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Abstract

Master’s degree in Astrophysics, Particle Physics and Cosmology

The multiplicity fraction in 324 open clusters from Gaia

by Judit DONADA OLIU

This Master’s thesis is devoted to the estimation of the multiplicity fraction of
high-mass ratio main-sequence multiple systems in Galactic open clusters. The main
study consists in estimating in an automated fashion the unresolved multiplicity
fraction through the location of the unresolved multiple systems in colour-magnitude
diagrams, using Gaia DR2 and EDR3 data. Regarding this study, this thesis is a con-
tinuation of the previous preliminary work of my bachelor thesis (Donada, 2021),
which explored the possibility of applying a Gaussian mixture model algorithm.
Now we revise and improve this method, and also develop an alternative imple-
mentation using a Markov chain Monte Carlo method. The unresolved multiplic-
ity fractions obtained through both methods are compared and characterized using
custom realistic Gaia-like open cluster simulations performed with the Gaia Object
Generator (Luri et al., 2014). Using these simulations we estimate the effective limit-
ing mass ratio above which the Markov chain Monte Carlo method is able to detect
the presence of a secondary companion (i.e., the high mass ratio range which our
estimated unresolved multiplicity fraction comprises).

The simulations further enable us to correct for the presence of resolved multiple
systems. So, as a second part of the study, we estimate the total high mass ratio
multiplicity fraction of the open clusters’ main sequences.

Finally, we compare our results to the ones estimated through ASteCA (Auto-
mated Stellar Cluster Analysis package).

The main result of this work is the largest homogeneous catalogue of multiplic-
ity fractions in open clusters to date, including the unresolved and total multiplicity
fractions of main-sequence systems with mass ratio larger than 0.6+0.05

−0.15 for 324 open
clusters, estimated through the Markov chain Monte Carlo method. All studied
open clusters are closer than 1.5 kpc, and have ages between 3.9 Myr and 4.3 Gyr.
Their total multiplicity fractions, between 0.05 and 0.71, are found to increase with
the mass of the primary star, display an overall decreasing trend with the open clus-
ter age up until ages about 100-320 Myr, above which the trend increases; and do not
depend on the open cluster position in the Galaxy.
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Chapter 1

Introduction

Most of the stars are formed as part of a binary/multi-component system (Moe and
Stefano, 2017). Binary stars lead to the formation of supernovae, blue straggler stars,
chemically peculiar stars, etc.; and the characterization of the multiplicity fraction
( fb) in open clusters (OCs) and field stars is relevant to several branches of astro-
physics (for reviews see e.g. Duchêne and Kraus, 2013; Offner et al., 2022). OCs typ-
ically host more than 30% of binaries (Borodina et al., 2019) and are highly suitable
for studying them, because their members have, to first order, the same distance,
age, initial chemical composition, and foreground extinction. Most of their bina-
ries are unresolvable in images, and such photometric unresolved binaries (bina-
ries hereafter) generally make up a significant fraction of OC photometric samples.
Therefore, they must be taken into account to accurately estimate OC parameters,
for instance their total mass and stellar mass function (e.g. Kroupa, 2001; Borodina
et al., 2019; Rastello, Carraro, and Capuzzo-Dolcetta, 2020). They also influence the
OC’s dynamical evolution, causing the evaporation of single and low-mass systems
and central segregation of massive stellar systems. Hence, fb is likely to vary with
respect to the primordial value through dynamical effects. Binaries also provide in-
formation of the outcome of star-forming processes in different environments and
constraints on the initial OC state (e.g. Gieles, Sana, and Portegies Zwart, 2010; Li
et al., 2020), and are responsible for high rates of stellar collisions and black-hole
mergers (González et al., 2021; Aros et al., 2021; Banerjee, 2022).

OCs display significantly varying fb, which both at primordial and late times are
not very well constrained. Since typically Galactic OCs are disrupted on a time scale
of a few hundred Myrs (Lamers et al., 2005), they tend to be relatively young. For
young massive clusters in the local universe, the measured fb are close to those of
field stars (González et al., 2021).

For a binary system of total mass M = M1 + M2, the mass ratio is defined as q =
M2/M1, where M1 is the mass of the primary component (i.e., the one with the larger
initial mass), M2 is the mass of the secondary, and 0 ≤ q ≤ 1. An unresolved binary
system composed of two identical main-sequence (MS) stars (q = 1) has the same
colour but twice the luminosity of an equivalent single star, and appears in the OC’s
colour-magnitude diagram (CMD) displaced vertically upwards by 0.753 mag with
respect to the equivalent single star location irrespective of the wavelength bands
used. The locus defined by such systems is called the equal-mass binary sequence.
A system with two unequal MS components (q < 1) has a combined colour that
is redder than the colour of the primary component, and a combined luminosity
greater than the one of the single star but less than the one corresponding to the
equal-mass binary system. Therefore, this system is displaced in the CMD both
upwards (but not reaching 0.753 mag) and to the right relative to the MS position
of the primary component. For q increasing from 0 to 1, the position of the binary
system with respect to the MS position of the primary component always increases
in magnitude, but for 0 < q < qcrit moves towards redder colours, and for qcrit <
q < 1 towards the blue again (Maeder, 1974). The value of qcrit depends on the
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FIGURE 1: Theoretical zero-age single-star and equal-mass binary main sequences for a
metallicity of Z = 0.02, represented in a MV vs. (B−V) colour–magnitude diagram (from
Hurley and Tout, 1998). For a range of primary masses (M1) are plotted the locus of binary
points where q ranges from 1.0 to 0.0 in increments of 0.1. The point of q = 0.5 is an open

square.

mass of the primary component, as can be seen in Fig. 1, what is caused by the
fact that the shifts in magnitude and colours of a system of q < 1 depend on the
magnitude of the primary star. Hence, the binary sequences of a certain q < 1 do
not have a constant separation from the equal-mass binary sequence throughout all
the MS. In most of the CMD MS range, there is not much separation between the
q = 0 and q = 0.5 isochrones, so the low-q unresolved binaries create an overdensity
near the q = 0 sequence (single-star sequence, SS). On the other hand, the secondary
sequence (binary sequence, BS) observed in most CMDs above the SS comprises not
only equal-mass systems, but also high-q unresolved binaries. The larger M1, the
larger the high-q range for which binaries lie on the BS. And the lower M1, the larger
the low-q range for which the faint secondary makes almost no contribution and the
binary system lies almost at the same position as the equivalent primary mass (see
Fig. 1).

qcrit does not exactly coincide with the smallest q for which a binary system is
seen to lie on the BS: qlim (which depends on M1 too). From the observational per-
spective, qlim is the mass ratio above which an unresolved binary system can be
detected as such (from photometry alone). In this study we attempt to measure the
high mass-ratio (q > qlim) binary fraction for an unprecedented number of Galactic
OCs in an automated fashion, making use of the exquisite Gaia photometry (Evans
et al., 2018 for DR2 and Riello et al., 2021 for EDR3).
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This work is structured as follows. The exact treatment of the data and our pro-
posed model are described in Chapter 2. In Chapter 3 we explain the Gaussian
Mixture Model (GMM) method for the unresolved fb estimation, and in Chapter 4
the Markov Chain Monte Carlo (MCMC) implementation, and both are applied to
Gaia data. In Chapter 5 we apply again the two previous methods but to simulated
CMDs generated using the Gaia Object Generator (GOG), and we estimate the qlim of
our determined unresolved fb(q > qlim) and compute the total f tot

b (q > qlim) (of both
resolved and unresolved systems) for the OCs in our sample. The results obtained
for the fb estimation and our catalogue are described in Chapter 6. In Chapter 7 our
found fb values are compared to the literature, and their dependence on mass, posi-
tion and age is discussed. The application of the ASteCA code is summarized in the
Appendix, and we highlight the main conclusions in Chapter 8.
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Chapter 2

Data and modelling

For this study we use the recent Gaia OC catalogues published by Tarricq et al. (2022,
hereafter T22) and Cantat-Gaudin et al. (2020, hereafter CGa20).

The T22 catalogue contains precise Gaia EDR3-derived memberships for 389 OCs
located closer than 1.5 kpc from the Sun and older than 50 Myr. They are improved
with respect to DR2-derived ones, extending them to OC’s peripheral areas.

In CGa20, the OC’s age, distance modulus, and extinction were computed from
the observed Gaia DR2 parallaxes and G vs. (BP − RP) CMDs by a multi-layer-
perceptron neural network trained on a set of 347 OCs with well-determined pa-
rameters. The cluster membership lists were mostly taken from Cantat-Gaudin and
Anders (2020) and Castro-Ginard et al. (2020).

In the first section of this Chapter we explain the selection of the studied OCs and
their members. In the second one we describe the procedure applied to further select
only those members in the MS of each OC and apply additional constrains on the
studied OCs. In the last section we describe our model to estimate their unresolved
fb in Gaia ’s G vs. (BP − RP) CMD.

2.1 Open cluster memberships and parameters

Since we are interested in an OC census that is representative for the extended solar
neighbourhood, we select all local (d < 1.5 kpc) OCs from T22. For OCs younger
than 50 Myr (for which Tarricq et al. 2022 do not provide improved membership
lists), we supplement this dataset selecting those OCs of d < 1.5 kpc from CGa20.
In both cases, we use the homogeneously derived astrophysical parameters (age,
distance, extinction) published in CGa20 (possible because all OCs studied in T22
are also present in CGa20). Figure 2 shows the spatial and age distribution of our
studied final sample of 324 OCs (as explained in Chapter 4), for which we provide a
catalogue of their fb.

Both membership catalogues are limited to G < 18. Regarding the considered
members of each OC, we have used all the members in CGa20 catalogue, which have
membership probabilities ≥ 70%, and have selected those of T22 with membership
probabilities above this same threshold value. However, as the criteria for the mem-
bership probability assignation are not equal, establishing this common threshold
does not make the selection equivalent for both catalogues. Besides, the fact that
CGa20 is based on DR2 astrometry and photometry instead of on EDR3 as T22, and
that it comprehends a smaller spatial coverage, prevents our OC sample of being
purely homogeneous.

2.2 Selection of open cluster’s main-sequence members

As our fb determination is restricted to only MS systems, we adopted a homoge-
neous selection of the MS members of each OC in our sample. First of all, the abso-
lute magnitude MG and intrinsic colour index (BP − RP)0 were calculated for each
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FIGURE 2: Left: Spatial distribution of the open clusters in CGa20 parent sample (points
colour-coded by age) and in our final sample of 324 OCs (coloured points surrounded
by a black contour) in heliocentric Cartesian coordinates (the Galactic Centre is towards
positive X⊙). The dashed grey circumference delimitates our sample’s distance limit of 1.5
kpc. Right: Age distribution of the OCs closer than 1.5 kpc in CGa20 parent sample (olive
histogram) and in our final sample (grey histogram). Both histograms have areas that
integrate to one, and their corresponding curves are kernel-estimated probability density

functions.

cluster member (excluding the ones with missing BP and/or RP photometry):

MG = G − DM − 0.89 · AV, (1)

(BP − RP)0 = BP − RP − 0.89
1.85

· AV , (2)

where G is the Gaia G-band mean magnitude, DM is the distance modulus, and AV
is the OC’s visual extinction (corrected by a factor in equation (1) to obtain the ex-
tinction in the G-band, and by a different factor in equation (2) to obtain the E(BP−RP)
colour excess). With these two quantities, we can display the dereddened CMD for
the OCs in our parent sample. We now derive restrictions (simple cuts in the dered-
dened CMD) for each member of a particular OC to be considered a MS member.
The procedure (described below) is illustrated for two OCs in Fig. 3.

First, two straight parallel lines which lie above and below the MSs of all clusters
are drawn in the CMD (black lines in Fig. 3). Using them we define a first rough
selection that excludes red-clump (RC) stars, white dwarfs, and some extreme out-
liers:

2.9 · (BP − RP)0 − 1.4 < MG < 2.9 · (BP − RP)0 + 3.4 (3)

Another restriction is required to exclude members already evolving towards gi-
ant stars. In order to estimate the intrinsic colour index of the MS turn-off (MSTO),
we fitted an interpolation polynomial f (log10(age[yr])) to the (BP − RP)0 depen-
dence on the age for the bluest member of the MSs of 15 different solar-metallicity
PARSEC 1.2S isochrones (Bressan et al., 2012) with ages log10(age[yr])∈ [6.6, 9.8]. So,
for each OC, the dereddened colour of the MSTO was obtained as a function of its
age as (BP − RP)TO

0 = f (log10(age[yr])).
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Then, MSTO stars were excluded by only considering members at least 0.2 mag
redder than the MSTO (i.e., members with M < MTO were selected):

(BP − RP)0 > (BP − RP)TO
0 + 0.2 (4)

and also imposing the extra condition that their magnitude was fainter than the one
of the bluest member selected in the previous step minus 0.75 mag:

MG ≥ MG((BP − RP)0,bluest member)− 0.75 (5)

Such conditions (retaining members towards the right of the OC’s bluest vertical
line and below the OC’s horizontal line in Fig. 3) were generally found to succeed in
excluding from the study not only the MSTO members, but also those extreme MS
members for which the BS approaches the SS and eventually intersects it. For these
cases our mixture-model algorithm would not work because it is based on assuming
a roughly constant separation between both sequences.

Finally, the redder MS members of each OC were excluded to avoid fb overesti-
mation due to the magnitude limit (G < 18) in the parent cluster membership cata-
logues. We therefore select only members more than 0.2 mag bluer than the reddest
one:

(BP − RP)0 ≤ (BP − RP)0,reddest member − 0.2. (6)

FIGURE 3: Example for two open clusters of different ages (BH 164 from CGa20 and
Ruprecht 147 from T22) showing the selection of their main-sequence members from the

dereddened Gaia CMD.

The subsequent study is carried out only for those OCs having a number of re-
tained MS members larger or equal than 30 (as required in T22), and, at the same
time, a MS extension in (BP − RP)0 larger or equal than 1 mag (computed as the
rest of the maximum and minimum (BP − RP)0 values of the selected members).
Through these conditions we disregarded a considerable proportion of the OCs for
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which our model cannot be properly applied, because their CMDs are not enough
populated or too sparse.

We now have a sample of 246 OCs with EDR3 memberships from T22 and 128
OCs with DR2 memberships from CGa20 for which the MS members have been
selected.

2.3 Modelling for the unresolved binary fraction inference
in the Gaia CMD

The multiplicity fraction fb of a stellar population, hereafter referred to as the binary
fraction, is defined as:

fb =
B + T + ...

S + B + T + ...
, (7)

where S is the number of single stars, B the number of binary systems, T the number
of triple systems, and so on.

The principal aim of this study is to estimate the fb of MS unresolved multiple
systems in OCs, using Gaia’s G vs. (BP − RP) CMD. Studying stellar multiplicity in
a statistically robust manner is a highly non-trivial task (e.g. Duquennoy and Mayor
1991; Belloni et al. 2017). The mass ratio of binaries, for instance, is interconnected
with the primary mass, the orbital period, the eccentricity, and the system metallicity.

We model the CMD as a mixture distribution of single stars and unresolved bina-
ries, considering that the scatter of binaries between the q = 0 and q = 1 isochrones
arises from two Gaussian distributions in G magnitude approximately centred on
the SS and BS, one of them mostly accounting for single stars, resolved binaries and
low-q unresolved binaries and the other for unresolved binaries of qlim < q ≤ 1.
Assuming these distributions to be Gaussians is a first-order approach, not phys-
ically motivated. Then, our estimated unresolved fb of high-q systems is just the
weight of the binaries’ Gaussian: fb(q > qlim) = wBS

wSS+wBS
= wBS (if both weights are

normalised: wSS + wBS = 1).
In fact, this is the integrated high-q unresolved fb in the MSs of OCs, because

two common Gaussian distributions of a fixed standard deviation are considered
for all the MS systems. And, as the q range they comprise depends on M1, the
qlim below which multiple systems are regarded as simple systems varies as a func-
tion of BP − RP. We, however, provide a single mean qlim value for each cluster,
having integrated over the colour index and the other dimensions introduced by q
dependencies. We also assume negligible contamination by field star interlopers, a
valid assumption for the exquisite Gaia OC catalogues in the vast majority of cases;
and triples and higher-order systems cannot be distinguished from binaries by our
method, so the estimated fb(q > qlim) includes their contribution.

In the two following chapters we carry out two different implementations of this
modelling, using GMM and MCMC methods. Our model has the advantages that
the fit can be performed directly in observable space (the observed Gaia CMD), and
that the fitted function of the SS (and BS too in the case of MCMC) does not depend
on stellar models at all.
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Chapter 3

Gaussian Mixture Model method

Our implementation of the GMM algorithm, which gives a probabilistic 2-Gaussian
model describing the one-dimensional distribution of the OC members’ distance to
the fitted SS polynomial, is described, as well as the application to empirical Gaia
data.

3.1 Fitting the single-star main sequence

A fourth degree polynomial pSS((BP − RP)0) was fitted to each OC’s CMD of se-
lected MS members through the least-square method with a Huber loss function
(Huber, 1964). The value of soft margin between inlier and outlier residuals was
set to 0.05, what enabled to fit the polynomial following the single-star MS locus
(regarding multiple systems as outliers).

The study was only carried out further for those OCs whose SS fitted polynomial
was monotonically decreasing over the entire CMD domain (e.g. left panel of Fig.
4).

3.2 Gaussian Mixture Model for unresolved binaries

The SS fitted polynomial was used to calculate the difference between the absolute
magnitude of each OC member and the one corresponding to the single-star MS
locus fitted polynomial for its same intrinsic colour index:

∆G = MG − pSS((BP − RP)0), (8)

and a ∆G histogram was represented for each OC. The final selection of the con-
sidered MS members consisted in removing the members having ∆G /∈ [−1.5, 1.0],
considered far enough from both the SS and the BS so as to be regarded as outliers.
Still, all the studied OCs turned out to have more than 30 retained MS members.

Our method for the fb estimation is based on assuming that all selected ∆G val-
ues of the histogram come from a mixture of two Gaussian distributions with un-
known parameters: one chiefly associated with the SS and the other with the BS.
Hence, the problem is reduced to a single dimension: regardless of the colour in-
dex of the member, what determines if it belongs to the SS or the BS is its distance
from the single-star MS locus. Depending on the characteristic features of each OC’s
CMD, however, the resulting ∆G histogram can be attributed most likely to a mix-
ture of a different number of Gaussians. We used the fit method of GaussianMixture
option of sklearn.mixture package to find the best mixture of the desired number
of Gaussians through an expectation-maximization approach. This GMM method
provides the mean µ, standard deviation σ and weight w of the fitted Gaussians,
as well as the Bayesian information criterion (BIC) yield by the fit. To ensure that
our modelling was consistent with the experimental data, instead of blindly fitting
a mixture of two Gaussians to each histogram, we compared the BIC yield by the
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FIGURE 4: Left: Dereddened CMD of the 46 selected main-sequence members of Alessi 1
(log10(age[yr])=9.16). Its observational data is from T22 catalogue, and has hardly notice-
able errorbars. The orange curve is the polynomial fitted to its single-star sequence. Right:
Corresponding ∆G histogram with the singles’ sequence and binary sequence Gaussians
fitted through a two-component Gaussian Mixture Model, yielding an estimated unre-

solved binary fraction (weight of the binaries’ Gaussian) of 21 ± 5%.

fitting of one, two and three Gaussians and selected only those OCs for which the
BIC value was minimum for the 2-component GMM (implying that a 2-component
model is generally preferred).

The highest weight Gaussian (wSS) corresponds to the one fitted tracing the SS,
while the one with the smallest weight (wBS) corresponds to the BS (less populated);
and their weights are normalized.

3.3 Fit quality cuts

The last conditions that the studied OCs had to meet were imposed on the two Gaus-
sians fitted through the GMM: σSS, σBS < 0.3 and wSS > 0.7. They were derived
through visual inspection to restrict the sample to those OCs that display a bimodal
∆G histogram where each of the fitted Gaussians contributes non-negligibly to a sin-
gle well-distinguished ∆G peak (either the one associated with the SS or the BS one),
so that fb,GMM(q > qGMM

lim ) = wBS and our model can be properly applied (e.g. right
panel of Fig. 4).

The resulting final sample of OCs for which fb is estimated through GMM has 84
OCs in total: 67 from T22 and 17 from CGa20.

3.4 Binary fraction estimation

As explained in Sect. 2.3, fb,GMM(q > qGMM
lim ) = wBS. To estimate its uncertainty, we

consider that the probability of any system out of the N selected MS members being
a binary system follows a binomial distribution with a probability of success wBS.
Then, the Wald formula (Agresti and Coull, 1998) is applied:

δ [ fb,GMM] = z

√
wBS(1 − wBS)

N
, (9)
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with z = 0.99 (given for a 68% confidence level). This uncertainty is underestimated,
as it only involves a statistical estimation of the error derived from the Gaussian
fitted to the binaries. It does not take into account intrinsic photometry errors or
uncertainties associated with the method applied to fit the Gaussians (regarding the
accuracy of the MS members selection and SS polynomial fitting).

We estimate qGMM,sim
lim of the simulated CMDs (Sect. 5.2.2), but in Sect. 6.1 we

discuss why it cannot be equalled to qGMM,obs
lim of the observed CMD.
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Chapter 4

Markov Chain Monte Carlo
method

Following the path laid out in Hogg, Bovy, and Lang (2010), we can write down
explicitly a mixture model for the distribution of cluster members in the CMD.
Assuming negligible contamination by field star interlopers, the likelihood for the
CMD distribution below the MSTO can be described by an arbitrary polynomial
P(BP − RP) with a small intrinsic scatter for the SS, and a parallel one (perhaps
with a slightly larger intrinsic scatter) for the BS. So, if the functional form of the
single-star MS in the Gaia CMD is perfectly known (i.e. we know the functional
form GSS = f (BP − RP)SS + scatter), the cluster CMD (at least the part sufficiently
redder than the MSTO) can be described as a simple mixture model of SS and BS
populations described by the same functional form (separated by a constant offset
∆G = GBS − GSS ≃ −0.75 mag) plus some intrinsic scatter. In a Gaussian approxi-
mation for the scatter, again fb(q > qlim) = wBS (as wSS + wBS = 1).

If we further assume the observational errors in colour and G magnitude to be
uncorrelated, the likelihood can be written as

lnL =
N

∑
i=1

ln

[
(1 − fb)√

2π(σ2
eff,i + σ2

SS)
· e

−
(MGi

−P(BP−RP)i)
2

2(σ2
eff,i+σ2

SS)

+
fb√

2π(σ2
eff,i + σ2

BS)
· e

−
(MGi

−P(BP−RP)i+∆G)2

2(σ2
eff,i+σ2

BS)

]
,

(10)

where in analogy to Chapter 7 of Hogg, Bovy, and Lang (2010) we have intro-
duced the effective uncertainties σeff,i (the combined uncertainty projected onto the
polynomial fit), defined as

σ2
eff,i :=

1
1 + mi

(σ2
G,i + mi · σ2

(BP−RP)i
)

with mi := P′(x)2|x=(BP−RP)i
.

(11)

The likelihood in equation (10) is thus a function of p + 5 parameters, being p the
order of the fitted polynomial: p + 1 nuisance parameters for the polynomial itself,
the intrinsic width of the SS σSS, the intrinsic width of the BS σBS, the vertical offset
between the two sequences ∆G, and the cluster’s binary fraction fb.

Since we are interested in sampling the posterior probability distribution (PPD)
of this parameter space, we also need to impose some priors. To leave maximal
possible freedom to the fitting algorithm, we do not impose priors on the polynomial
coefficients and only quantify our a-priori knowledge of stellar evolution:
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p1(∆G) = N (−0.75, 0.05) (12)
p2(log10 σBS) = N (−1, 0.2) (13)
p3(log10 σSS) = N (−0.8, 0.2) (14)

pfull(∆G, log10 σSS, log10 σBS) = p1 · p2 · p3 (15)

For each OC, we performed the MCMC fits using the python package emcee
(Foreman-Mackey et al., 2013), using n_walkers = 32, n_steps = 15000 and burnin
= 2000, and for p=6. With these conditions, the median and 16th and 84th percentiles
of the p + 5 likelihood parameters could be estimated for all 128 OCs from CGa20
that verify the conditions on the MS population that enable their fb to be estimated
(as explained in Sect. 2.2), and for 243 out of the 246 OCs from T22 that verify them.
Then, the results for these 371 OCs were double-checked by visual inspection and
classified as reliable, possibly doubtful, or problematic; resulting in a reliability pa-
rameter between [0, 1] for each OC. For the vast majority of OCs, the adjusted poly-
nomials give an accurate description of the observed SS. In order to disregard those
for which the fitted polynomials are not accurate in some range or having dubious
curvature, we select only as the final sample of OCs studied through MCMC those
with reliability parameter greater than 0.5. The result is a final sample of 324 OCs
whose fb has been estimated using MCMC, 228 (∼ 70%) from T22 and 96 (∼ 30%)
from CGa20, which includes all the 84 OCs for which fb has also been estimated
through GMM. Out of these 324 OCs, 300 (∼ 93%) have a reliability parameter
greater than 0.75.

Figure 5 shows an illustrative example for an OC with a moderately populated
MS, Alessi 1 (which has 46 selected MS members). We see that in this case (as in most
others; see Fig. 6) there are little correlations between the fit parameters. Our main
desirable parameter fb = fb,MCMC(q > qMCMC

lim ) is not strongly correlated with other
parameters of the model (as can be seen in the marginalised two-dimensional projec-
tions of the PPD in the off-diagonal panels of Fig. 5, that show the covariances and
display approximately round shapes), and the marginal posterior probability distri-
bution gives a sensible result ( fb = 0.19+0.06

−0.05), compatible with the GMM approach
(Chapter 3).

In Sect. 6.2 we find an estimation of qMCMC
lim following the method described in

Sect. 5.2.2.
With respect to the GMM implementation, MCMC has the advantages that it

simultaneously fits the SS polynomial, the offset defining the parallel BS polynomial,
the intrinsic widths of both sequences and their scatter distribution weights (which
give fb), correctly incorporating uncertainties in both dimensions. Hence, the form
of the fitted isochrones is more flexible.
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FIGURE 5: MCMC fit for Alessi 1 observational data (from T22). Lower left panels: corner
plot of the posterior probability distribution for the full parameter set. The first 7 param-
eters correspond to the polynomial coefficients pi, while the last four describe the unre-
solved binary fraction fb, the separation between the binary sequence and the single-star
sequence ∆G, the intrinsic G-magnitude spread of the single-star sequence σSS, and the
one of the binary sequence σBS. The main outcome of the fit is the binary fraction, all other
parameter are considered nuisance parameters. Top right panel: Gaia ’s CMD overplotted
by 30 random samples of the posterior probability of the single-star sequence and binary

sequence 6th order polynomials.
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FIGURE 6: Examples of the MCMC fits to the single-star and binary sequences of several
open clusters in our final sample (in the same style as Fig. 5 top right panel), illustrat-
ing the diversity of the binary sequences and the resulting diversity in the quality of the
MCMC fits (assessed visually and translated into a reliability parameter). For most sys-

tems the errorbars are smaller than their markers.
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Chapter 5

Simulated open clusters

We describe the Gaia Object Generator and how we use it to generate realistic sim-
ulations of 84 studied OCs. We apply both GMM and MCMC to several realisa-
tions of their simulated CMDs. For MCMC we are thus able to estimate qMCMC

lim for
the observed CMDs, used to estimate the resolved multiplicity fraction in the same
qMCMC

lim < q ≤ 1 range as the unresolved one; and also the corresponding total mul-
tiplicity fraction f tot

b (q > qMCMC
lim ).

5.1 Simulating clusters with the Gaia Object Generator

The Gaia Object Generator (GOG; Luri et al. 2014) is a simulation tool that was de-
veloped to provide synthetic data that statistically reproduces the Gaia mission data.
For a given population of celestial objects, it applies the spacecraft and payload mod-
els to simulate the main Gaia observables (astrometry and photometry) with realistic
error models. Its complexity is increased after each Gaia data release, so that the
full 3D spatial distributions and statistics of observables (spectral characteristics to
derive photometry and spectroscopy, and motions) of these simulated objects are in
reasonable agreement with the data.

GOG is typically used in conjunction with the Gaia Universe Model simulations
(first described in Robin et al. 2012) that have been developed to describe the stellar
content of the Milky Way. The Universe Model relies on state-of-the-art descriptions
of the characteristics of Gaia sources and on realistic scenarios for their formation,
evolution, and dynamics. It also takes into account interstellar extinction based on
a 3D model. And, most interestingly for our purpose, it includes a module that
simulates multiple star systems (Arenou, 2011) which we use here in conjunction
with GOG.

For each OC we want to simulate, we generate a synthetic population of single
stars drawn from PARSEC 1.2S isochrones (Bressan et al., 2012; Marigo et al., 2017)
of solar metallicity with the age given by CGa20. The input stars are all single, gener-
ated according to the single-star IMF from Kroupa (2001) and Kroupa (2002), and the
multiple-star module now considers each input star and may change it with some
physically-motivated probability into a system with the given star as primary and a
lower-mass star of the same age as the secondary. Triples and higher order systems,
therefore, are not present in our simulations. The details of this process are described
in Arenou (2011); in the next paragraphs we explain only the main assumptions.

The selection of single stars and primaries that will be part of a system is done
so that they follow the luminosity function of primaries in the solar neighbourhood.
For MS stars, the considered probability that an input single star gives birth to a
system is given by the following function for the binary fraction depending on the
primary mass of the MS star, which is considered to fit well this dependence in the
whole MS mass range:

fb(M1) = 83.88 · tanh(0.688M1 + 0.079).
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This function is monotonically increasing with M1, and is roughly compatible (by
eye) with the several classes of dynamical decay models from Sterzik and Durisen
(2004) or random pairing of Thies and Kroupa (2007). There is also abundant obser-
vational evidence for the increase of fb with M1 (Kaczmarek, Olczak, and Pfalzner,
2011; Fuhrmann et al., 2017).

For each generated multiple system, the mass of the secondary is drawn from
the mass-ratio distribution f (q), which is modelled as a probability density func-
tion linear by segment and depends on the spectral type of the primary and on the
binary period. The module also checks that the pairing is realistic in terms of the
evolutionary stage of the stars.

For the distribution of semi-major axis a, a Gaussian distribution in log(a) is
assumed, with different mean and standard deviation depending on M1. From this
random generation of a, the orbital period P is drawn using Kepler’s third law. The
eccentricity is simulated uniformly within the interval [0, 2E[e]], where E[e] is the
average eccentricity (which depends on P and the primary’s spectral type). The
other orbital parameters are then drawn randomly: the periastron date T is chosen
uniformly between [0, P], the argument of the periastron ω2 uniformly in [0, 2π],
the position angle of the node Ω uniformly in [0, 2π], and the inclination is chosen
randomly in cos(i). A Roche model is used to avoid generating physically unrealistic
systems of too small separations.

Finally, GOG decides whether a multiple system can be resolved by Gaia (so that
the components appear all along the same isochrones in distinct positions) or not (so
that their flux is joined and the system appears above the single-star MS as a single
point in the CMD). To do so, GOG takes into account the separation of the compo-
nents of the system in relation to the telescope resolution, and the limiting apparent
magnitude that is detectable. Then, it adds photometric uncertainties, which depend
on the magnitude and the calibration.

5.2 Unresolved binary fraction estimation for simulated open
clusters

5.2.1 Custom simulations for each open cluster in our sample

For the sample of 84 observed OCs studied with both GMM and MCMC methods,
we have run custom simulations with the multiple-star module and GOG, applying
them to each PARSEC single-star population of mass 10,000 M⊙ with solar metal-
licity and the same age, distance, and extinction as the corresponding observed OC.
The resulting synthetic population as observed by Gaia DR2, now containing single
stars and binaries, is returned by GOG as a catalogue of the members (or systems, if
unresolved) with "true" and "observed" parameters. Interstellar extinction and pho-
tometric errors are taken into account, while other possible effects (most importantly
differential extinction and rotation) that may contribute to the widening of the MS
are not considered.

From each of these returned synthetic populations we generate Nsim realisations
of its corresponding OC, each time drawing the same number of MS members as
observed in the real OC. In order to do so, first the selection of the MS members
of each synthetic population as observed by Gaia is carried out exactly as for the
observed OCs (see Sect. 2.2). The resulting simulated populations, however, are
still not equivalent to the observed OCs because of the initial mass of the popula-
tion input in the simulation: in the equivalently selected MS range, the simulated
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FIGURE 7: Simulated CMD of NGC 2281 (log10(age[yr])=8.79), having 381 main-sequence
systems (like the number of selected main-sequence systems in the observed CMD). The
black dots are single stars, and the unresolved binary systems are colour-coded by their
mass ratio q. The light grey points overlapping with single stars are resolved components

of binary systems. The errorbars are smaller than the markers.

populations have many more members than the OCs. This is solved by applying
a random selection of MS members without replacement, picking in total the same
number of MS members that is found in the selected MS range of the observed CMD
of the same OC. A uniform probability in the random selection is adequate because
the simulated population as seen by Gaia has already been populated according to
an IMF for single stars, and then companions have been added. By doing so, the
synthetic populations as observed by Gaia are in reasonable approximation realisa-
tions of possible Gaia observations of the corresponding OC in the range where the
fb is studied; and they automatically verify the conditions of having at least 30 MS
members and a MS extension of 1 mag in colour index (see Fig. 7 for an example).

For a studied OC, however, instead of generating and studying a single CMD re-
alisation, we generate Nsim realisations of the observed OC using the same simulated
data but applying Nsim different times the random selection of the observed number
of selected MS members. This allows to take into account statistically the effect that
the random selection of a reduced number of members can have in the inferred fb.

5.2.2 Application of GMM and MCMC methods to the simulated open
clusters

In this section we perform the equivalent estimations of fb through GMM and MCMC
as described in Chapters 3 and 4, but now for a sample of 84 simulated OCs, each of
them corresponding to one of the observed OCs which have been studied with both
GMM and MCMC.

For the GMM method we have Nsim = 30, and the analysis is applied to each of
the 30 simulated CMDs corresponding to an observed OC as described in Chapter
3, except for the three following considerations. First, the polynomial fitted to the
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OC’s SS is of eighth degree instead of fourth. Second, the number of fitted Gaussians
is imposed to two, regardless of whether the BIC displays a minimum value for two
components or not, in order to be able to carry out the study for all 84 OCs. Third,
as the CMDs of the simulated OCs generally show less dispersion than the observed
ones, the GMM is applied using an initial guess for the mean of the binaries’ Gaus-
sian of µBS = −0.75. It was visually considered to yield slightly better fits of the
Gaussians in the ∆G histogram, but the presence or absence of this initial guess does
not significantly alter the derived binary fractions (see Sect. 6.1).

Therefore, as 30 GMM fittings and their derived Gaussian parameters and f sim
b,GMM

estimation are performed for each OC, a statistical treatment of these results is car-
ried out. We consider the f sim

b,GMM of the simulated OC to be the mean of the 30 f sim
b,GMM

calculated ( f sim
b,GMM), and its uncertainty the mean of the 30 f sim

b,GMM Wald-estimated er-

rors (δ[ f sim
b,GMM]); and we also compute the standard deviation of f sim

b,GMM over the 30
realisations of the CMD (σf sim

b,GMM
).

For the MCMC method, considerably more time consuming for each OC than
the GMM, we have Nsim = 10, and the analysis is carried out exactly as explained
in Chapter 4 for the observed OCs. We consider the binary fraction of the simulated
OC, f sim

b,MCMC, to be the mean of the 10 values of f sim
b,MCMC’s median, and its nominal

uncertainty δ[ f sim
b,MCMC] as the mean over the 10 realisations of the mean of its 16th

and 84th percentiles; and we also compute the standard deviation of f sim
b,MCMC over

the 10 realisations (σf sim
b,MCMC

).

From the simulated OCs, we can derive additional information apart from the
application of both methods to estimate fb for a certain number of CMD realisa-
tions of an OC as observed by Gaia. As the GOG first simulates the systems, and
later decides whether they can be resolved by Gaia or not, we know which of our
selected MS members are single stars, which are two resolved components of the
same binary system, and which correspond to unresolved binary systems. There-
fore, we can compute the mean of the theoretical unresolved fb over the Nsim re-

alisations: f sim,theo
b (q > 0). In order to use this information to characterize GMM

and MCMC methods for fb estimation, for each OC we compute the mean theoret-
ical fb of unresolved multiple systems having a q equal or greater than 11 different

values: f sim,theo
b (q ≥ qmin) (with qmin in the range [0.2, 0.7] in steps of 0.05), for the

Nsim = 30 realisations. These values are then compared to f sim
b,GMM and to f sim

b,MCMC, so
that the qGMM,sim

lim and qMCMC,sim
lim values above which each method takes into account

binaries in fb estimation are estimated for each simulated OC as the qmin for which

f sim,theo
b (q ≥ qmin) is the closest possible to the mean fb applying the corresponding

method to the simulated CMDs ( f sim
b,GMM or f sim

b,MCMC).
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5.3 Estimation of the total binary fraction: correction for re-
solved binaries

One of the most nearby OCs is the Pleiades cluster. It was recently studied in detail
by Torres, Latham, and Quinn (2021) using Gaia and long-term spectroscopic obser-
vations of thousands of stars. This work illustrates the complexity that one faces
when trying to estimate the true fb of an OC, even in such a very nearby case. They
find, after applying corrections for undetected binaries, a binary frequency (for peri-
ods up to 104 days) of (25 ± 3)%. When including known astrometric binaries, this
estimate increases to more than 57%.

In our study, we are limited to photometric observations and inherit the Gaia
magnitude limit from the membership catalogues. GMM and MCMC methods pro-
vide an estimation of the unresolved fb of systems with q > qlim based on their CMD
positions, where qlim is in principle characteristic of each OC and method. We there-
fore have to resort to simulations to correctly account for resolved systems, in order
to be able to estimate the total fb: f tot

b = f unresolved
b + f resolved

b (d, age). As our unre-
solved fb is limited to systems of q > qlim, we also estimate f tot

b of unresolved and
resolved binaries of q > qlim, which can be calculated as follows:

f tot
b (q > qlim) = f measured

b,unres

[
1 +

f sim
b,res(q > qlim; d, age)

f sim
b,unres(q > qlim; d, age)

]
(16)

We estimate it using the ratio between the resolved and unresolved fb of the sim-
ulations instead of just adding up the measured unresolved fb with the simulated
resolved fb in order to lessen the dependence on the total number of simulated bi-
naries: what matters is the relative proportion between resolved and unresolved
systems, not their absolute numbers. We use the GOG simulations to estimate how
many binaries in a given OC are actually resolved by Gaia and thus do not appear
in the BS of the Gaia CMD. This estimate depends on the treatment of wide binaries
in the Gaia Universe Model; and a resolution must be set. Following Fabricius et al.
(2021), we have chosen 500 mas, so that binaries with greater separations are consid-
ered to be resolved by Gaia. We simulate four OCs with ages covering the age range
of the studied sample, placing them at 10 distances in the studied distance range,
and compute their resolved fb over unresolved fb ratio for each distance, with a cer-
tain qlim value. The result is represented in Fig. 8 for a value qlim = 0.6 (justified
and discussed in Sect. 6.2). There is not a strong dependence on the OC’s age, so
we decide to fit a quadratic function to the dependence with the logarithm of the
distance common for all four OCs (black solid line, its functional form is specified in
Fig. 8 legend). This is used to interpolate the value of the ratio for each OC in our
sample in order to estimate its f tot

b (q > qlim).
We do not estimate the total fb of all binary systems because we would need to

add the unresolved and resolved binaries of q < qlim, what requires a modelling of
the q distribution and depends on the specific properties of each binary system of
the OC. Such study is out of the scope of this work.
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FIGURE 8: Representation of the theoretical ratio of the fraction of resolved binaries of

q > 0.6 over the fraction of unresolved binaries of q > 0.6
(

f sim
b,res(q>qlim=0.6; d)

f sim
b,unres(q>qlim=0.6; d)

)
, as a

function of the decimal logarithm of the distance, for four open clusters simulated with
GOG. The black solid curve is a quadratic fit to all four open clusters.
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Chapter 6

Results

We describe and compare the estimations of the unresolved binary fraction through
GMM and MCMC; and also characterise the total one estimated for MCMC. We
finally describe our catalogue of the high-q MS binary fraction estimation in 324
OCs using MCMC.

6.1 Binary fractions estimated through GMM

The sample of 84 observed OCs studied through GMM suffers a limitation in the
studied fb range arising from the applicability of this method: it works properly for
OCs with wSS > 0.7, implying fb,GMM = wBS < 30% (see Chapter 3). The sample
comprises values of fb,GMM between 3% and 30%, with errors estimated with the
Wald formula ranging from 1% to 8%. The most populated OC has 1051 MS mem-
bers, the least populated one 32; and there is a 2% of OCs with more than 500 MS
members. The median of the least massive MS member selected is 0.71M⊙, and of
the most massive member is 1.98M⊙.

The corresponding determinations of fb as the mean over 30 realisations of each
simulated OC ( f sim

b,GMM) are also found to be smaller than 30% for all OCs, ranging
from 17% to 29%, with mean Wald-estimated errors ranging from 1% to 7%. On the
other hand, σf sim

b,GMM
ranges from 2% to 10%. Its relation to the mean of the Wald-

estimated errors is represented in Fig. 9, which shows that the latter accounts well
for the typical variation of f sim

b,GMM over the different realisations, being just slightly
underestimated. Both estimations, however, only account for the statistical error in
the Gaussian fitting process, and are hence still underestimated if the uncertainty in
the MS selection and SS polynomial fitting were to be considered. For the observed
OCs, nonetheless, no standard deviation of fb,GMM can be calculated because GMM
is applied to the single observed CMD, so we conclude that the Wald formula pro-
vides a reasonable estimation of fb,GMM’s statistical error. Fig. 9 also displays the
expected tendency of the typical variation in fb over different GMM fittings being
smaller for more populated OCs, whose SS and BS are better traced and have distri-
butions less dependent on particular random selections of MS members than for the
least populated OCs.

As a basic check of the GMM performance, we corroborate that for 78/84 (93%)

OCs f sim
b,GMM < f sim,theo

b (q > 0), as expected because the SS Gaussian inevitably ac-

counts for a fraction of low-q unresolved binaries and hence we derive f sim
b,GMM(q >

qGMM
lim ), for which f sim,theo

b (q > 0) is an upper limit. Regarding the rest of OCs, 5/6

have a f sim
b,GMM which is compatible within 1σ with being smaller than f sim,theo

b (q > 0).

The distribution of qGMM,sim
lim values for the 84 simulated OCs, for which f sim,theo

b (q ≥
qGMM,sim

lim ) is the closest possible to f sim
b,GMM for each OC, has values ranging from 0.2

to 0.45, being both the mean and the median 0.3, and the 10th and 90th percentiles 0.2
and 0.4.



24 Chapter 6. Results

FIGURE 9: Standard deviation of the estimated f sim
b,GMM over the 30 CMD realisations of

each simulated OC to which GMM is applied (σf sim
b,GMM

) against the mean over the same

realisations of the f sim
b,GMM errors estimated with the Wald formula; colour-coded by the

number of selected MS members. The black solid line is a linear fit, and the dashed grey
one the identity line.

Regarding the assessment of the assumptions made, one is that a 2-component
GMM has been forced for all realisations of all OCs. It is found that the most frequent
value of the BIC minimum over the 30 realisations is actually at two Gaussians for
63% of the OCs in the sample. The assumption of an initial guess for the mean of
the binaries’ Gaussian is found not to be critical because for all 84 simulated OCs
their derived f sim

b,GMM using this initial guess are compatible within 1σ with the ones
derived not using it.

Table 1 shows the means of the estimated fb and of the Gaussians’ parameters
and their Wald-estimated errors over the 84 OCs, applying GMM to the observed
and simulated CMDs. For 71/84 (85%) OCs, f sim

b,GMM > fb,GMM (see distributions in
left panel of Fig. 10). This is consistent with the fact that for the observed and simu-
lated CMDs σBS is compatible (see Table 1), while the simulated CMDs have on av-
erage a much smaller SS Gaussian width (σsim

SS =0.037±0.016 against σobs
SS =0.15±0.05),

implying that the relative weight of the binaries’ Gaussian (and thus the fb) in-
creases. This is due to the fact that the simulated CMDs have a better delineated
SS, with intrinsically less dispersion than the observed CMDs’ one, so that the Gaus-
sian fitted to the SS is narrower and does not contribute as much for the low-q sys-
tems as the one of the observed CMDs. This is also reflected in the mean sepa-
ration between the mean positions of both Gaussians, which is ∆G=-0.65±0.14 for
the observed CMDs and nearly the half for the simulated CMDs: ∆G=-0.31±0.03
(see distributions in Fig. 10, right panel). So, as the simulated CMDs have on av-
erage the binaries’ Gaussian centred on lower q than the observed CMDs, and at
the same time their SS Gaussian width is smaller, this results in their BS Gaussian
accounting for a wider spectrum of q values (thus estimating an unresolved fb that
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GMM mean parameters Observed OCs Simulated OCs

fb,GMM 0.16 ± 0.03 0.24 ± 0.04
σf sim

b,GMM
- 0.06

µSS 0.04±0.02 0.011±0.005
µBS -0.61±0.14 -0.30±0.03
σSS 0.15±0.05 0.037±0.016
σBS 0.23±0.06 0.250±0.019
∆G -0.65±0.14 -0.31±0.03

TABLE 1: Means over the 84 OCs studied through GMM of the estimated unresolved
binary fraction and its Wald-estimated error, and of the single-sequence and binary-
sequence Gaussians’ parameters (mean position with respect to the SS fitted polynomial
µ, width w, and separation between them ∆G); for the observed CMD (left column) and
averaged over the 30 CMD realisations of each simulated OC (right column). Only for the
latter we have a measure of the dispersion of the fitted GMM binary fraction over the 30
different CMD realisations of each simulated OC, which we also average over all the 84

simulated OCs (σf sim
b,GMM

).

FIGURE 10: Left: Histograms of the estimated unresolved binary fraction applying GMM
to the observed CMDs ( fb,GMM; red) and to 30 CMD realisations of each simulated OC
( f sim

b,GMM; blue) for the 84 OCs studied through GMM. Right: Histograms of the separation
between the SS and BS fitted Gaussians applying GMM, for the same samples as in the left

panel.

takes into account more systems) than for the observed CMDs. Hence, we conclude
that qGMM,sim

lim <qGMM,obs
lim : the BS Gaussian for the simulated OCs takes into account

systems down to a mass ratio smaller than for the observed OCs, for which it is
centred at higher q values (nearer to the equal-mass binary sequence) so that it is
the SS Gaussian the one accounting mainly for the low-q systems. This is critical
for our intended purpose of identifying the q above which our estimated fb for the
observed OCs takes into account binaries, because as the GMM method does not
behave equivalently for their simulated counterparts, qGMM,sim

lim = 0.3+0.1
−0.1 cannot be

directly equalled to our unknown qGMM,obs
lim (it is rather a lower limit of it). Therefore,
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the simulations of the OCs are not realistic enough for the purpose of characteriz-
ing the GMM method applied to the observed OCs, because this method is highly
sensitive to the dispersion in the CMD to determine the mean position of the BS
Gaussian and the Gaussians’ widths, and this dispersion is significantly lower in the
simulated CMDs than in the real observed ones (reflected as smaller uncertainties
of the parameters in Table 1 for the simulated OCs). Consequently, the derived re-
sults applying GMM to simulated CMDs cannot be directly used to gain insight into
the results obtained applying GMM to observed CMDs. This explains why in 42/84
(50%) of the cases fb,GMM is not compatible within 1σ with f sim

b,GMM. Within 2σ they
are compatible in 70/84 (83%) of the cases.

6.2 Binary fractions estimated through MCMC

The sample of 324 observed OCs studied through MCMC that have a reliability pa-
rameter greater than 0.5 comprises values of fb,MCMC (taken as the median) between
4% and 62%, thus doubling the fb range covered with respect to GMM method. Un-
like GMM, MCMC takes into account that its errors are not symmetric: the upper
errorbar σU

fb,MCMC
= fb,MCMC(84th)− fb,MCMC over the sample has a median 4.3% and

for 93% of the OCs is smaller than 10%, while the lower one σL
fb,MCMC

= fb,MCMC −
fb,MCMC(16th) has a median 3.8% and for 97% of the OCs is smaller than 10%. The
most populated OC has 1791 MS members, the least populated one 31; and there is
an 8% of OCs with more than 500 MS members. The median of the least massive MS
member selected is 0.72M⊙, and of the most massive member is 2.04M⊙.

Out of this sample of 324 observed OCs studied through MCMC, the 84 OCs that
have also been studied through GMM and that are thus simulated too have values of
fb,MCMC between 7% and 38%. Their corresponding determinations of f sim

b,MCMC over
10 CMD realisations of each simulated OC to which MCMC is applied are found to
be within a similar range, between 7% and 35%. The mean σU

fb,MCMC
has a median

4.0% and is between 1.4% and 9.1%; while σL
fb,MCMC

has a median 3.3% and is between
1.4% and 5.4%. On the other hand, σf sim

b,MCMC
ranges from 1% to 11%. Its relation to

the mean over the 10 realisations of the nominal error δ[ f sim
b,MCMC] =

σU
f sim
b,MCMC

+σL
f sim
b,MCMC

2
is represented in Fig. 11. It shows that both error measures are positively corre-
lated between them, and negatively correlated with the number of MS members as
expected. Unlike for some OCs studied with GMM, applying MCMC to the 84 sim-

ulated OCs f sim
b,MCMC is actually found to be smaller than f sim,theo

b (q > 0) for all OCs
(as expected).

The distribution of qMCMC,sim
lim values for the 84 simulated OCs for which f sim,theo

b (q ≥
qMCMC,sim

lim ) is the closest possible to f sim
b,MCMC for each OC, displays an almost bimodal

dependence on ∆G, changing at ∆G ≃ −0.65. As for 311/324 (96%) studied ob-
served OCs ∆G < −0.65, we choose to estimate qMCMC

lim with the simulated OCs for
which MCMC gives ∆G < −0.65, which are 60/84. Their distribution of qMCMC

lim has
values ranging from 0.2 to 0.7, being the median 0.6, and the 10th and 90th percentiles
0.45 and 0.65. Therefore, this derived qMCMC

lim value is accurate for the vast majority
of the observed OCs studied with MCMC, because a very low proportion of OCs
in the sample have ∆G > −0.65 (as can be seen in the right panel of Fig. 12). Our
found qMCMC

lim median of 0.6 is sensible considering what is stated in Jadhav et al.
(2021): for the MG ∈ [1, 10] mag range they study (which is also approximately our
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FIGURE 11: Standard deviation of the estimated f sim
b,MCMC over the 10 CMD realisations of

each simulated OC to which MCMC is applied (σf sim
b,MCMC

) against the mean over the same

realisations of the f sim
b,MCMC nominal errors; colour-coded by the number of selected MS

members. The black solid line is a linear fit, and the dashed grey one the identity line.

range of selected MS members), setting q = 0.6 as the cut-off above which binaries
are considered as such ensures that the single MS stars are 3σ away from the thus de-
fined BS. It is reasonable too that we find qMCMC,sim

lim = 0.6+0.05
−0.15 > qGMM,sim

lim = 0.3+0.1
−0.1,

because as can be seen in Tables 1 and 2, for SS and BS widths of the same order,
applying MCMC the absolute value of ∆G is doubled with respect to the value for
GMM.

Table 2 shows the means of the estimated fb and of the Gaussians’ widths and
separation, and the means of their 16th and 84th uncertainty percentiles, applying
MCMC to the observed and simulated CMDs. Comparing the results for the com-
mon observed and simulated OCs, for 51/84 OCs (61%) their fb,MCMC > f sim

b,MCMC.

For 53/84 OCs (63%), fb,MCMC is compatible within 1σ with f sim
b,MCMC (see their simi-

lar distributions in Fig. 12, left panel), and for 78/84 OCs (93%) they are compatible
within 2σ.

The values of the mean over all 84 OCs of the standard deviations (widths) of the
SS and BS Gaussians are quite similar applying GMM and MCMC, for both observed
and simulated OCs (see Tables 1 and 2). The values of ∆G, however, differ more for
both the observed and simulated OCs applying GMM or MCMC. With MCMC, for
the observed CMDs the mean ∆G is -0.732, very close to the imposed prior, and for
the simulated CMDs the mean ∆G is reduced to -0.66. Hence, both ∆G for simulated
and observed OCs are closer for MCMC than for GMM. Given this similarity be-
tween the SS and BS widths and ∆G for the observed and simulated OCs obtained
through MCMC, we conclude that the GOG-simulated CMDs are realistic enough
so that applying MCMC to them we are able to derive information of the MCMC
application to the observed CMDs, in particular: qMCMC,sim

lim = 0.6+0.05
−0.15 ≈ qMCMC,obs

lim .
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MCMC mean parameters Observed OCs Observed OCs (84/324) Simulated OCs

fb,MCMC 0.20+0.06
−0.04 0.16+0.05

−0.04 0.15+0.04
−0.03

σf sim
b,MCMC

- - 0.04

σSS 0.160+0.012
−0.013 0.121+0.009

−0.008 0.083+0.007
−0.007

σBS 0.209+0.018
−0.018 0.184+0.016

−0.014 0.190+0.019
−0.017

∆G −0.75+0.02
−0.02 −0.732+0.012

−0.011 −0.66+0.02
−0.02

TABLE 2: Means over the OCs studied through MCMC of the median unresolved binary
fraction and its 16th and 84th uncertainty percentiles, and of the widths of the fitted single-
sequence and binary sequence Gaussians in the G-magnitude dimension (σSS and σBS)
and the separation between their means (∆G). The left column shows these parameters
for all the 324 observed OCs studied through MCMC, the central one for the subsample
of 84 observed OCs that coincide with the simulated ones, and the right column for the 84
simulated OCs (for which we have a measure of the dispersion of the fitted MCMC binary

fraction over the 10 different CMD realisations, which we average over all the 84 OCs).

FIGURE 12: Left: Histograms of the estimated unresolved binary fraction applying MCMC
to all the 324 observed CMDs ( fb,MCMC; red), to the observed CMDs of the 84 OCs that
have been simulated (pink), and to 10 CMD realisations of each of the 84 simulated OCs
( f sim

MCMC; blue). Right: Histograms of the separation between the SS and BS fitted Gaus-
sians applying MCMC, for the same samples as in the left panel and with the counts in

logarithmic scale.

6.3 Comparison between GMM and MCMC methods

In order to compare the performance of both methods for the fb estimation applied
to observed data, we evaluate the results for the 84 common observed OCs. For
73/84 (87%) of them, fb,GMM and fb,MCMC are compatible within 1σ; and for 81/84
(96%) they are compatible within 2σ (considering the Wald formula errors for GMM
and the nominal ones for MCMC). For 68/84 OCs (81%),

∣∣ fb,GMM − fb,MCMC
∣∣ < 5%.

The distribution of their difference has a mean approximately zero: for nearly half
of these OCs (43/84) fb,GMM > fb,MCMC; and for the rest it is the other way around.
It does not follow a Gaussian distribution, nor it appears to depend on the OC’s pa-
rameters. This compatibility between both results (Fig. 13, left panel) exists despite
the difference in the ∆G values of both methods: MCMC mainly adopts values near
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FIGURE 13: Left: Histograms of the estimated unresolved binary fraction of the observed
OCs, applying MCMC to all the 324 observed CMDs (yellow) and to the observed CMDs
of the 84 OCs that have also been studied with GMM (orange), and applying GMM to
these 84 observed OCs (crimson). Right: Histograms of the separation between the SS and
BS fitted Gaussians applying MCMC and GMM to observed OCs, for the same samples as

in the left panel, with the counts in logarithmic scale.

the prior at -0.75, while GMM displays a wider range (Fig. 13, right panel).
The fb uncertainties derived with both methods are also overall compatible. σL

fb,MCMC

are more similar to the errors from Wald formula than σU
fb,MCMC

but, as can be seen in

Fig. 14, MCMC nominal error
(

δ[ fb,MCMC] =
σU

fb,MCMC
+σL

fb,MCMC
2

)
is clearly correlated

with the error estimated with the Wald formula from GMM (δ[ fb,GMM]). Both if the
clear outliers are taken into account or not, the resulting linear regression is compat-
ible with the identity line. The slight tendency of MCMC uncertainties to be larger
can be attributed to the fact that they are more realistic because they include the
uncertainties in the polynomial fitting, while GMM does not.

It must be recalled that both estimated fb do not necessarily have the same defi-
nition, because for MCMC it takes into account systems of q > qMCMC,obs

lim = 0.6+0.05
−0.15

while for GMM it has not been possible to characterise its qGMM,obs
lim . But, still, their

values are compatible and with similar errors for both methods. So, the possible ef-
fect introduced by a different qlim is found to be within the errors for most of the sam-
ple, which is reasonable given that it is expected that qGMM,sim

lim = 0.3+0.1
−0.1 < qGMM,obs

lim ,
and that observing the GMM fitting, qGMM,obs

lim cannot be very close to q = 1, so that
qGMM,obs

lim and qMCMC,obs
lim do not have extremely different values.

Regarding the comparison of the performance of both methods for the fb esti-
mation applied to simulated OCs, Fig. 15 shows what has already been discussed
separately before. For the observed OCs, fb,GMM and fb,MCMC are overall compatible,
and for MCMC the fb for the observed and simulated OCs ( fb,MCMC and f sim

b,MCMC) are
also generally compatible; but for GMM not. It is this discrepancy in GMM’s perfor-
mance applied to observed and simulated data in contrast to MCMC’s similar per-
formance for observed and simulated CMDs that causes that for only 39/84 (46%) of
the simulated OCs f sim

b,GMM and f sim
b,MCMC are compatible within 1σ. The value found
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FIGURE 14: Nominal error of the unresolved binary fraction estimation through MCMC
against its error estimated with the Wald formula when GMM is applied, for the 84 com-
mon observed OCs. The colour scale indicates the number of selected MS members. The

black solid line is a linear fit, and the dashed grey one the identity line.

FIGURE 15: Left: Histograms of the estimated mean unresolved binary fraction of the 84
simulated OCs, applying MCMC to 10 CMD realisations (green) and GMM to 30 CMD
realisations (blue). Right: Histograms of the mean separation between the SS and BS fitted
Gaussians applying MCMC and GMM to simulated OCs, for the same samples as in the

left panel.

for qGMM,sim
lim = 0.3+0.1

−0.1, although not being translatable into a minimum q threshold
detected for the estimated fb of the observed OCs ( fb,GMM), is reasonable because it
is found that for all 84 OCs f sim

b,GMM > f sim
b,MCMC, and this makes sense as it verifies

qGMM,sim
lim < qMCMC,sim

lim .
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In conclusion, we have applied two different methods for the unresolved fb esti-
mation in OCs, GMM and MCMC, and for their 84 common studied OCs the results
are overall compatible. MCMC has the advantages that it is successfully applied to
study OCs of higher fb than GMM, and also with a larger number of MS members.
While GMM works essentially for clearly delineated SS and BS, being restricted to
values fb,GMM < 30%, MCMC can deal with more disperse CMDs, which tend to
be more populated too. For instance, for the Pleiades OC, with 1158 MS selected
members, its fb estimation has been possible through MCMC but not with GMM.
This is why the sample of 324 OCs studied with MCMC is nearly four times larger
than the one studied with GMM. However, due to our modelling and the limita-
tions on the photometric determinations of binaries in the CMD, our estimated fb
cannot take into account systems down to the smallest q. Therefore, our obtained
values are not the total unresolved fb and we need to characterise how many of
the unresolved binaries we are actually taking into account. This is what simula-
tions allow us to estimate for the simulated OCs (see Sect. 5.2.2), but there must
be a sufficient correspondence between the fb estimated for the observed and sim-
ulated OC in order to consider that their qlim values are compatible and thus de-
duce qobs

lim ≈ qsim
lim . For GMM this compatibility between observed and simulated

results is very poor because the method is very sensitive to the smaller disper-
sion the simulated OCs have. Therefore, our determined fb comprises an unknown
q range. But for MCMC the compatibility is remarkable and we have been able
to infer qMCMC,obs

lim = 0.6+0.05
−0.15, so that our estimated fb corresponds to systems of

qMCMC,obs
lim < q ≤ 1, and also to estimate the resolved binary fraction and the to-

tal binary fraction of systems of q > qMCMC,obs
lim for each OC (as explained in Sect.

5.3).The rest f tot
b (q > qMCMC,obs

lim )− fb,MCMC(q > qMCMC,obs
lim ) has a mean of 0.03, and

for 282/324 (87%) OCs is smaller than 0.05. Its mean uncertainties are σU
f tot
b

= 0.07

and σL
f tot
b

= 0.05, and have been calculated carrying out the same estimation of f tot
b

but of q values above the two percentiles of qMCMC,obs
lim . Again, they do not include

the systematic errors derived from the accuracy of the simulations’ modelling. It is
reasonable the small correction that the resolved fb introduces, due to the distances
of the studied OCs and the typical separations between the components of a binary
system.

Consequently, MCMC is a better method because it enables the study of a larger
sample of OCs and having a wider range of fb, thus providing more statistically
significant results; and also because qMCMC,obs

lim can be inferred. This is why in the
following Chapter 7 we perform the analysis of the dependencies on several physical
parameters of the total fb of systems with q > 0.6, f tot

b (q > 0.6+0.05
−0.15), calculated using

the unresolved fb estimated with MCMC ( fb,MCMC(q > 0.6+0.05
−0.15)).
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6.4 Catalogue of open cluster main-sequence multiplicity frac-
tions

Our results are summarized in a catalogue, which will soon be published in an on-
line repository along with a paper on this study (work in progress). It corresponds
to our sample of 324 OCs studied with MCMC which have a reliability parame-
ter greater than 0.5, 228 from Tarricq et al. (2022) and 96 from Cantat-Gaudin et al.
(2020). We thus present the largest homogeneous catalogue of multiplicity fractions
in OCs to date.

For each OC the catalogue provides the values and uncertainties of the unre-
solved binary fraction deduced with MCMC and the estimated total binary fraction
(of both resolved and unresolved systems), both of MS systems with q > 0.6+0.05

−0.15.
There is also the intrinsic colour index range that the considered MS systems com-
prise and its translation into masses; as well as the reliability parameter of fb,MCMC(q >
0.6+0.05

−0.15) and the values of the rest of parameters which MCMC fits.
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Chapter 7

Discussion

We compare, when possible, our estimated unresolved fb,MCMC(q > 0.6+0.05
−0.15) of the

OCs’ MSs, integrated over q dependencies, with fb estimations of some recent stud-
ies for which we have common studied OCs. Then we discuss the dependence of
f tot
b,MCMC(q > 0.6+0.05

−0.15) on OC distance and members’ mass, and on position and age.

7.1 Comparison to other open cluster studies

The multiplicity fractions in many OCs have been studied before; however, large
homogeneous studies are still rare. The results of different studies, moreover, are
very seldom directly comparable. Apart from the data and OC’s membership de-
terminations used in each study, the main differences arise from the mass range
covered by the studied OC members and the minimum q to which the estimated fb
is sensitive. Besides, the estimated fb also depends on the assumptions of the mod-
elling applied and the treatment of outliers. As discussed in Dal Tio et al. (2021), the
assumption that all binaries are unresolved is a well-accepted approach to model
binaries in CMD-fitting works. While it generally provides fb values very similar to
the ones found for more detailed prescriptions for the binaries, its problem is that
obviously does not properly account for the fraction of resolved binaries (consid-
ered inexistent) and the fraction of unresolved binaries. As the fraction of resolved
binaries decreases with distance, the closer the studied sample, the less appropriate
it is to assimilate the fitted fb assuming all binaries to be unresolved to the actual
unresolved fb.

In this section we compare the results of our fb estimation with the literature for
the OCs that we have in common with four of the most recent studies of fb in OCs.
As they assume all binaries to be unresolved, we compare our likewise estimated
fb,MCMC with their results, instead of our calculated f tot

b that takes into account the
resolved binaries. The first three commented studies rely on the CMD of G vs. (BP−
RP), as our study, while Li et al. (2022) use V vs. (V - I).

Niu, Wang, and Fu (2020) used Gaia DR2 photometry and LAMOST spectroscopy
to study the fundamental parameters of 12 well-populated OCs. From their fits they
derived synthetic CMDs and inferred the fb of MS stars for systems with 0 < q < 1.
They also found q distribution in their OCs to be flat, in accordance with the finding
of Torres, Latham, and Quinn (2021) for the Pleiades. They also provide the limiting
values mmin (minimum mass estimated by the faintest MS star in the OC) and mmax
(estimated by the brightest MS star in the OC) of the mass range for which fb has
been estimated. Table 3 shows the comparison to our study for the 8 OCs we have in
common. None of the studied mass ranges coincides and, as is shown in Fig. 16A,
our estimated fb are smaller than theirs for all cases. This is consistent with the fact
that they both study mass ranges up to higher masses (while mmin does not differ
so much) and are sensitive to a wider q range than us, thus detecting more binaries.
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Open cluster This work Niu, Wang, and Fu (2020)
Mass range

fb,MCMC(q > 0.6+0.05
−0.15)

Mass range
fb(0 < q < 1)

(M⊙) (M⊙)
Melotte 22 [0.18, 2.29] 0.078+0.009

−0.009 [0.57, 3.75] 0.41 ± 0.04
NGC 1662 [0.56, 1.60] 0.16+0.04

−0.04 [0.44, 2.30] 0.42 ± 0.06
NGC 1750 [0.73, 1.89] 0.28+0.03

−0.03 [0.61, 3.28] 0.54 ± 0.06
NGC 2099 [0.96, 1.73] 0.223+0.02

−0.019 [0.72, 2.54] 0.53 ± 0.04
NGC 2168 [0.73, 2.07] 0.138+0.03

−0.019 [0.61, 3.43] 0.50 ± 0.08
NGC 2281 [0.58, 1.65] 0.095+0.018

−0.015 [0.47, 2.59] 0.47 ± 0.04
NGC 2548 [0.71, 1.76] 0.097+0.014

−0.013 [0.54, 2.48] 0.38 ± 0.06
Roslund 6 [0.40, 2.23] 0.085+0.02

−0.017 [0.34, 3.60] 0.41 ± 0.08

TABLE 3: Comparison between our estimated unresolved binary fraction of systems with
q > 0.6 and the one of Niu, Wang, and Fu (2020) (of systems with 0 < q < 1 and for

different open cluster mass ranges), for the 8 open clusters we have in common.

None of the values is compatible within 1σ or 2σ, and for only 2/6 OCs both fb are
compatible within 3σ.

Furthermore, Niu, Wang, and Fu (2020) recalculate the fb for Melotte 22 and
NGC 2099 in mass ranges coincident with the ones of other published studies. We
also perform our fb,MCMC calculation in these two same mass ranges, so that we can
compare our estimated fb for each OC with two different values computed in the
same mass range but for different q ranges (see Table 4). For the Pleiades OC, our
inferred fb is still smaller than the one of Niu, Wang, and Fu (2020), being compat-
ible only within 3σ. This could be attributed to the fact their minimum detected q
is lower, aside from intrinsic discrepancies. Our inferred fb is also compatible only
within 3σ with the one of Pinfield et al. (2003), which is larger than ours too despite
being computed for a q range compatible with ours. For NGC 2099 our inferred fb is
also smaller than the one of Niu, Wang, and Fu (2020), being compatible only within
3σ. Compared to the work of Cordoni et al. (2018), however, our value and theirs
are computed for very similar q ranges and are compatible within 1σ.

Open cluster Mass range This work Niu, Wang, and Fu (2020) Other works
fb,MCMC(q > 0.6+0.05

−0.15) fb(0 < q < 1) fb

Melotte 22 [0.6, 1.0] 0.086+0.012
−0.011 0.20 ± 0.03 0.23+0.06

−0.05 (q ∈ [0.5, 1.0])
Pinfield et al. (2003)

NGC 2099 [1.06, 1.63] 0.11+0.03
−0.03 0.23 ± 0.02 0.085 (q ∈ [0.7, 1.0])

Cordoni et al. (2018)

TABLE 4: Comparison between our estimated unresolved binary fraction of q > 0.6 and
two estimations of it from studies that comprise different q ranges than ours but the same

main-sequence mass range for each open cluster.

Jadhav et al. (2021) used interpolated PARSEC isochrones to calculate the mag-
nitudes of the primary star, secondary star and the combined unresolved binary for
various q values, and selected unresolved MS binaries of q > 0.6 to compute the
unresolved fb in 23 OCs using Gaia DR2 data. We take into account, therefore, unre-
solved binaries in the same q range. They do not provide, however, the mass range
for which fb is estimated, only the total number of MS members for each OC. Table
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Open cluster This work Jadhav et al. (2021)
Mass range Number of

fb,MCMC(q > 0.6+0.05
−0.15)

Number of
fb(q > 0.6)

(M⊙) members members
IC 4756 [0.66, 1.48] 381 0.16+0.03

−0.02 543 0.31 ± 0.03
Melotte 22 [0.18, 2.29] 1158 0.078+0.009

−0.009 1326 0.14 ± 0.02
NGC 1039 [0.49, 2.11] 601 0.106+0.013

−0.013 764 0.17 ± 0.02
NGC 2168 [0.73, 2.07] 1243 0.138+0.03

−0.019 1794 0.23 ± 0.01
NGC 2360 [0.79, 1.55] 577 0.25+0.02

−0.02 1037 0.19 ± 0.02
NGC 2422 [0.43, 2.18] 530 0.082+0.013

−0.012 907 0.14 ± 0.02
NGC 2423 [0.77, 1.54] 256 0.119+0.02

−0.019 694 0.17 ± 0.02
NGC 2447 [0.73, 1.66] 616 0.24+0.02

−0.02 926 0.19 ± 0.02
NGC 2516 [0.34, 1.91] 1791 0.23+0.02

−0.12 2518 0.16 ± 0.01
NGC 2547 [0.32, 2.63] 206 0.14+0.04

−0.03 644 0.22 ± 0.04
NGC 2548 [0.71, 1.76] 500 0.097+0.014

−0.013 509 0.17 ± 0.02
NGC 2682 [0.71, 1.17] 658 0.37+0.02

−0.02 1520 0.22 ± 0.02
NGC 3532 [0.52, 1.76] 1727 0.231+0.013

−0.013 1879 0.13 ± 0.01
NGC 6025 [0.86, 2.18] 253 0.111+0.02

−0.019 452 0.21 ± 0.02
NGC 6281 [0.64, 1.67] 456 0.32+0.04

−0.03 573 0.27 ± 0.02
NGC 6405 [0.37, 2.79] 534 0.124+0.017

−0.016 967 0.17 ± 0.02
NGC 6793 [0.71, 1.80] 205 0.179+0.03

−0.03 465 0.17 ± 0.03
NGC 752 [0.58, 1.52] 278 0.20+0.03

−0.03 433 0.19 ± 0.03
Trumpler 10 [0.29, 2.48] 436 0.159+0.019

−0.018 947 0.12 ± 0.02

TABLE 5: Comparison between our estimation of the unresolved binary fraction of q > 0.6
and its estimation from Jadhav et al. (2021) (also for q > 0.6 but for unspecified open

cluster mass ranges), for the 19 open clusters we have in common.

5 shows the comparison to our study for the 19 OCs we have in common. Their con-
sidered number of members is larger than ours for all OCs, although for some OCs
they are comparable and for others our sample represents only a 30% of theirs. As
seen in Fig. 16B, for 9 OCs our estimated fb is larger than theirs, while for 10 OCs is
smaller. For 4 OCs (NGC 2516, NGC 6281, NGC 6793 and NGC 752), our estimated
fb is compatible within 1σ with theirs. In total there are 12 OCs with compatible fb
estimations within 2σ, and 17 within 3σ. These discrepancies can be real if the stud-
ied mass range is common for each OC, or can otherwise arise (at least partially)
from the fact that they refer to different OC members.

Li and Shao (2022) apply a Bayesian framework that models the observed CMD
of an OC as a mixture distribution of single stars, unresolved binaries and field stars,
and then they measure the fraction of unresolved binaries with q > 0.2 among the
member stars. They apply this method to 10 OCs with Gaia EDR3 photometric data,
but do not provide neither the studied mass range nor the number of selected MS
members. Table 6 and Fig. 16C show the comparison to our study for the 7 OCs we
have in common. None is compatible within 1σ or 2σ, and 3 are compatible within
3σ. Both results, therefore, are not overall compatible. Their fb is larger than ours for
all OCs, what could be attributed to the fact that they reach a lower q threshold, but
the studied mass range must also be taken into account and, as they do not provide
it, no conclusions can be drawn.

Finally, Li et al. (2022) determine the primordial fb fitting the CMD morphologies
using the Powerful CMD code. They provide a catalogue for 309 OCs for which they
consider the fit to be good, and for 288 OCs for which it is not as good, without
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Open cluster This work Li and Shao (2022)
Mass range

fb,MCMC(q > 0.6+0.05
−0.15) fb(q > 0.2)(M⊙)

ASCC 21 [0.18, 4.47] 0.20+0.05
−0.04 0.40 ± 0.03

NGC 2287 [0.68, 2.01] 0.105+0.014
−0.013 0.30 ± 0.03

NGC 2447 [0.73, 1.66] 0.24+0.02
−0.02 0.35 ± 0.03

NGC 2527 [0.71, 1.62] 0.106+0.02
−0.017 0.35 ± 0.04

NGC 2682 [0.71, 1.17] 0.37+0.02
−0.02 0.49 ± 0.03

Roslund 6 [0.40, 2.23] 0.085+0.02
−0.017 0.41 ± 0.03

Trumpler 3 [0.71, 2.29] 0.14+0.03
−0.02 0.46 ± 0.05

TABLE 6: Comparison between our estimation of the unresolved binary fraction of q > 0.6
and its estimation from Li and Shao (2022) (for systems with q > 0.2 but for unspecified

open cluster mass ranges), for the 7 open clusters we have in common.

(A) Niu, Wang, and Fu (2020). (B) Jadhav et al. (2021).

(C) Li and Shao (2022). (D) Li et al. (2022).

FIGURE 16: Unresolved binary fraction estimation from four different studies (specified
in the caption of each panel) as a function of our estimated unresolved binary fraction of
q > 0.6, for the common open clusters between the two studies in each case. As a guidance

for comparison, the equality line is drawn (dashed grey line).
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specifying either the mass or q ranges considered or the fb uncertainty. Our study
and their good-fit one have 98 OCs in common. For 96 OCs their estimated fb is
larger than ours (see Fig. 16D), but for UBC 260 they have determined a f LISC

b (q >

0) = 0.0 (unrealistic), while ours is fb,MCMC(q > 0.6+0.05
−0.15) = 0.12+0.04

−0.03. For one OC
(UBC 183) both measures are compatible within 1σ, for 2 OCs they are compatible
within 2σ, and for 6 OCs they are compatible within 3σ. This study, compared to
ours and the three previously mentioned, has the particularity of having many fb
values between 0.5 and 0.55. Out of the 98 OCs we have in common, 64 have values
in this range. This fb distribution they obtain might be the result of an imposed prior
and does not seem realistic enough. A similar situation happens applying ASteCA
to 84 observed OCs (see Appendix): its three fb estimators are larger than our fb
estimation for all OCs, although their fb distributions are broader than the one of Li
et al. (2022).

7.2 Dependence of the binary fraction on the distance and
mass

Figure 17 shows the dependency with distance of the unresolved fb of q > 0.6 de-
rived with MCMC (top) and of the estimated total fb of q > 0.6 (bottom). Firstly,
it shows that the number of studied OCs increases with distance, with only 11 OCs
out of the 324 studied being inside a sphere of radius of 200 pc centred on the Sun.
This is simply because the volume studied increases as the third power of the dis-
tance. Beyond this distance, there is a wide dispersion of fb values for a same value
of distance. Still, for both the unresolved and total fb the running median displays
a general tendency to increase with distance. For f tot

b (q > 0.6+0.05
−0.15), however, it is

slightly less steep. This could be attributed to the fact that, to calculate it, the consid-
ered resolved fb term does take into account the dependence with distance; although
its reliability depends on how realistic the simulations used are. In any case, the de-
pendence on distance coming from the estimated unresolved fb plays a major role.
The main reason for its increase with distance is the fact that for further OCs we
tend to see only the upper ends of their MSs, which have more massive stars and are
thus expected to display a higher fb. This is clearly seen in the bottom panel of Fig.
17, where the colourbar corresponds to the mean MS mass of each OC, computed as
follows as a function of the limits of our studied mass range (mmin and mmax) and
Kroupa (2001) power-law IMF (ξ(m) ∝ mα with α = 2.3 for m ≥ 0.5 M⊙):

⟨m⟩ =
∫ mmax

mmin
mξ(m) dm∫ mmax

mmin
ξ(m) dm

=
1 − α

2 − α
· mmax

2−α − mmin
2−α

mmax1−α − mmin
1−α

(17)

We find that for increasing distance, the mmax observed does not vary signifi-
cantly, while mmin increases. This results in the MS being shortened from the reddest
end so that the further the OC is, a smaller portion of its upper MS end is seen, which
comprises stars that are more massive (yielding thus a larger ⟨m⟩) and have higher
fb. Hence, the tendency that Fig. 17 shows of the unresolved and total fb increasing
with distance reflects not an intrinsic dependence, but the fact that the limiting ap-
parent magnitude causes the observable portion of the OC’s MS to be dependent on
the distance; and that the fb depends on the mass of the stars. We therefore find the
increase of fb with the mass of the primary star to be in agreement with observational
evidence.
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FIGURE 17: Top: Unresolved binary fraction of systems with q > 0.6 for the 324 open clus-
ters in our sample, estimated through MCMC, as a function of the distance in logarithmic
scale, colour-coded by the reliability parameter of the MCMC fit. Bottom: Total binary
fraction of systems with q > 0.6 for the 324 open clusters in the sample as a function of
the distance in logarithmic scale, colour-coded by the mean main-sequence mass of each
open cluster. For both figures, the central thick dashed blue line is the running median,

and the thin blue dashed lines are the 16th and 84th running percentiles.

7.3 Dependence of the binary fraction on position

Figures 18 and 19 account for the three-dimensional spatial distribution of the sam-
ple of 324 OCs studied and its relation to the total fb. Figure 18 shows the projection
onto the Galactic plane of their positions, colour-coded by the total fb. They are ap-
proximately evenly distributed around the Sun, some of them reaching the centre of
the Sagittarius–Carina arm, while the centre of Perseus arm is out of the reach of the
distance limit of 1.5 kpc of our sample. No apparent correlation between the total fb
and the (X⊙, Y⊙) position is seen.
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Figure 19 shows the OC’s height above the Galactic plane as a function of the
distance from the Galactic centre, colour-coded by the total fb. All the OCs fall inside
the solar neighbourhood scale height for the thin disc, zd ≈ 300 pc, except one: NGC
2682, at Z = 470 pc. As before, no clear correlation is seen between the total fb and
the Z coordinate.

FIGURE 18: Projection on the Galactic plane of the locations of the 324 open clusters in our
catalogue (within a distance of 1.5 kpc, indicated by the dashed circumference), colour-
coded by the estimated total binary fraction of main-sequence members with q > 0.6 (the
Galactic Centre is towards negative X⊙). The coloured solid curves are the centres of the
Local arm (black), Sagittarius–Carina arm (green) and Perseus arm (blue), as defined in

Reid et al. (2019).

FIGURE 19: Height above the Galactic plane versus Galactocentric radius for the 324 open
clusters in our catalogue, colour-coded by the estimated total binary fraction of main-
sequence members with q > 0.6. The Sun’s position at RGC = 8.34 kpc is indicated with a

black asterisk symbol.
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7.4 Dependence of the binary fraction on age

Figure 20 shows the dependence of f tot
b,MCMC(q > 0.6+0.05

−0.15) on the OC’s age. It dis-
plays a large dispersion, although the running median decreases with age for the
younger OCs up to approximately log10(age[yr]) ∈ [8.0, 8.5], and for OCs older than
this value it increases with age. The initial decreasing trend can be explained by bi-
nary disruption through gravitational interactions, while creating binaries from two
single stars is much less common. The age range for which we find an inversion of
the trend is compatible with the value found for 8 OCs in Thompson et al. (2021),
log10(200 · 106yr) = 8.30, for which the decreasing fb trend with age stops; although
in their case after these first 200 Myr of the OC’s lifetime fb becomes fairly constant
instead of increasing.

FIGURE 20: Total binary fraction of systems with q > 0.6 for the 324 open clusters in
our sample as a function of the decimal logarithm of their age in years, colour-coded by
the mean main-sequence mass of each open cluster. The dashed blue line is the running

median, and the errorbars are calculated as the 16th and 84th percentiles.

In the left panel of Fig. 21 we confirm what was already seen before: for a cer-
tain age, the further the OC, the shorter its upper MS portion observed, which is
thus more massive (increasing ⟨m⟩); whereas the closer the OC is, the observed MS
extends from the upper end towards redder values of the faint end and, so, the
less massive and more abundant stars are the ones that dominate (decreasing ⟨m⟩).
Focusing on the further distances instead, the older the OC, the smaller ⟨m⟩. This
reflects that the MSTO is shifted towards redder BP − RP for older OCs, thus com-
prising less massive stars, and it is the reason why the top right corner of the figure is
empty. The right image of this figure is the same but now coloured according to the
total fb instead of the distance. In this case, a clear correlation cannot be appreciated.
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FIGURE 21: Mean main-sequence mass of the open cluster as a function of the decimal
logarithm of its age in years for the 324 open clusters in our catalogue, colour-coded by

their distance (left) and by their total binary fraction of systems with q > 0.6 (right).

7.5 Comparison to field stars

In OCs, the region between the single-star main sequence (SS) and the secondary
sequence (BS) is not very densely populated. This could be due to the fact that the
mass-ratio distribution is biased towards equal masses, although this is not necessar-
ily the case because the BS is not only composed of equal-mass binaries but has also
contribution from a range of high q. For field binaries, however, a clear peak in the q
distribution near unity has been reported (Fisher, Schröder, and Smith, 2005), which
seems to be present at small periods and it may even decrease with mass (Söder-
hjelm, 2007). Nevertheless, field binaries are not necessarily representative of OC
binaries here studied. Cluster binaries are in the process of diffusing from the OC at
a significant rate over timescales ∼ 108 yr (Fisher, Schröder, and Smith, 2005), and
without a better understanding of their ejection processes, the overall fb of OCs and
field stars cannot be easily compared (Thompson et al., 2021); and such comparison
is out of the scope of this work.

A recent review on this topic is Offner et al. (2022), which states that for close
and intermediate separations the fb of FGK MS stars in young OCs are consistent
with their field MS counterparts; and the close fb of old OCs also match the field
values, though the cluster cores have an excess of binaries due to mass segregation.
Regarding wide binaries in OCs, Gaia observations reveal a deficit of them especially
in the OCs with higher stellar densities, likely due to dynamical disruptions.
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Conclusions

The study of the binary fraction in open clusters requires membership determina-
tion and binary identification. Both have been made possible thanks to the unprece-
dented amount of high precision data for parallaxes, proper motions, and photom-
etry provided by the successive data releases of the Gaia mission. We have studied
324 OCs, 228 from Tarricq et al. (2022) and 96 from Cantat-Gaudin et al. (2020) cat-
alogues, retaining only their members having a membership probability larger than
0.7.

The study of the fb in OCs is usually restricted to the unresolved binaries. Their
identification can be done individually mainly through two methods. The first is the
detection of photometric binaries, either because they are eclipsing binaries or us-
ing more sophisticated analysis like comparing observed magnitudes from multiple
photometric filters to synthetic star spectral energy distributions (Thompson et al.,
2021).The second method is through radial velocities. But, given the number of stars
in each OC and the velocity precision necessary to detect most binary systems, these
spectroscopic surveys can take many years to complete. Such individual studies are
not feasible, therefore, to be carried out for the majority of OC members, nor for
large OC samples.

This is why the CMD, only requiring imaging in two filters, is often used for OCs
as a fundamental diagnostic tool. A simple classification is usually done dividing the
CMD into two regions, one associated with the SS locus (including single stars and
low-q systems) and the other with the equal-mass BS (including the higher-q sys-
tems), as done in de Grijs et al. (2013), Cordoni et al. (2018) and Jadhav et al. (2021).
The degeneracy of metallicity and reddening, however, affects the isochrone fitting
precision. An alternative is to create simulated CMDs using isochrones and binary
prescriptions, and find the best fit (giving the nominal parameters) minimizing the
distances between synthetic and observed data, as done in Niu, Wang, and Fu (2020)
and ASteCA. Still, these methods rely on isochrone fitting and treat the rest of param-
eters as nuisance parameters. Finally, Li and Shao (2022) fitted all cluster parameters
simultaneously in a fully probabilistic and selfconsistent way, modelling the OC’s
observed CMD as a mixture distribution of single stars, unresolved binaries, and
field stars.

Our approach, alternatively, models the observed G vs. (BP − RP) CMD as a
mixture distribution of single stars and unresolved binaries, considering that two
Gaussian distributions centred on the SS and BS loci introduce the observed scatter
in G magnitude; one of them mostly accounting for the simple and low-q systems,
and the other for the high-q binaries. We are not concerned with estimating all the
OC’s fundamental parameters, only fb, which is estimated as the proportion of the
BS Gaussian area (counts) to the SS one, without need for estimating the q of each
unresolved binary system. But we do need to characterize the q range our BS Gaus-
sian (and, thus, fb) takes into account, which by construction involves the higher
q values down to qlim. This value is estimated applying the method to a reduced
representative sample of simulated CMDs.
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This can be successfully done with our MCMC implementation, which is applica-
ble to 371 OCs out of the 374 that verify the conditions on the number of MS selected
members and MS width. Through visual inspection, it is found to work properly for
the final studied sample of 324 OCs, implying a high percentage (87%) of successful
applications. It yields values of fb(q > 0.6+0.05

−0.15) in the range [0.04, 0.62] with a me-
dian nominal uncertainty of 0.04 (not taking into account systematics). This method
is largely preferred over the GMM implementation, which yields compatible fb es-
timations for the common observed OCs, because the latter is restricted to a sample
four times smaller of OCs of lower fb and for which qlim cannot be estimated due to
the different performance of GMM in the observed and simulated CMDs.

The advantages of our modelling are that it does not rely on theoretical isochrone
fitting or any prescription on the binaries, it just needs a proper fitting of the SS. The
versatility of this polynomial functionality fitted through MCMC enables to study
OCs with varied characteristics and degrees of differential extinction, thus carrying
out a homogenous study of a large sample. The use of simulations, besides estimat-
ing qlim, allows us to estimate the total binary fraction f tot

b (q > qlim), accounting for
the usually neglected small portion of resolved binaries.

The main drawbacks are that all the OCs’ selected MS members are regarded
as either simple or binary systems, instead of acknowledging the possible presence
of field star contamination or higher-order multiple systems; and also that the un-
certainties intrinsic to the modelling are difficult to quantify. The uncertainty per-
centiles of the estimated qMCMC,obs

lim = 0.6+0.05
−0.15 could also be considered too large for

some purposes.
Our unresolved fb estimations are coherent with the values of Niu, Wang, and

Fu (2020). Our results are harder to be compared to other studies, which do not spec-
ify the considered mass and/or q range. Estimating the fb for some of our studied
observed OCs with an alternative automated analysis, using ASteCA, we find degen-
erated solutions with larger values and uncertainties than ours. However, using the
new version of this code we might be able to perform a more accurate study, im-
proving the isochrone fitting and binaries’ prescriptions. Overall, the fb estimation
is by no means trivial, and it depends inevitably on the modelling.

We find an increase of the total fb with the mass of the primary star, in agree-
ment with observational evidence. No correlation appears between its value and
the position in or perpendicular to the Galactic plane. There is a great dispersion in
the total fb dependence on the OC age, although the trend of the running median
is to decrease with age until approximately log10(age[yr]) ∈ [8.0, 8.5], what could be
explained by binary disruption through gravitational interactions, but for older ages
this trend increases. As future work, we could assign a probability to each observed
object to belong to one Gaussian distribution or the other, and establish a probability
threshold to assign them to one. This would facilitate the study of fb dependence on
the spectral type and the distance to the OC’s centre (to study whether there is mass
segregation). Our assumption of the distributions being Gaussian is not physically
motivated, but a first-order approach. Nonetheless, within its limitations, our mod-
elling and its MCMC implementation can be overall considered a valid approach
to homogeneously estimate the unresolved binary fraction of high mass ratio for a
sample of open clusters. The catalogue we provide is the largest of this kind, and
could help in providing insight into stellar and open cluster evolution.
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Appendix: ASteCA analysis

Here we summarize the results of the fb estimation for some of the OCs in our sam-
ple through one of the methods of automatic processing of data developed recently
to estimate the fundamental parameters of OCs, to evaluate how our developed
methods compare to it. In particular, we apply ASteCA (Automated Stellar Cluster
Analysis; Perren, G. I., Vázquez, R. A., and Piatti, A. E., 2015), an open source
code that determines the fundamental parameters for each OC via CMD analysis,
using ptemcee parallel tempering Bayesian inference algorithm (Vousden, Farr, and
Mandel, 2016) to look for the synthetic cluster generated from theoretical PARSEC
isochrones which fits it better (as defined by a Poisson likelihood ratio). As these
isochrones only comprise simple systems, ASteCA implements the prescriptions for
the generation of binary systems in the synthetic clusters. In the version we use
(0.4.2), the distribution of binary systems as a function of the primary mass is uni-
form; and the assignation of the secondary mass follows also a uniform distribution
in q ∈ [qmin, 1] (qmin is an input parameter). Such distributions to generate binary
systems differ from the ones implemented by GOG (Sect. 5.1), and also from obser-
vations.

We applied ASteCA to the 84 observed OCs in common for both the GMM and
MCMC methods, and their respective simulations, and obtained the mean, median
and mode of the fb, as well as its 16th and 84th percentiles.

For the observed OCs, each of these three estimations is compatible within 1σ
computing it with only our MS selected members or with all the OC members given
by the catalogues. Figure 22 shows the large differences between these three esti-
mations. Moreover, for 78/84 OCs (93%) the rest of the 84th fb percentile minus the
16th is larger than 0.3; and for 73 OCs the nominal error is greater than 0.9 times the
fb median. This reflects that the fb marginalized posterior probability distribution
does not present a peak, it has not properly converged, so that its large uncertainty
range implies an important degeneration in the solution. In the bottom panel of Fig.
22 the distribution of ASteCA’s fb estimations for the 84 OCs are compared with our
inferred fb. All of them (ASteCA’s fb mean, median and mode) are larger than our
value for all OCs, and, for instance, ASteCA’s fb mean is compatible with our GMM-
inferred one within 1σ for only 14/84 OCs (17%). Given the large uncertainties of
ASteCA’s fb, however, their values are not very informative in any case.

Applying ASteCA to the 84 simulated OCs, we find again the same discrepancy
between the three fb estimators (equivalent behaviour as in Fig. 22) and very large
uncertainties. For these simulated CMDs having the same number of MS members
as the observed CMDs and comprising the same MS range, given the large ASteCA
uncertainties we find our GMM-inferred fb and the fb mean yield by ASteCA to be
compatible within 1σ for 62% of OCs. However, the poorly constrained values of
ASteCA are still not very informative.

ASteCA’s isochrone fitting process becomes considerably more difficult if the red
clump (RC) and/or MSTO are missing, since they are both indicative of the evolu-
tionary stage and play an important role in breaking the degeneracy of the solutions.
This could explain the degeneracy of the solutions when applying ASteCA to the
selected members of the observed OCs and their respective simulated CMDs. But
these results for the observed OCs are found to be compatible with the ones obtained
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considering all their members, without performing our MS selection. The problem
could be, therefore, that both the MSTO and RC happen to be the least populated
parts of the CMDs.

FIGURE 22: Top: Differences between ASteCA’s median and mean of fb (magenta) and
between ASteCA’s median and mode of fb (green), as a function of the number of selected
main-sequence members of each of the 84 observed open clusters. Bottom: Histograms of
the fb for the 84 observed open clusters estimated through MCMC (orange), GMM (red),

ASteCA’s mean (magenta), ASteCA’s median (purple) and ASteCA’s mode (green).

At the time of this writing, a new ASteCA version (0.4.3) has been released,
which includes a large update on the synthetic cluster generation process, involv-
ing major improvements on the prescriptions for the generation of binary systems.
The application of this new ASteCA version to our sample of OCs, both observed and
simulated, as well as the study of how to improve the isochrone fitting in order to
obtain better constrained fb, are deferred to future work.
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