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We study the problem of the partition of a system of initial size V' into a sequence of fragments

81,82,83....

By assuming a scaling hypothesis for the probability p(s; V) of obtaining a fragment

of a given size, we deduce that the final distribution of fragment sizes exhibits power-law behavior.
This minimal model is useful to understanding the distribution of avalanche sizes in first-order phase

transitions at low temperatures.

PACS number(s): 64.60.—i

The existence in nature of magnitudes that exhibit a
scale-free (power-law) statistical distribution has always
been an intringuing phenomenon. In equilibrium sys-
tems, such distributions are usually associated with the
existence of a critical point where the divergence of the
correlations in time and space masks any dependence of
the macroscopic magnitudes with intrinsic microscopic
scales of the system. Thus, universality may arise and
the systems can be classified by a small set of exponents
characterizing the power-law distributions of few magni-
tudes. In systems out of equilibrium, the landscape is
far from being well understood. The experimental exam-
ples range from condensed matter to earth sciences and
biophysics: earthquakes, volcanic activity, evolution of
species, sandpiles, fracture processes, avalanche phenom-
ena in magnetic and structural first-order transitions, etc.

Different theories have been proposed for the expla-
nation of such a lack of temporal and spatial scales in
nature. Besides the famous self-organized criticality the-
ory (SOC) [1], one should also mention the sweeping of
an instability theory [2], the existence of a mechanism
of multiplicative nature giving log-normal distributions
[3] and the extremal dynamics theory [4], etc. Quite re-
cently it has been realized that some of the experiments
exhibiting avalanches with power-law distributions have
in common the fact that they are first-order phase tran-
sitions with intrinsic disorder and with thermal fluctu-
ations playing a secondary role (much smaller than the
energy barriers between metastable states). After this,
they have been cataloged as “athermal” [5] or “fluctua-
tionless” [6] first-order phase transitions (FLFO). Some
experimental examples of FLFO systems are (i) mag-
netic phase transitions at low temperatures induced by
sweeping an external field [7,8]; (ii) martensitic trans-
formations induced by an applied stress or temperature
[9]; (iii) precipitation of gases on substrates [10,11]; and
(iv) the superconductivity transition in granular Al films
driven by a parallel magnetic field [12]. All these sys-
tems share the two characteristics (having intrinsic dis-
order and negligible temperature fluctuations) necessary
for the avalanche phenomena to occur [5]. The prototypi-
cal models for such systems are the random field (RFIM)
[5] and random bond (RBIM) [6] Ising models driven by
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external fields at zero temperature. The first-order phase
transition separating the up phase from the down phase
is crossed by sweeping the external field. The magneti-
zation (or amount of transformed system) increases by
avalanche steps. For a particular value of the amount of
quenched disorder in the system, the avalanches exhibit
a power-law distribution. This suggests the existence of
a “critical point” induced by disorder [5]. The fact that
such “criticality” appears only for a particular value of
the disorder is not satisfactory: experimentally power-
law distributions of avalanche sizes are seen without clear
tuning of the amount of disorder [7-12].

The main motivation for this Brief Report is to un-
derstand the apparition of the power-law distribution of
avalanches in the FLFO systems from a more general
point of view using a minimal model without leaning
on the RFIM or RBIM. Nevertheless, the model might
also account for the understanding of other phenomena
yielding 1/s distributions. The FLFO systems exhibit,
in common with the typical SOC models, a separation
of time scales, which allows the definition of avalanches
when smoothly driven by the external field. What makes
the FLFO systems different from the SOC systems is that
the scalar parameter exhibiting avalanches (amount of
transformed material, magnetization in the direction of
the field, resistivity, etc.) is bounded from above and
below. Such a global constraint does not apply, for in-
stance, to sandpile models in which the total amount of
sand is unlimited.

Assuming that such a bounded scalar parameter
changes monotonously (there are no retransforming
avalanches [13]) one can treat this phenomenon as a
sequential fragmentation process: from a system with
initial size V one sequentially extracts fragments (or
avalanches) of sizes s1, sg, s3, . .. satisfying ZZL sp=V.
This problem has previously been formulated as a partic-
ular case of multivalley structure [14,15]. Here we focus
on its sequential character and show that such a simple
and general model exhibits a power-law 1/s distribution
of fragments. The unique hypothesis defining the model
is that the probability law for extracting a fragment (or
having an avalanche) of size s from a system of size V'
satisfies the self-similar scaling relation [14] p(s;V) =
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+9 (%), where g(z) is normalized between 0 and 1. This
easy looking hypothesis, when applied recurrently over
a system, has many implications. Given a succession
of fragments s1, sz, ..., Sk, the conditional probability of
extracting sg41 is given by p(skp+1|Sk,Sk—1,-..,81;V) =
p(Sk+1;V — sk — Sg—1 — -+ - — s1). Thus, the sequence of
fragments is of non-Markovian nature, although a con-
nection to a Markov chain will be shown later. In the
language of FLFO phase transitions, this last equation
implies that the only interaction between transformed
and untransformed domains is of “excluded volume” na-
ture; i.e., the maximum size of an avalanche is what is
left untransformed from the system. This means that
our model neglects any long-range force (elastic, electric,
magnetic, etc.) that could exist in the system and any
interfacial energy that would depend on the domain ge-
ometry. Nevertheless, we will see that such a minimal
excluded volume interaction is enough to demonstrate
the existence of a power-law distribution for the frag-
ment size. It can be easilly deduced that the probability
Pr(s; V) of extracting a fragment of size s in the k-step
satisfies the recurrence

V—s
pe(s;V) = /0 dsp(5;V)pr—1(s;V - §) (1)

given pi(s;V) = p(s; V). If we perform M extractions
in a system with initial size V, the expected value of
the number of fragments with size between s and s + ds,
nar(s;V) is given by ny(s;V) = Zklepk(s;V), with
0 < s < V. Using (1) one gets the following integral
relation:

V—s
nyp(s; V) =p(s; V) + /0 dsp(5;V)npm—1(s;V —3§) .

(2)

This equation can be physically understood since the ex-
pected number of fragments of size s after M extrac-
tions is the sum of the expected number of fragments
of size s in the first extractions [nq(s;V) = p(s;V)]
plus the expected number of fragments of size s from
the rest of the system, which has any size V — § (with
V —§ > s) after the next M — 1 extractions. If the limit
n(s; V) = npoo(s; V) exists it will satisfy the following
integral equation [14]

V—s
n(s;V) = p(s; V') +/0 dip(3: Vin(s;V —3). (3)

Although n(s; V) is an unnormalizable distribution, the
integral of sn(s; V) from 0 to V should be the total vol-
ume V. A general solution of Eq. (3) is difficult to obtain,

but can be easily found in the two following cases: (i)
uniform fragmentation probability: p(s; V) = % exactly

giving n(s; V) = %; and (ii) restricted beta fragmentation
probability: _
1 B
p(s;V) = prl (1 - i) )

z ()

where 3 > —1. The solution is [14]
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n(s;V):ﬁ_:l (1-%)’3 : (5)

These n(s; V) solutions, for small enough values of s, ex-
hibit a 1/s behavior. For other particular cases of beta
distributions [p(s;V) = %%% () (- %)ﬁ]
solutions of (3) can be obtained [16]. These results
point towards the possibility of demonstrating that for
all p(s; V) the distribution n(s; V) exhibits 1/s behav-
ior. Such a theorem can be demonstrated by noting
that, from the scaling hypothesis for p(s; V), n(s;V)
should satisfy the same scale-free dependence: n(s; V) =
+h(s/V). Substituting in (3) one obtains

h(:z:):g(:c)+Al_md5:g(:i')lijh(lfi) .6

From this equation we can calculate the “moments” of
the distribution n(s; V'):

I = AV ds (%)Tn(s;V) . (7)

Note that I, cannot be negative. On the other hand, if
I, converges, from Eq. (6) it can be deduced that [17]

P (. SN ©

1—((1—-s/V)7)
The symbol (---) indicates averages calculated with the
probability distribution p(s; V). Since 0 < s < V such
averages [((s/V)") and ((1 — s/V)")] are always real and
positive for » > 0, but might diverge for » < 0. For
r = 0 the right-hand side of (8) diverges and for r < 0,
if the moments of the distribution p(s; V') exist, it has a
negative value, contradicting the definition of I.. Thus,
I, should diverge for r < 0 and converge for r > 0 [18].
Thus, the behavior for small values of s is 1/s, although
logarithmic corrections cannot be excluded. In order to
test the range of validity of the 1/s behavior we have
performed simulations using different distribution prob-
abilities.

Figure 1 shows the obtained nps(s; V) (M = 103) in
log-log plot for the following probability distributions:
uniform (a), triangular (b), restricted beta for 8 = 3
(c), inverse square root [g(z) = ﬁi] (d), beta distri-
bution with @ = 1 and 8 = 5 (e), and @ = 3 and
B = 2 (f). Data have been averaged over 10* real-
izations. For all the cases, the behavior is compatible

with 1/s for s/V < 0.1, while for s/V ~ 1 the behav-
ior differs from one case to the other.. A theoretical
estimation of the “critical zone” (the region s < Smax
where the behavior is 1/s) can be obtained discard-
ing logarithmic corrections and assuming an expansion
n(s;V) = 2 4 % 4o~ %exp(%%). Substituting in
Eq. (8) one gets 2m2x ~ 2 = (2 1) /(2] — 1). For
the uniform distribution I, = 1/2, giving smax — 0o as
expected. The values 0.18ax/V for the different studied
probability functions are indicated by arrows in Fig. 1.
The description of the succession of fragments s,

S2, 83,...can be related to the succesion of remainders
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FIG. 1. nm(s;V) for M = 1000 and V = 1 in the cases:
(a), uniform (b), triangular restricted (c) beta distribution for
B = 3, (d), inverse square root (e), full beta distribution with
a=1and 8 =5, and (f) « = 3 and 8 = 2. In cases (a), (c),
(e), and (f) we have also plotted with a continuous line the
analytical solution. The arrows indicate the estimation of the
“critical zone” as explained in the text.

ti =V —sy,t =V — 81 — 385, ... . The probability that
after an extraction from a system of size V, the remain-
der is t is given by p(t; V') = p(V —t; V). The probability
that a remainder ¢ is left given the succession of remain-
ders tl, tz, N tk_]_, is ﬁ(tkltk-——la e ,t]_; V) = ﬁ(tk, tk_]_).
Thus, the succession of remainders is a Markov chain,
and a master equation can straightforwardly be written.
Nevertheless, the study of this chain does not render new
insights on the problem and it will be developed else-
where. Moreover, for the case of a uniform p(¢; V'), the
succession of remainders is known to tend to a log-normal
distribution [19].

Despite the big experimental efforts, few measurements
of the distribution of avalanche sizes in FLFO systems are
available: (i) For the magnetic materials, a power-law
distribution of the Barkhausen noise amplitude has been
found [7], but it is difficult to relate it with the real size
of the avalanches or any bounded magnitude in the sys-
tem. Something similar happens with the experiments on
reversal of magnetic domains [8]. (ii) For martensitic ma-
terials [9], the acoustic emission amplitude distribution is
related, in a not completely known way, to the advance of
the interfaces. It shows power-law behavior that suggests
that the distribution of avalanche sizes is also power-law
but does not give information about its exponent. (iii)
For the case of H on Nb [10] the measured quantity is
also the acoustic emission generated by the propagating
cracks when H precipitates into the substrate. This is
also a too indirect measurement to obtain the distribu-
tion of avalanche sizes. (iv) For the superconducting Al
films [12], the authors report a distribution of avalanches
(resistance jumps) with power-law behavior with an ex-
ponent close to 2. In this case the resistance is probably
proportional to the transformed fraction, or at least is a
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bounded quantity having two determined values at each
side of the transition. Nevertheless a RBIM-like inter-
action between domains might be very important [12].
In the RFIM [5], RBIM [6], and similar models [20], the
exponent for the avalanche distribution has been found
to be universal but dependent on the space dimension-
ality: ~ 1.3 (2D) and ~ 1.8 (3D). This is a clear fin-
gerprint that, besides the excluded volume interaction of
our model, interfacial interactions between domains play
a relevant role. Most previous theoretical studies of frag-
menting have not considered the sequential partitioning
problem, but only the final distribution of fragments. It is
worth mentioning the work by Cheng and Redner [21] in
which the temporal evolution of the distribution of frag-
ments is analyzed. Their hypothesis of a homogeneous
kernel is equivalent to the self-similar hypothesis. Nev-
ertheless such theory cannot be applied for a sequential
case. It should also be remarked that a general theory for
the statistics of fragments has been published by Mekjian
[22]. The author proposes different weights of each pos-
sible partition of a system made of A discrete units in n
fragments of size 1 unit, n, fragments of size 2 units, etc.
so that >, _,; kny = A. By choosing the weights accord-
ing to p(ni,na,ns,...) = ([1, k™ nk!)_l, he obtains a
1/s distribution of sizes. Following our model, we can
provide a physical interpretation of such weights: they
correspond to the probabilities of a sequential partition
of the system of initial size A with uniform distribution,
i.e., in the first extraction one chooses uniformly a frag-
ment s; of size 1,2,... or A, in the second extraction one
chooses a fragment sy of size 1,2,... or A — s1, and so
on. Mekjian’s formula can be easily deduced by induc-
tion, and the fact that such a sequential partition implies
a final 1/s distribution of fragments comes naturally from
the discrete version of our model, which will be presented
elsewhere.

We should also mention some experiments of fragmen-
tation [23]. The observed distribution of fragment sizes
has been found to be a power law in some cases. Never-
theless the applicability of our model to such experiments
is not straightforward, since the objects are fragmented
in a very short time scale where the sequentiality of the
process is doubtful and the excluded volume interaction
may not apply (multifragmentation can exist).

In summary, we have shown that a sequential parti-
tion of a system renders a 1/s distribution of fragments.
This can be applied to the case of a FLFO phase tran-
sition, justifying the appearance of a 1/s distribution of
avalanches, as a consequence of the minimal excluded
volume interaction between the transformed and untrans-
formed domains.
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