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Surface tension and dynamics of fingering patterns
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We study the minimal class of exact solutions of the Saffman-Taylor problem with zero surface tension,
which contains the physical fixed points of the regularigezhzero surface tensipproblem. New fixed points
are found and the basin of attraction of the Saffman-Taylor finger is determined within that class. Specific
features of the physics of finger competition are identified and quantitatively defined, which are absent in the
zero surface tension case. This has dramatic consequences for the long-time asymptotics, revealing a funda-
mental role of surface tension in tltynamicsof the problem. A multifinger extension of microscopic solv-
ability theory is proposed to elucidate the interplay between finger widths, screening and surface tension.
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PACS numbg(s): 47.54+r, 47.20.Hw, 47.20.Ky, 47.20.Ma

The displacement of a viscous fluid by a nonviscous oneppropriately captured by the idealized problem, particularly
within the gap of a Hele-Shaw cdll] has been one of the concerning the long-time asymptotics.
most studied problems in interfacial pattern formation for From a different perspective, the MS scenario itself has
several decade®?]. The relative simplicity of the problem been questioned recently by results of R&8], where it is
has made possible an analytical understanding of the subtRiaimed that in a wide class of nonsingular exact solutions,
role of surface tensiow in the selection of the Saffman- the o=0 dynamics leads naturally to the solution predicted
Taylor finger[3], as a prototype of the so-called microscopic by selection theory, without invoking surface tension to ex-
solvability (MS) scenario of pattern selectid@]. More re-  plain selection. This seems to support the claim, in clear
cently, the increasingly interesting and controversial issue o¢ontradiction with Ref[10], that surface tension is unessen-
the role of surface tension in thdynamicsof fingering pat-  tial to the dynamics. In this paper we sustain the opposite
terns has been raised. conclusion[14,15|.

It is known that the zero surface tension Saffman-Taylor Our approach here consists of identifying specific dy-
(ST) problem is ill-posed as an initial value problem and isnamical features that can be viewed as essential to the pro-
plagued of finite-time singularitiefg},5]. Studies of Laplac- cess of finger competition from a physical standpoint, and
ian growth with zero surface tension, however, have provegheck them in exactly solvable zero surface tension cases.
insightful, for instance, in cases with needlelike growdh ~ This will allow for a precise diagnosis on the physical con-
In the case of smooth interfaces which concerns us here, tent of the idealizedr=0 problem.
rich variety of physically relevant morphologies has been The evolution equation for the time-dependent conformal
found among solutions of the=0 problem which remain mappingf(w,t) of the interior of the unit circle in the com-
smooth all the timefree of finite-time singularities[4,7,§.  plex planew into the region occupied by the viscous fluid in
Given the difficulty to get analytical information from the the physical plang=x+iy, in the case of zero surface ten-
o#0 problem, this has raised the question of what part ofion and in the comoving framghe frame moving with the
the physics of fingering dynamics, if any, is captured bymean interface velocijycan be written as
those solutions. Within this spirit, Dai, Kadanoff, and Zhou
explored via numerical simulation the qualitative differences Re{wa,,f(w,t)[1+af* (w,t)]}=—1. @
of distinct classes of initial condition[®]. For the so-called
polelike class and for finite time, the problem was concludedrhis is an alternative form to the equation of motion de-
to be qualitatively similar with and without surface tension. scribed for instance in Refgl] or [7]. An infinite channel of
More recently, Siegel and Tanvee0] have shown that the width 27 is considered along theaxis, and periodic bound-
regularized problendi.e., vanishingly smallo) may differ  ary conditions are assumed in thelirection.
significantly from the idealized problena&0) in order one The basic idea is to find a simple, low-dimensional non-
time, and therefore, smooth time evolving solutions of thesingular class of solutions of Eq1l) which contains the
o=0 problem donot coincide, in general, with the limit of physical fixed points of the regularized problem, and com-
solutions of the regularized problem. Since evidence of thipare the phase space flow topology in both cases. The key
is found only for the particular case of single-finger configu-point is that we do not need to know the exact phase space
rations, the conclusion may not apply to other situatidriy.  trajectories of the regularized problem, which are particularly
Furthermore, from a less stringent standpoint one could seetfficult to obtain even numerically for long times, but only
for situations where the evolution with and without surfacethe phase space flow topology. The latter can indeed be in-
tension are at least qualitatively equivalent, in the sense thderred unambiguously from existing empirical evidence both
a (smal) quantitative difference between the two remainsexperimentally and simulationally. For finite surface tension,
bounded for all timg12]. Further physical insight is thus a two-finger configuration subspace, for instance, must con-
still necessary to clarify the phenomenology which may betain three fixed points, namely tiienstablg¢ planar interface
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(PI), the (stablg ST single finger1ST), and a saddle fixed 18T PI
point corresponding to the degenerate double ST finger 10 =

(2ST). For finite o (and in the high viscosity contrast limit
[16]), the 1ST fixed point is known to be the universal at-
tractor of this problem so all trajectories start at Pl and end
up at 1ST. The 2ST fixed point will have a lower dimension
attracting manifold conected to PI, and will presumably gov-
ern the dynamics of finger competition.

A class of solutions witho=0 which contains planar,
one-finger, and two-finger fixed points is of the form

T

f(w,t)=—In w+d(t)+(1—\){In[1— a(t)w]
+In[1+ a* (t)w]}, (2

two unequalfingers. The interface shape has two symmetry

axes along the fingers, separated a distancguch symme- 0.0 ‘
0.0 0.5 1.0

wherea(t)=a'(t) +ia”(t). This corresponds generically to /

28T

try simplifies the analysis but does not affect the competition
of fingers in any fundamental wdyt6]. u

The caseax’(t) =0 corresponds to a single finger with the . .
asymptotic ST shape fat”— 1. The casex”(t)=0 corre- E 5Ig)'_1(,'5)ig?iezslegczggvgxozégzti%nﬁmgx?l system defined by
sponds to two identical fingers which tend to a doubly de- gs- ' P '
generate ST solution a8’ — 1. For|a(t)|<1 the ansat£2) . _ _
describes sinusoidal perturbations of a planar interfagé ~ Pact two-dimensional phase spacg f') embedded in the
\ is a constant of motion and takes real values in the intervanfinite dimensional space of interface configurations. We
[0,1]. For well developed fingers is the total filling fraction ~May define the spacei(,r'), as the limiting case oé— 0
of the channel occupied by the invading fingers. (taken after the limits— = ). Since in the linear regime the

For o=0 this ansatz is exactly solvable in the sense thategularized problem for vanishingly smatlconverges regu-
if we insert Eq.(2) into Eq. (1) we obtain a closed set of larly to theo=0 solution, the manifoldsi(r) and u’,r’)
ordinary differential equations for the parameters «”, Must be tangent at the Pl fixed pointu=1,
andd. According to Ref[7] this case is free of finite-time =1 (see Fig. 1 According to selection theory, far—0,
singularities. The parametdraccounts for a global displace- the 1ST and 2ST fixed points must approach the correspond-
ment and is irrelevant for the present discussion. ing single-finger and double-finger fixed points of E@-—

For the sake of discussion and visualization, we find con{5) With A=1/2, which occur awi=0, r=1 andu=1, r
venient to parametrize the phase space in terms of the vari=0 respectively. Furthermore, we expect that the limiting
ablesu=1—a"? and r=(a'?+a"?~1)/(a""*~1). Thus, case (’,r')oand the spaceu(r) with X =1/2 must intersect
the phase space is the culpg,1]x[0,1]%[0,1] in the not only at PI, 1ST, and 2ST, but they must have in common

(u,r,\) space. In these variables, the time evolution is giverfhe two linesr=1 andu=1. o
by the equations Following the topological approach of R¢L6], it is use-

ful to consider the stream functiof, defined as the imagi-
) 3r—4—gr(l1-ru) nary part of the complex potentiafb(w,t)=—f(w,t)
u=2ru(l-u) TtgT (ur) (3 —Inw, in the comoving frame. Along the interfacgjs then
o a periodic function which provides a natural definition of
3r—2(1+ru)+g(l—ru)(2—r) individual aerial growth rate of fingers, which we calkj,
T+ gT,(ur) ., 4 and A ¢ for the longer and shorter fingers respectively. In
g this simple case these are given as maximum-to-minimum
differences of the stream function extrema along the inter-
face. ¥ may have only one maximum even for two-finger
1 configurations, in which case we take)s=0 and qualify
Tg(u,r)=(1-g)[2r+g(2r—1)]— E(l—g)zru the finger as “nongrowing.” In our case, and for finite width
fingers,A#>0 (growing and A#=0 (nongrowing corre-
—gur1l+g(ru—3)] (5) spond respectively to positive and negative tip velocities
relative to the mean interface position.
and whereg=1— 2\ =const. The physical scenario of finger competition which we
In order to compare with the physical casea#0 we  want to test, extracted from experiments and simulatiaé6$
introduce the following construction. Consider a one-can be briefly described as follows. In the linear and early
dimensional set of initial conditiong€0) of the form Eq. nonlinear regimes two different fingers grow with both
(2) surrounding the planar interfa¢Pl) fixed pointu=1, r Ay (1) and A yg(t) increasing with time. When the fingers
=1, for a fixed\. We take them infinitesimally close to Pl in are well developed and the “growth” functiorG(t)
such a way that the interface is in the linear reg[h@. The  =[Ay (1) +Agg(t) 1/ (1—N) [with 1-A=Ay ()
time evolution fromt=—« to t=o of this set spans a com- + Ag()] is of order 1, the competition takes over. This is

r=2r(1-r)

where
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signaled by an enhanced growth of the “competition” func-  Our basic point is that, according to the above discussion,
tion C(t)=(A¢ (1) —Aug()) (A (1) +Adg(t)) as Ay the possibility of successful competition is associated to the
starts to increase at the expensedafs. Existence of com- fact that dynamical trajectories cross the defect boundary
petition can thus be identified withh /s decreasing with  from below(annihilation of topological defec{d6]). In Fig.
time. The competition may be termed “successful” when1 we see that, fox=1/2, there is no successful competition
Ays— 0 asymptoticallyf C(«) =1], that is when a “grow- whatsoever since the critical trajectory is located above the
ing” finger is turned into “nongrowing” due to the presence defect boundary18].
of another finger. As discussed in REL6], this dynamical The cases ok # 1/2 ando=0 are not directly relevant to
elimination of the small finger is associated to topologythe viscous fingering problem, but may be relevant to other
changes in the physical velocity field, which occur via thegeneric situations of Laplacian growth in the spirit of Refs.
crossing of topological defects through the interface. [6], and will be discussed in detail elsewh¢is]. Here we
We now discuss the zero surface tension dynamics of ouwill just remark thatr* (\) is monotonically increasing, be-
ansatz(2), by analyzing the phase portrait of the dynamicaltweenr* (0)=0 andr*(1)=1. Therefore, the basin of at-
system defined by Eq$3)—(5). This is plotted in Fig. 1 for traction of the single finger solution is larger for narrower
A=1/2. In this case Eqg3)—(5) can be integrated analyti- fingers. Furthermore, since the defect boundary is indepen-
cally. Dynamical trajectories are of the form dent of\, there exists a critical .= 1/3 for whichr* crosses
the defect boundary. This implies that, foxx1/3, there are
5 2 dynamical trajectories which cross the defect boundary from
2u—3ru+tru — const ©) below, and therefore the competition is then successful for
u(l—r)(1—ru) B some finite region of phase space.
In summary, from the analysis of the=0 dynamics of
the class Eq.(2) we conclude that(i) only a small A-
and are plotted as solid lines with arrows. The dashed linedependent part of phase space behaves qualitatively as the
are N-independent boundaries. The short-dashed line separ+0 problem, leading to a ST single fingewith maybe a
rates the one-fingefabove and the two-finger(below) re-  residual non-growing finggr (i) dynamical elimination of
gions. The long-dashed one is the defect boundary separatigowing fingers does not occur for finger widths relevant to
the no-defectabove and the 1-defedtbelow) regions, with  the problem of viscous fingering & 1/2); (iii ) the picture of
Ays=0 andAys>0 respectively. competition based solely on Laplacian screening is insuffi-
Our central result is that the topological structure of thecient, since relative widths of fingers and not only relative tip
phase portrait for=0 (Fig. 1) is radically different from positions come into play.
that of finite surface tension. Its most salient feature is the In order for the “screening” picture to be valid, an addi-
fact that the ST single-finger solution has a limited basin oftional dynamical constraint is required to force the finger
attraction. Part of the flow evolves towards a continuum ofwidths to be equal. In growth processes based on aggregation
(attractivg fixed pointsr=0. The separatrix of the two re- of particles, the finger width may be fixed by particle size
gions is a critical trajectory ending in a nelsaddle fixed  (set to zero in Refd6]). In the problem of viscous fingering
point located au* =0 andr* =2\/(1+\). such constraint is supplied precisely by surface tension. This
For arbitraryh, the liner =0 is a continuum of stationary suggests that an extension of MS, which is essentially a
solutions with coexistingunequalfingers (different widths  static theory, to multifinger configurations, may shed new
N1, Ao with A {+A,=\) advancing with thesamevelocity  light on thedynamicsof the problem.
and with tip positions separated in theadirection by a finite The generalized multifinger MS scenario can be sketched
distanceA = (1—\)log[(1+ y1—u)/(1— y1—u)]. Solutions  as follows. For two-finger configurations, there exists a two
of this type have been reported previouEl8]. We would  parameter continuum family of steady state solutions which
like to call the attention upon the fact that the screening ofwve can parametrize bjx=\A;+X, and p=Ny/(Ay+1X)).
the Laplacian field, as the mechanism usually invoked torhe casegp=0,1 correspond trivially to the single-finger
explain competition, applies actually to the aerial growth ofcase. The casp=1/2 (two identical fingersis also reduc-
the small fingerA 5, which is reduced indeed by the pres- ible to single-finger MS in a channel of half width. Most
ence of the longer neighboring finger, but not to the velocity,nterestingly, one can shopd9] that, for nonzero surface
which may be in fact the same. Concepts such as screenirignsion, nontrivial stationary solutions witmequalfingers
length and time in competing fingers such as usd@jnare  (p# 1/2) exist. In this case, surface tension selects an infinite
only well defined after and additional constraint fixing the set of values oh which differs from the single-finger case,
relative finger widths is supplied. but which scale also as\.¢ 1/2)~ 3. Furthermore, for any
The fixed point (i*,r*) corresponds to a new type of given\ of the above discrete set, there exists another count-
asymptotic stationary solution of the=0 ST problem. It ably infinite set of possible values gqf with (p—1/2)~
consists of two fingers with unequal positive velocities. The= o*/3[19]. We plan to present this new set of fixed points of
length ratio of the fingers satisfi¢45] lim,_..Ls/L, =1/3  the problem with surface tension and its physical relevance
independently of\. For the r=0 solutions we have elsewherd19]. It is reasonable to expect that all two-finger
lim;_..Ls/L =1 while, for the 1ST fixed point when ap- solutions except th@=1/2, A=\ (o) (with N\, the mini-
proached from the two-finger region we havelimLg/L mum value ofA from MS) lie outside the spaceu(,r’).
=0. In the latter case, the residual nongrowing finger whichDespite the fact of being globally unstable, the=1/2, A
subsists is reminiscent of the “frozen” fingers observed in=\, fixed point is then the physically relevant one to de-
real experiments. scribe finger competition since it has an attracting manifold
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which includes the PI fixed poirflinear regime¢. The pro- the unstable direction of the 2ST fixed point becomes infini-
cess of finger competition can thus be pictured as followstelly marginal (a line of fixed points in that limit. In the
From the linear instability a given number of fingers emergeterminology of dynamical systems, this reflects the fact that
As far as this early stage is dominated by the most linearlyegs.(3)—(5) are structurally unstabl@0]. We thus conclude
unstable modéin the limit of weak white noise on PI, the that surface tension plays a fundamental role indjx@amics
emerging configuration will indeed be nearly perigdithe  of finger competition and that, for the long time asymptotics,
interface is relatively close to the attracting manifold of thej; ¢an only be treated as a “regular” perturbation in a very

nST fixed point[n equal fingers with\;=\p(c)/n]. The  |imjted region of phase space which excludes multifinger
fingers tend thus to adopt the same fingertip curvature angonfigurations.

select their widths at early stages of the nonlinear regime
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