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Interface dynamics in Hele-Shaw flows with centrifugal forces:
Preventing cusp singularities with rotation
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A class of exact solutions of Hele-Shaw flows without surface tension in a rotating cell is reported. We show
that the interplay between injection and rotation modifies the scenario of formation of finite-time cusp singu-
larities. For a subclass of solutions, we show that, for any given initial condition, there exists a critical rotation
rate above which cusp formation is suppressed. We also find an exact sufficient condition to avoid cusps
simultaneously for all initial conditions within the above subclass.

PACS numbs(s): 47.20.Hw, 47.20.Ma, 47.15.Hg, 68.10n

The dynamics of the interface between viscous fluids conareal rateQ. The case€®>0 andQ<0 correspond respec-
fined in a Hele-Shaw cell1-3] has received attention for tively to injecting or ejecting fluid. As in the traditional Hele-
several decades from physicists, mathematicians, and engshaw problem, the flow in the viscous fluid is potential,
neers. In particular, it has played a central role in the context V ¢, but now with a velocity potential given y5]
of interfacial pattern formatiori4,5]. As a free boundary )
problem it has the particular interest that explicit time- ¢:_b_
dependent solutions can often be found in the case with no 12p
surface tensioh6—9]. As a consequence, the issue of the role

of surface tension as a singular perturbation in the interfacehcompressibility then yields Laplace equati®i¢=0 for
dynamicshas received increasing attentiph0-14 for its  the field ¢ (but not for the pressuye The two boundary
potential relevance to a broad class of problems. However, teonditions at the interface which complete the definition of
what extent the physics of the real problgwith finite sur-  the moving boundary problem are the usual ones, namely,
face tensionis captured, even at a qualitative level, by thethe pressure on the viscous side of the interfpee— ok,
known solutions is still poorly understood. where o and « are respectively surface tension and curva-
As an initial-value problem, the zero surface tension caseure, and the continuity condition for the normal velocity
is known to be ill-posedl11]. An important aspect related to y, =n-V ¢. The crucial difference from the usual case is in
this fact is that some smooth initial conditions develop finite-the boundary condition satisfied by the Laplacian field on the
time singularities in the form of cusps of the interfd€e7].  interface due to the last term in E(.).
After this blow-up of the solution, the time evolution is no  This problem is well suited to conformal mapping tech-
longer defined. Generation of finite-time singularities is inniques[2]. The basic idea is to find an evolution equation for
itself interesting in connection with other singular perturba-an analytical functiorz=f(w,t), which maps a reference
tion problems in fluid dynamics, such as in the case of thegegion in the complex plane, in our case the unit disk
Euler equations. In the present problem, surface tension acly|=<1, into the physical region occupied by the fluid in the
as the natural regulator curing this singular behavior, bUbhysicaI planez=x+1iy, with the physical interface being
unfortunately the problem with surface tension is much morghe image of the region boundatyy|=1. We consider two
difficult and usually defies the analytical treatment. Moti- types of situations, one in which the viscous fluid is inside
vated by this fact, and inspired by recent experiments ofhe region enclosed by the interface, and one in which it is
rotating Hele-Shaw cellgl5,16], we address here the pertur- gutside. It can be showiL5] that the evolution equation for

bation of the Original free bOUndary prObIem by the presencene mappingf(w,t) in the rotating case can be written in a
of a centrifugal field. This new ingredient enriches the prob-compact form as

lem in a nontrivial way but, as first discussed[ V], it still
admits explicit integration, so it may provide new analytical . 1 5
insights. Here we will focus on the possibility that rotation, ~IM{dif* d4f}=5— 9+ 5 Q% d,Hy[|f[*]+dodHyl <],
although not fully regularizing the problem, may prevent the

; e el 2
emergence of singular behavior in the form of cusps at finite
time, thus enlarging the class of exact solutions without sur- 12n2 )
face tension which are potentially relevant to the physicallyVnereQ” =b“Q°p/12u, do=b"0/12u, and where we have

realizable situations. specified the mapping functionzat the unit cirale=€'¢. The
We study an interface between a fluid with viscosity ~Curvature is given by= —Im{d;t/(d,f[d,f)} and the Hil-

and density and one with zero viscosity and zero density in Pert transformH,,, is defined by

a Hele-Shaw cell with gap. The cell can be put in rotation 1 . 1

with angular velocity() and fluid can be injected or ejected Hy[g]= —P g(a)cotar{—((,b— 0)}d0. 3)

from the cell through an orifice at the center of rotation, with ¢ 2w Jo 2

. (1)

1
(p—EPQZrZ
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In EQ.(2), 9=+1 and9= —1 correspond to the cases with 5
the viscous fluid respectively inside or outside the region —=9n(Q*-Q*), @)
enclosed by the interface. g

In this context a class of solutions is defined by a func-

tional form of the mapping which is preserved by the time i B 2
evolution, allowing for a finite number of time-dependent Where we have define@” = Q/2ma; and have dropped the

parameters. Some explicit time-dependent solutions foﬁurface tension term, since hereinafter we will focus on to
f(w,t) with dg=0 butQ* #0 have been previously reported the zero surface tension case. We introduce the relevant di-

in Ref.[17]. Here we report additional explicit solutions for Mensionless control parameter of our problem, expressing
the rotating case, which all fit into the general rational formthe ratio of centrifugal to viscous forces, as
a()+2N jai(t) o
flot)=o’ 0 N =13 T (4) b Q*27R?  7pb?R?02

()

although not any mapping of this form is necessarily a solu-

tion. Remarkably, we have found that an important class of ) o ) )

solutions of the usual cas€)¢ =0), which is free of finite- WhereR s a characteristic radius of the interface.

time singularities, namely, the superposition of logarithmic  Equation(7) clearly exhibits the competing effects of ro-
terms[9], is no longer a solution fof* +0, while mappings tatlon and |nJect|or_1, although thglr roles are not qum_a sym-
with poles turn out to include solutions for bof* =0 and ~ Metric. In fact, notice thaQ*, which may have both signs,
Q*#0. A more detailed study will be presented elsewherecOntains a dependence ap. In practice this means th@*
[18]. The polynomial caseb(=0 for all j's), which in the depends effectlvely on time. An immediate consequence is
nonrotating cas€* =0 is known to always yield finite-time  that the growth of linear modes is not really exponerjtsi
singularities in the form of cusg#$,7], for Q* #0 is also a far]d may even be_ honmonotonic. The asymmetry betwgen
solution [17]. However, we will study in the rest of this injection and rotation shows up also in the fact that the sign

Rapid Communication that the scenario of cusp formation irPf Q determines which of the two effects dominates asymp-
totically in time. In fact, for positive injection rate the typical

these solutions is modified in a nontrivial way by the pres-"-"" X e g ; A
ence of rotation. radlus_of the inner qu_ld is growing while typ|cal_ mterfgce
We focus on the role of rotation in preventing cusp for- veIocme; are decreasing, so centrifugal fo.rcesf v_V|II QOmlnate
mation in the subclass of polynomial mappings of the form &t long times. On the contrary, for negative injection rate,
typical velocities increase while typical radii decrease, so
f(w,t)=ag(t)”+ay(t) "7, (5  injection will asymptotically dominate over rotation.
_ . . , . In view of Eq.(7), the most interesting configurations will
Fora,<a, this describes an-fold sinusoidal perturbation of be those in whichQ>0, so that injection and rotation have
amplitudea, superimposed on a circular interface of radiuscounteracting effects. In the case=+1 (viscous fluid in-
ag. Itis convenient to introduce the dimensionless parameteg;ide), which was experimentally studied in RE£5], rotation
e=(n+ ﬁ)an_/ao_. The range of p_h_yswal'y acceptable values;g always destabilizing. A positive injection rate in this case
of a, anda, is given by the condition &¢ <1 for alln. We  (oqs tg stabilize the circular interface. However, for figed
also introduce a scaled mode amplituiteaoa, which tuns o« i decrease with time, so eventually the interface will
out to be useful to characterize the interface instability. TOoach a radius after which all modes are linearly unstable. It
see this, let us first compute the standard linear growth ratge ty,s expected that, in this case, the formation of cusps can
Inserting Eq.(5) into Eq. (2) and linearizing ina,,, we get, only be delayed but not avoiddds].
a, Q do The most interes?ing_case from the point of view of pre-
—=9nQ* —(In+1)——— —3n(n2— 1). (6)  venting cusp formation igt=—1 andQ>0, the usual con-
an 2may &g figuration in viscous fingering experiments. In this case, a
s . small rotation rate will only slightly affect the linear insta-
The term —Q/gwaq, .|ndepenc_1ent of_botlm and 9, has a . bility, but could eventually stabilize the growth at long times,
purely kinematic origin, associated with the global expansioryg it s conceivable to have a nontrivial evolution starting
(or contractiof of the system. This quantity would be the g5y an unstable interface but not developing finite-time sin-
growth rate of an interface mode which followed thmdis- gularities.
torted flow field with radial velocityv = Q/2zr [which in As an example, we now study the fully nonlinear dynam-
turn would implya,(t)ag(t) = consi. Accordingly, the mar- jcg of polynomial mappings. Inserting E¢) into Eq. (2)
ginal modes fors (which in the rotating case may occur for with d,=0 we obtain two ordinary differential equations de-

all n) will be those for which the flow field is undistorted by scriping the evolution ofiy(t) anda,(t). These can be in-
the interface perturbation, although such perturbation MaYegrated analytically and yield

grow or decay in the original variables,. In this way,
growth or decay of5 will correspond unambiguously to the
stability of the flow configuration with the radial velocity
field. In this sense it may be justified to qualify the interface
instability as described by as “intrinsic,” as opposed to the
“morphological” one as described by the amplitudg. In he o QO
this way the intrinsic growth rate takes the simpler form ap (tay(t)=k.,e™ (10

a%wwm+mﬁngwg, 9
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FIG. 1. Critical linesP. for different values ofn. The region
free of cusp singularities for a givemis the one above the corre- 5 . . . v . T T
ponding curve.
L (b) -
wherek, and k,, are constants to be determined by initial il
conditions, and whera=2 for 4=+1 andn=3 for 9=
— 1 - 4
Physically acceptable solutions require that the points in
the w-plane whered,f(w,t)=0 (noninvertible should lie I 1
outside the unit disk. The occurrence of a cusp is associated Y ot i
with such a point crossing the unit circle|=1 at a finite
time t;; that is, - ]
Jap(t L _
_ D3t =1 (11
(n+d)ap(te) i ]
If we take the initial valueay(0) as the characteristic length | |
R, which coincides with the radius of the perturbed circle if
we are in the linear regime, and define the dimensionless -5 T S
time 7=Q*t, condition(11) reads -5 0 5
2R%7, 61 X
%\ Tp +ko | =€, (12 FIG. 2. Evolution of the interface in the casle= —1 (viscous
fluid outsidg, with n=3, a,(0)=1.0, €(0)=0.5, for (@) Q*
where =0.025 (cusp formation and (b) Q* =0.045 (cusps prevented by
rotation.
_(n+ ,&)n/n+21‘) k72/(n+219) B (13) . .
T T F 29 n : ’8”_n+21‘}' expected from the linear analysis. On the other handfor

=—1 the quantity on the rhs of Eql4) takes the simple
Our aim is now at finding conditions such that an initially form
smooth interface remains smooth for an infinite time. Thus n—1 g? 2n-2)
we have to impose that EGL1) should not have any solution “nko:m 1-0—71/¢ ’
for t.>0. The transition between the regions with and with-
out cusps will be defined by the conditions that both @)  and a nontrivial critical lineP (e;n) can be found for each
and its time derivative are satisfied, such that the curves oR=3. This implies that, in the configuration with the viscous
each side of Eq(12) have a common tangent. These two fluid outside, for any initial conditiofjwithin the class of

(15

conditions allow us to eliminate., and yield polynomial mappings of the form E¢5)] there is always a
certain rotation rate above which there is no cusp formation.
xlogx—x=—aKop, (14)  The numerical determination of these curves is shown in
Fig. 1.
wherex=2«a,/PB,, and withR=ay(0) in Eq.(8). We now The leading behavior for initial conditions in the linear

search for solutions of Eq14). For 9= +1 it can be proven regime,e<1, can be found by expanding the |lhs of Et4)
that this equation has no solutions, and therefore all initiahroundx=e and is given byP.~[(n—1)ine]e2~2). No-
conditions must eventually develop a cusp at finite time, asice
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that there are qualitative differences for small valuesiof above which cusps are always eliminated. Although (E6)

For n=3 the curve starts horizontal at the linear level, im-has been derived for the class E), with the identification
plying that a very small rotation rate is sufficient to preventas(0)=R, one might expect that the existence of a certain
cusp formation. Fon=4 the threshold curve starts with a . and the scaling with physical parameters given by Eq.
finite slope and fon>4 it has an infinite slope at=0. A (16) could be more general. Notice that=1 corresponds to
more detailed description and analysis of this diagram willthe intrinsic marginal stability of the circular shap®”

be presented e|sewhq@]_ An examp|e of rotation prevent- ZQ*...Thel‘efOI‘e, the sufficient Condltlon, Va.“.d for all |n|!:|a|
ing cusp formation is shown in Fig. 2. cond!t!ons_ of the form Eq(5),. for not deyelopmg cusp sin-

In Fig. 1 we also see that for any given the criticalP, ~ 9ularities is that a circular interface with radius given by
increases monotonically with If we take the limitn—c at ~ @0(0) be intrinsically stable, in the sense of £¢). Whether
fixed ¢ we geta,ko— 1. From Eq.(14) this impliesx=1  deeper consequences can be drawn in a broader context from
and consequently we obtain an absolute upper baRfiRf this inner connection be_tween th_e linear problem _and the
=1 for all values ofn ande. This implies that, for all initial ~ POSSiPility of cusp formation remains an open question.

conditions[within the class Eq(5)] there is a critical rotation
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