The criterion for the estimation of the θ parameters of the GP will be the maximization of the marginal likelihood, i.e. selecting 267 

the vector of parameters θ for which the conditional probability of the target y with respect to the inputs X is maximum. That 268 

is, the estimate will be, 269 

θ̂ = 𝑎𝑟𝑔𝑚𝑎𝑥 θ (𝑝(𝑦/𝑋, θ)) (14) 

 270 

The marginal likelihood of the GP corresponds to a Gaussian distribution defined by functions parameterized by the input 271 

data, with mean 𝜇𝜃 = 𝑚𝜃(𝑋)  and variance defined by the kernel of the form Σθ  =  kθ(X,  X), with d the dimensionality of 272 

the marginal and |Σθ| the determinant of the kernel matrix. The distribution is therefore of the form, 273 

𝑝(𝐲/𝑋, 𝜃) =
1

√(2π)𝑑|Σθ|
e−
1
2
(𝑦−μθ)

⊤Σθ
−1(𝑦−μθ) (15) 

 274 

The estimation is done on a logarithmic scale, which is equivalent to solving a quadratic form by maximizing the log marginal 275 

likelihood log 𝑝( y ∣∣ 𝑋, 𝜃 ) as follows: 276 

log 𝑝( 𝐲 ∣∣ 𝑋, 𝜃 )  =  −
1

2
(𝑦 − μθ)

⊤Σθ
−1(𝑦 − μθ) −

1

2
log |Σθ| −

𝑑

2
log 2π (16) 

 277 

The final criterion that we will follow will be to minimize the negative log marginal likelihood, defined as follows: 278 

θ̂ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃(𝑝( 𝑦 ∣∣ 𝑋, θ )) = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃  (− log 𝑝( 𝑦 ∣∣ 𝑋, θ )) (17) 

 279 

Since the usual kernels consist of differentiable functions with respect to the parameters that define them, the estimation of 280 

the parameters is usually carried out by means of gradient search. For more details see [44] and the GPy documentation [47]. 281 

 282 

4.4. Kernels 283 

In this work we have implemented GPs based on combinations of various basic types of kernels. The reason is that a linear 284 

combination of kernels continues to be a kernel, and this allows us to model different aspects or properties of the series we 285 

work with. 286 

 287 



 8 
 

 

The types of kernel that we have studied in this work are kernels that allow modeling the influence between samples with a 288 

different influence in terms of decay as a function of the distance between samples. We have considered the radial basis 289 

function that decays as the square of an exponential with the distance along with the Rational Quadratic Kernel decays in a 290 

hyperbolic way, that is, it has a greater radius of influence. On the other hand, we have also considered Matern-type covari-291 

ance functions (3/2 and 5/2) and exponentials that have an influence between the two previous ones. Finally, we also consider 292 

the possibility of using a multilayer perceptron kernel, which has a saturation-type non-linearity that limits the area of influ-293 

ence and a periodic kernel to model the possible periodicities of the series studied. 294 

 295 

The kernels mentioned above are isotropic, in the sense that they consider that distance does not provide privileged orienta-296 

tions. However, we will introduce in the distance measure a feature that allows us to model the dependence between the 297 

variables and therefore to model the fact that there are privileged orientations. In this case, the metric is defined as, 298 

||𝑥 − 𝑥´|| 𝑀
2 = (𝑥 − 𝑥´)𝑇𝑀(𝑥 − 𝑥´), (18) 

where M determines the how the interactions between features are weighted. Note that in case of using M=I, the metric is 299 

the Euclidean distance. 300 

 301 

The kernels used are, first of all, Radial Basis Function (RBF), the kernel is defined as follows, 302 

𝑘(𝑥, 𝑥´) = σ2𝑒
−
‖𝑥−𝑥´‖𝑀

2

2l2 , (19) 

where the parameters σ2 is the variance of the kernel, and l the length scale. 303 

Second, the Rational Quadratic kernel (RQ), the kernel is defined by means of a hyperbolic dependency with the metric, 304 

(𝑥, 𝑥′) = σ2 (1 +
‖𝑥−𝑥´‖𝑀

2

2αl2
)
−α

, (20) 

where the parameters σ2 is the variance of the kernel, and l the length scale. The parameter 𝛼 determines the rate at which 305 

the kernel diminishes with the metric. 306 

 307 

Third, the exponential Kernel (EXP), this is an intermediate kernel in terms of metric decay between the RBF and RatQuad, the 308 

formula being as follows 309 

𝑘(𝑥, 𝑥´) = σ2𝑒
−
‖𝑥−𝑥´‖𝑀
2l2 , (21) 

where the parameters σ2 is the variance of the kernel, and l the length scale. 310 

 311 

Fourth, Matérn Kernel (MAT), this is a family of kernels, that indexed by a parameter that defines the order in which the 312 

exponential attenuates with the metric. The distribution is modelled by means of a Bessel function on a isotropic metric de-313 

pendent on a parameter,𝜈, for the case of 𝜈 =  ½ the distribution is reduced to the exponential. Specifically, we will use the 314 

distribution for two common cases, 𝜈 =  {3/3, 5/2}, which give rise to the following kernels: 315 

𝑘3/2(x, x´) = σ
2 (1 + √3

‖𝑥−𝑥´‖𝑀

l
) e−√3

‖𝑥−𝑥´‖𝑀
𝑙 , (22) 

𝑘5/2(x, x´) = σ
2 (1 + √5

‖𝑥−𝑥´‖𝑀

l
+
5

3

‖𝑥−𝑥´‖𝑀
2

l2
) e−√5

‖𝑥−𝑥´‖𝑀
𝑙 , (23) 

where the parameters σ2 is the variance of the kernel, and l the length scale. 316 

 317 

Fifth, the Multilayer Perceptron Kernel (MLP), this kernel includes a saturating nonlinearity, and the similarity measure be-318 

tween the observations (x, x´) is based on an affine function of the scalar product between the vectors representing the ob-319 

servations. Unlike the previous kernels, the scalar parameter is defined by the affine relation, σ𝑤
2 𝑥⊤𝑦 + σ𝑏

2 . 320 

𝑘(𝑥, x´) = σ2
2

π
asin

(

 
σ𝑤
2 𝑥⊤x´ + σ𝑏

2

√σ𝑤
2 𝑥⊤𝑥 + σ𝑏

2 + 1√σ𝑤
2 x´⊤x + σ𝑏

2 + 1)

  (24) 

As in the other kernels, the parameters σ2 is the variance of the kernel. 321 

 322 

Finally, the standard periodic kernel (SP), This is a kernel that models explicitly the periodicity between observations, so there 323 

will be in addition to the scale parameter 'l', a term related to the periodicities, which we will denote as 'p'. The structure of 324 
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the kernel in the form of an exponential of a trigonometric function, takes into account not only the possible periodicity, but 325 

also models the decreasing distance-related relationship between the samples. 326 

𝑘(𝑥, 𝑥´) = σ2𝑒
−
2
l2
sin2(π

‖𝑥−𝑥´‖𝑀
𝑝

)
 

(25) 

4.5. Combination of kernels 327 

The linear combination of kernels is carried out by the simple sum N of kernels, 328 

 𝑘𝑇𝑜𝑡𝑎𝑙(𝑥, 𝑥´)  = ∑ 𝑘𝑖(𝑥, 𝑥´) 
𝑁
𝑖 =1   (26) 

 329 

The weights of the linear combination are given by a σ𝑖
2  parameter specific for each kernel, which is estimated independently 330 

for each of the 𝑘𝑖(𝑥, 𝑥´) , components of the combination  𝑘𝑇𝑜𝑡𝑎𝑙(𝑥, 𝑥´) . Note that when maximizing  θ̂ =331 

𝑎𝑟𝑔𝑚𝑎𝑥𝜃(𝑝( 𝑦 ∣∣ 𝑋, θ )), all the parameters of ∑ 𝑘𝑖(𝑥, 𝑥´) 
𝑁
𝑖 =1  are adjusted simultaneously. Therefore, in addition to the rel-332 

ative weight of each kernel (determined by the individualσ𝑖
2), the scale parameter '𝑙𝑖  ' is adjusted. By adjusting independently 333 

each scale parameter the interactions between elements at different scales to be modelled for each kernel separately. 334 

 335 

Since parameter optimization is performed by gradient search, the nonlinearity of the kernels results in a multimodal objective 336 

function. In order to solve the problem of local minima, different initializations and optimizations were performed in the 337 

training, selecting as the final model the one that provided the best performance in validation. 338 

 339 

4.6. Selection of the best set of kernels 340 

In this subsection we will describe how the kernels have been selected for the experiments. The description and details of the 341 

7 kernel types used are summarised in the previous list (18-25). There is a total of 127 possible combinations (2⁷–1=127). Note 342 

that the empty set combination does not count. The method for selecting the kernels was to test all 127 combinations, with 343 

multi-starting of 10 repetitions, and selecting the mean value of the MSE and calculating the standard deviation. 344 

 345 

The results for selecting the best combination of kernels were obtained by training with 75% of the database partition allo-346 

cated for training and validating with the final 25% of this partition7. A methodological point to note is the difficulty of com-347 

puting confidence intervals when the data structure is sequential. Note that it makes little sense to sample independent sam-348 

ples to compute the standard deviation, or to select consecutive sub-intervals for training and validation without overlap8. 349 

 350 

4.7. Preprocessing of the data and discussion on kernel selection 351 

Before the forecast, the input data is standardized, i.e., given an input vector 𝑥 ∈ ℝn, we compute the mean and variance 352 

of each feature of x and we normalize each coordinate by xi
nor  =

xi−mi

si
 by subtracting the sample mean mi and sample 353 

variance si, each computed over the training database9. 354 

 355 

Finally, the winning combination is the kernel consisting of the sum of three {MLP, RQ, EXP}, so that, the mathematical expres-356 

sion is the following, 357 

𝑘(𝑥, 𝑥′)  =  𝑘𝑀𝐿𝑃(𝑥, x´)  + 𝑘𝐸𝑋𝑃(𝑥, 𝑥´) + 𝑘𝑅𝑄 (27) 

 358 

This proposed approach allows to preserve the stochastic properties of the training series in multiple-step ahead prediction. 359 

In spite of the desirable properties of GPR models, to our knowledge this is the first study to use GPR for causal estimation 360 

within the NKPC, and to estimate confidence intervals of the obtained vectorial predictions. This strategy is cost-effective in 361 

computational terms, and seems particularly indicated for inflation forecasting. 362 

 363 

                                                           
7 The test database was used to evaluate the real performance of the system. In other words, the test base was not used to decide the 
combination of kernels. Since the problem has a sequential structure, we kept the interval between 2000-01-01 and 2014-03-01 for training, 
and the interval between, 2014-04-01 to 2018-12-01 for validation. The test interval, defined as the observations between 2019-01-01 and 
2021-06-01, was set aside to compute the predictions incrementally in the final results. 
8 Therefore, as a substitute for random sampling, we decided to estimate the standard deviation of each kernel combination by taking the 
standard deviation of the multi-starting performance. We are aware that we are actually measuring the variability due to the local minima 
of the cost functions. However, we believe it is a surrogate for variability, which will allow reliable ranking of kernel combinations. 
9 Note that the parameters for normalizing the test database are the ones computed over the training database. Also, when estimating the 
model, the mean value over the training database is subtracted from the target y, and then added to the forecast on the testing data. 
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5. Results 364 

 365 

To assess the forecasting performance of the proposed extension of the GPR model, we estimate the models and generate 366 

forecasts for the forecast horizon h=1 month and compute the root mean square forecast error (RMSFE). Forecast accuracy 367 

results, together with the estimated values of the hyper parameters are presented in Table 2. 368 

 369 

Table 2. Forecast accuracy (RMSFE) of best kernel combination (2019:01–2021:07). 370 

 RMSFE 𝑘𝑀𝐿𝑃(𝑥, 𝑥′) 𝑘𝐸𝑋𝑃(𝑥, 𝑥´) 𝑘𝑅𝑎𝑡𝑄𝑢𝑎𝑑(𝑥, 𝑥′) 

 h=1 σ𝑀𝐿𝑃
2  σ𝑤

2  σ𝑏
2  σ𝐸𝑋𝑃

2  𝑙𝐸𝑋𝑃
2  𝑙𝑅𝑄

2  𝑙𝑅𝑄
2  α 

Austria 0.253 2.985 0.143 1.161 0.637 2.625 0.148 0.449 0.826 

Belgium 0.468 0.592 0.220 0.452 0.389 0.832 1.492 0.383 0.212 

Cyprus 0.532 0.535 1.213 1.335 0.278 1.652 0.888 0.639 0.896 

Estonia 0.688 0.356 0.217 1.241 1.343 2.400 2.445 1.940 0.596 

Finland 0.258 0.443 0.942 0.455 0.270 1.239 0.575 0.977 1.441 

France 0.270 0.487 0.688 1.630 0.214 0.952 0.524 0.534 0.249 

Germany 0.394 0.447 0.64 0.257 0.307 0.493 0.617 0.717 0.254 

Greece 0.623 0.402 0.954 0.845 0.660 0.685 0.289 0.688 0.368 

Ireland 0.346 0.462 0.446 1.621 1.471 2.057 0.333 0.332 0.547 

Italy 0.357 1.270 0.362 0.596 0.311 0.417 0.249 0.969 0.887 

Latvia 0.579 0.560 0.895 0.114 0.376 0.533 2.796 0.697 0.317 

Lithuania 0.594 1.075 0.38 1.011 0.673 0.729 1.150 1.044 0.518 

Luxemburg 0.604 0.968 0.731 1.709 0.405 0.141 0.592 1.106 0.622 

Malta 0.191 0.597 0.831 1.335 0.445 0.502 0.615 1.710 1.160 

Netherlands 0.409 0.581 1.720 1.581 0.624 2.099 0.280 0.596 2.534 

Portugal 0.439 1.237 0.812 1.184 0.101 0.226 0.101 0.226 0.171 

Slovakia 0.331 0.301 0.715 0.787 2.141 1.133 0.396 0.870 0.147 

Slovenia 0.528 0.312 1.120 1.189 0.707 0.630 0.953 0.492 0.478 

Spain 0.372 1.027 0.678 0.285 0.461 1.367 0.395 0.616 0.180 

Notes: Parameter σ2 is the variance of the kernel, and l the length scale. Parameter 𝛼 determines the rate at which the 371 

kernel diminishes with the metric 372 

 373 

 374 

Table 2 shows the overall performance of the assessed forecasting models on all countries. The best forecasting performance 375 

is obtained in Malta, Austria, Finland and France. Overall, the proposed GPR model generates low RMSFEs across the examined 376 

countries. Our results are comparable to those of [48], who also find that applying GPR substantially benefits the accuracy of 377 

inflation forecasting in the US. Our results suggest that the theoretical foundations of the NKPC model provide a good frame-378 

work for inflation predictions [49]. 379 

 380 

Figure 2 shows the mean of the density forecasts of inflation for h=1 with the 95% confidence intervals obtained with the GPR 381 

model for the out-of-sample period. The obtained forecasts reveal the current inflationary pressures [50]. The stated tenden-382 

cies are mainly caused by the supply chain disruptions due to the pandemic, rising inflationary expectations due to the an-383 

nouncements of an interest rate increase, as well as the recent intensification of aggregate demand after the lockdown poli-384 

cies. 385 

 386 

  387 
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Figure 2. Mean of density forecasts of inflation for h=1 (2019:01-2021:07). The black-dotted line represents the mean 396 

of the density forecasts of inflation for h=1 with confidence intervals obtained with the GPR model for the out-of-sample 397 

period (2019:01-2021:07) 398 

 399 

6. Concluding Remarks 400 

 401 

The current geopolitical tensions, pandemic-related supply chain disruptions and the announcements of rising reference in-402 

terest rates make the current macroeconomic environment in need of state-of-the-art and accurate inflation forecasting mod-403 

els. Due to the complexity of such a task, we rely on the theoretical NKPC specification as the basis for an adequate choice of 404 

model predictors. We contribute to the literature by an initial application of GPR method in forecasting EA inflation. The 405 

forecasts obtained within this framework point out the recent inflationary pressures. 406 

 407 

Modeling through GPR allows estimating confidence intervals for point forecasts This feature makes forecasting via GPR offer 408 

potential in different fields, as it can be used for basically any type of low- or high-frequency economic or financial time series, 409 

and any type of theoretical economic model. 410 

 411 

As a proposition for future work, research should be done on the potential application of nonparametric specifications of the 412 

conditional mean and of the innovation to inflation using GPR, in the vein of Clark et al. [48]. Such a methodological framework, 413 

allowing for nonlinearities between inflation and its NKPC-founded determinants, seems as a promising line of research. Fur-414 

ther forecasting attempts should also consider potential non-Gaussian properties of inflation dynamics, such as skewness and 415 

leptokurtic behaviour. 416 

 417 

 418 

  419 
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