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Interface dynamics in Hele-Shaw flows with centrifugal forces:
Preventing cusp singularities with rotation

F. X. Magdaleno, A. Rocco, and J. Casademunt
Departament d’Estructura i Constituents de la Mate`ria, Facultat de Fı´sica, Universitat de Barcelona, Avenida Diagonal 647,

E-08028 Barcelona, Spain
~Received 31 January 2000!

A class of exact solutions of Hele-Shaw flows without surface tension in a rotating cell is reported. We show
that the interplay between injection and rotation modifies the scenario of formation of finite-time cusp singu-
larities. For a subclass of solutions, we show that, for any given initial condition, there exists a critical rotation
rate above which cusp formation is suppressed. We also find an exact sufficient condition to avoid cusps
simultaneously for all initial conditions within the above subclass.

PACS number~s!: 47.20.Hw, 47.20.Ma, 47.15.Hg, 68.10.2m
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The dynamics of the interface between viscous fluids c
fined in a Hele-Shaw cell@1–3# has received attention fo
several decades from physicists, mathematicians, and e
neers. In particular, it has played a central role in the con
of interfacial pattern formation@4,5#. As a free boundary
problem it has the particular interest that explicit tim
dependent solutions can often be found in the case with
surface tension@6–9#. As a consequence, the issue of the r
of surface tension as a singular perturbation in the interf
dynamicshas received increasing attention@10–14# for its
potential relevance to a broad class of problems. Howeve
what extent the physics of the real problem~with finite sur-
face tension! is captured, even at a qualitative level, by t
known solutions is still poorly understood.

As an initial-value problem, the zero surface tension c
is known to be ill-posed@11#. An important aspect related t
this fact is that some smooth initial conditions develop fini
time singularities in the form of cusps of the interface@6,7#.
After this blow-up of the solution, the time evolution is n
longer defined. Generation of finite-time singularities is
itself interesting in connection with other singular perturb
tion problems in fluid dynamics, such as in the case of
Euler equations. In the present problem, surface tension
as the natural regulator curing this singular behavior,
unfortunately the problem with surface tension is much m
difficult and usually defies the analytical treatment. Mo
vated by this fact, and inspired by recent experiments
rotating Hele-Shaw cells@15,16#, we address here the pertu
bation of the original free boundary problem by the prese
of a centrifugal field. This new ingredient enriches the pro
lem in a nontrivial way but, as first discussed in@17#, it still
admits explicit integration, so it may provide new analytic
insights. Here we will focus on the possibility that rotatio
although not fully regularizing the problem, may prevent t
emergence of singular behavior in the form of cusps at fin
time, thus enlarging the class of exact solutions without s
face tension which are potentially relevant to the physica
realizable situations.

We study an interface between a fluid with viscositym
and densityr and one with zero viscosity and zero density
a Hele-Shaw cell with gapb. The cell can be put in rotation
with angular velocityV and fluid can be injected or ejecte
from the cell through an orifice at the center of rotation, w
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areal rateQ. The casesQ.0 andQ,0 correspond respec
tively to injecting or ejecting fluid. As in the traditional Hele
Shaw problem, the flow in the viscous fluid is potential,v
5“f, but now with a velocity potential given by@15#

f52
b2

12m S p2
1

2
rV2r 2D . ~1!

Incompressibility then yields Laplace equation¹2f50 for
the field f ~but not for the pressure!. The two boundary
conditions at the interface which complete the definition
the moving boundary problem are the usual ones, nam
the pressure on the viscous side of the interfacep52sk,
wheres and k are respectively surface tension and curv
ture, and the continuity condition for the normal veloci
vn5n•“f. The crucial difference from the usual case is
the boundary condition satisfied by the Laplacian field on
interface due to the last term in Eq.~1!.

This problem is well suited to conformal mapping tec
niques@2#. The basic idea is to find an evolution equation f
an analytical functionz5 f (v,t), which maps a reference
region in the complex planev, in our case the unit disk
uvu<1, into the physical region occupied by the fluid in th
physical planez5x1 iy , with the physical interface being
the image of the region boundary,uvu51. We consider two
types of situations, one in which the viscous fluid is insi
the region enclosed by the interface, and one in which i
outside. It can be shown@15# that the evolution equation fo
the mappingf (v,t) in the rotating case can be written in
compact form as

Im$] t f * ]f f %5
Q

2p
q1

1

2
V* ]fHf@ u f u2#1d0]fHf@k#,

~2!

whereV* 5b2V2r/12m, d05b2s/12m, and where we have
specified the mapping function at the unit circlev5eif. The
curvature is given byk52Im$]f

2 f /(]f f u]f f u)% and the Hil-
bert transformHf is defined by

Hf@g#5
1

2p
PE

0

2p

g~u!cotanF1

2
~f2u!Gdu. ~3!
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In Eq. ~2!, q511 andq521 correspond to the cases wi
the viscous fluid respectively inside or outside the reg
enclosed by the interface.

In this context a class of solutions is defined by a fun
tional form of the mapping which is preserved by the tim
evolution, allowing for a finite number of time-depende
parameters. Some explicit time-dependent solutions
f (v,t) with d050 butV* Þ0 have been previously reporte
in Ref. @17#. Here we report additional explicit solutions fo
the rotating case, which all fit into the general rational fo

f ~v,t !5vq
a0~ t !1( j 51

N aj~ t !v j

11( j 51
N bj~ t !v j

, ~4!

although not any mapping of this form is necessarily a so
tion. Remarkably, we have found that an important class
solutions of the usual case (V* 50), which is free of finite-
time singularities, namely, the superposition of logarithm
terms@9#, is no longer a solution forV* Þ0, while mappings
with poles turn out to include solutions for bothV* 50 and
V* Þ0. A more detailed study will be presented elsewh
@18#. The polynomial case (bj50 for all j ’s!, which in the
nonrotating caseV* 50 is known to always yield finite-time
singularities in the form of cusps@6,7#, for V* Þ0 is also a
solution @17#. However, we will study in the rest of thi
Rapid Communication that the scenario of cusp formation
these solutions is modified in a nontrivial way by the pre
ence of rotation.

We focus on the role of rotation in preventing cusp fo
mation in the subclass of polynomial mappings of the for

f ~v,t !5a0~ t !vq1an~ t !vn1q. ~5!

Foran!a0 this describes ann-fold sinusoidal perturbation o
amplitudean superimposed on a circular interface of radi
a0 . It is convenient to introduce the dimensionless param
«5(n1q)an /a0 . The range of physically acceptable valu
of an anda0 is given by the condition 0,«,1 for all n. We
also introduce a scaled mode amplituded5a0an which turns
out to be useful to characterize the interface instability.
see this, let us first compute the standard linear growth r
Inserting Eq.~5! into Eq. ~2! and linearizing inan , we get,

ȧn

an
5qnV* 2~qn11!

Q

2pa0
2

2
d0

a0
3

n~n221!. ~6!

The term2Q/2pa0
2, independent of bothn and q, has a

purely kinematic origin, associated with the global expans
~or contraction! of the system. This quantity would be th
growth rate of an interface mode which followed the~undis-
torted! flow field with radial velocityv5Q/2pr @which in
turn would implyan(t)a0(t)5const#. Accordingly, the mar-
ginal modes ford ~which in the rotating case may occur fo
all n) will be those for which the flow field is undistorted b
the interface perturbation, although such perturbation m
grow or decay in the original variablesan . In this way,
growth or decay ofd will correspond unambiguously to th
stability of the flow configuration with the radial velocit
field. In this sense it may be justified to qualify the interfa
instability as described byd as ‘‘intrinsic,’’ as opposed to the
‘‘morphological’’ one as described by the amplitudean . In
this way the intrinsic growth rate takes the simpler form
n
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ḋ

d
5qn~V* 2Q* !, ~7!

where we have definedQ* 5Q/2pa0
2 and have dropped the

surface tension term, since hereinafter we will focus on
the zero surface tension case. We introduce the relevan
mensionless control parameter of our problem, express
the ratio of centrifugal to viscous forces, as

P5
V* 2pR2

Q
5

prb2R2V2

6mQ
, ~8!

whereR is a characteristic radius of the interface.
Equation~7! clearly exhibits the competing effects of ro

tation and injection, although their roles are not quite sy
metric. In fact, notice thatQ* , which may have both signs
contains a dependence ona0 . In practice this means thatQ*
depends effectively on time. An immediate consequenc
that the growth of linear modes is not really exponential@15#
and may even be nonmonotonic. The asymmetry betw
injection and rotation shows up also in the fact that the s
of Q determines which of the two effects dominates asym
totically in time. In fact, for positive injection rate the typica
radius of the inner fluid is growing while typical interfac
velocities are decreasing, so centrifugal forces will domin
at long times. On the contrary, for negative injection ra
typical velocities increase while typical radii decrease,
injection will asymptotically dominate over rotation.

In view of Eq.~7!, the most interesting configurations wi
be those in whichQ.0, so that injection and rotation hav
counteracting effects. In the caseq511 ~viscous fluid in-
side!, which was experimentally studied in Ref.@15#, rotation
is always destabilizing. A positive injection rate in this ca
tends to stabilize the circular interface. However, for fixedQ,
Q* will decrease with time, so eventually the interface w
reach a radius after which all modes are linearly unstable
is thus expected that, in this case, the formation of cusps
only be delayed but not avoided@18#.

The most interesting case from the point of view of pr
venting cusp formation isq521 andQ.0, the usual con-
figuration in viscous fingering experiments. In this case
small rotation rate will only slightly affect the linear insta
bility, but could eventually stabilize the growth at long time
so it is conceivable to have a nontrivial evolution starti
from an unstable interface but not developing finite-time s
gularities.

As an example, we now study the fully nonlinear dyna
ics of polynomial mappings. Inserting Eq.~5! into Eq. ~2!
with d050 we obtain two ordinary differential equations d
scribing the evolution ofa0(t) andan(t). These can be in-
tegrated analytically and yield

a0
2~ t !1q~n1q!an

2~ t !5
Q

p
t1k0 , ~9!

a0
n1q~ t !an

q~ t !5knenV* t, ~10!
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where k0 and kn are constants to be determined by init
conditions, and wheren>2 for q511 andn>3 for q5
21.

Physically acceptable solutions require that the points
the v-plane where]v f (v,t)50 ~noninvertible! should lie
outside the unit disk. The occurrence of a cusp is associ
with such a point crossing the unit circleuvu51 at a finite
time tc ; that is,

U qa0~ tc!

~n1q!an~ tc!
U51. ~11!

If we take the initial valuea0(0) as the characteristic lengt
R, which coincides with the radius of the perturbed circle
we are in the linear regime, and define the dimension
time t5V* t, condition~11! reads

anS 2R2tc

P
1k0D5ebntc, ~12!

where

an5
~n1q!n/n12q

n12q
kn

22/~n12q! , bn5
2n

n12q
. ~13!

Our aim is now at finding conditions such that an initia
smooth interface remains smooth for an infinite time. Th
we have to impose that Eq.~11! should not have any solutio
for tc.0. The transition between the regions with and wi
out cusps will be defined by the conditions that both Eq.~12!
and its time derivative are satisfied, such that the curves
each side of Eq.~12! have a common tangent. These tw
conditions allow us to eliminatetc , and yield

x logx2x52ank0 , ~14!

wherex52an /Pbn , and withR5a0(0) in Eq.~8!. We now
search for solutions of Eq.~14!. Forq511 it can be proven
that this equation has no solutions, and therefore all ini
conditions must eventually develop a cusp at finite time,

FIG. 1. Critical linesPc for different values ofn. The region
free of cusp singularities for a givenn is the one above the corre
ponding curve.
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expected from the linear analysis. On the other hand, foq
521 the quantity on the rhs of Eq.~14! takes the simple
form

ank05
n21

n22 S 12
«2

n21D «2/~n22!, ~15!

and a nontrivial critical linePc(«;n) can be found for each
n>3. This implies that, in the configuration with the visco
fluid outside, for any initial condition@within the class of
polynomial mappings of the form Eq.~5!# there is always a
certain rotation rate above which there is no cusp formati
The numerical determination of these curves is shown
Fig. 1.

The leading behavior for initial conditions in the linea
regime,«!1, can be found by expanding the lhs of Eq.~14!
aroundx5e and is given byPc'@(n21)/ne#«2/(n22). No-
tice

FIG. 2. Evolution of the interface in the caseq521 ~viscous
fluid outside!, with n53, a0(0)51.0, e(0)50.5, for ~a! V*
50.025 ~cusp formation! and ~b! V* 50.045 ~cusps prevented by
rotation!.
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that there are qualitative differences for small values ofn.
For n53 the curve starts horizontal at the linear level, im
plying that a very small rotation rate is sufficient to preve
cusp formation. Forn54 the threshold curve starts with
finite slope and forn.4 it has an infinite slope at«50. A
more detailed description and analysis of this diagram w
be presented elsewhere@18#. An example of rotation prevent
ing cusp formation is shown in Fig. 2.

In Fig. 1 we also see that for any given«, the criticalPc
increases monotonically withn. If we take the limitn→` at
fixed « we getank0→1. From Eq.~14! this implies x51
and consequently we obtain an absolute upper boundPc

max

51 for all values ofn and«. This implies that, for all initial
conditions@within the class Eq.~5!# there is a critical rotation
rate

Vc5S 6mQ

prb2R2D 1/2

~16!
. A

C

ch

D

-
t

ll

above which cusps are always eliminated. Although Eq.~16!
has been derived for the class Eq.~5!, with the identification
a0(0)5R, one might expect that the existence of a cert
Vc and the scaling with physical parameters given by E
~16! could be more general. Notice thatP51 corresponds to
the intrinsic marginal stability of the circular shape,Q*
5V* . Therefore, the sufficient condition, valid for all initia
conditions of the form Eq.~5!, for not developing cusp sin
gularities is that a circular interface with radius given
a0(0) be intrinsically stable, in the sense of Eq.~7!. Whether
deeper consequences can be drawn in a broader context
this inner connection between the linear problem and
possibility of cusp formation remains an open question.
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