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Surface tension and dynamics of fingering patterns

F. X. Magdaleno and J. Casademunt
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We study the minimal class of exact solutions of the Saffman-Taylor problem with zero surface tension,
which contains the physical fixed points of the regularized~nonzero surface tension! problem. New fixed points
are found and the basin of attraction of the Saffman-Taylor finger is determined within that class. Specific
features of the physics of finger competition are identified and quantitatively defined, which are absent in the
zero surface tension case. This has dramatic consequences for the long-time asymptotics, revealing a funda-
mental role of surface tension in thedynamicsof the problem. A multifinger extension of microscopic solv-
ability theory is proposed to elucidate the interplay between finger widths, screening and surface tension.
@S1063-651X~98!51204-4#

PACS number~s!: 47.54.1r, 47.20.Hw, 47.20.Ky, 47.20.Ma
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The displacement of a viscous fluid by a nonviscous o
within the gap of a Hele-Shaw cell@1# has been one of the
most studied problems in interfacial pattern formation
several decades@2#. The relative simplicity of the problem
has made possible an analytical understanding of the su
role of surface tensions in the selection of the Saffman
Taylor finger@3#, as a prototype of the so-called microscop
solvability ~MS! scenario of pattern selection@2#. More re-
cently, the increasingly interesting and controversial issue
the role of surface tension in thedynamicsof fingering pat-
terns has been raised.

It is known that the zero surface tension Saffman-Tay
~ST! problem is ill-posed as an initial value problem and
plagued of finite-time singularities@4,5#. Studies of Laplac-
ian growth with zero surface tension, however, have pro
insightful, for instance, in cases with needlelike growth@6#.
In the case of smooth interfaces which concerns us her
rich variety of physically relevant morphologies has be
found among solutions of thes50 problem which remain
smooth all the time~free of finite-time singularities! @4,7,8#.
Given the difficulty to get analytical information from th
sÞ0 problem, this has raised the question of what part
the physics of fingering dynamics, if any, is captured
those solutions. Within this spirit, Dai, Kadanoff, and Zh
explored via numerical simulation the qualitative differenc
of distinct classes of initial conditions@9#. For the so-called
polelike class and for finite time, the problem was conclud
to be qualitatively similar with and without surface tensio
More recently, Siegel and Tanveer@10# have shown that the
regularized problem~i.e., vanishingly smalls! may differ
significantly from the idealized problem (s50) in order one
time, and therefore, smooth time evolving solutions of
s50 problem donot coincide, in general, with the limit o
solutions of the regularized problem. Since evidence of
is found only for the particular case of single-finger config
rations, the conclusion may not apply to other situations@11#.
Furthermore, from a less stringent standpoint one could s
for situations where the evolution with and without surfa
tension are at least qualitatively equivalent, in the sense
a ~small! quantitative difference between the two rema
bounded for all time@12#. Further physical insight is thu
still necessary to clarify the phenomenology which may
571063-651X/98/57~4!/3707~4!/$15.00
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appropriately captured by the idealized problem, particula
concerning the long-time asymptotics.

From a different perspective, the MS scenario itself h
been questioned recently by results of Ref.@13#, where it is
claimed that in a wide class of nonsingular exact solutio
the s50 dynamics leads naturally to the solution predict
by selection theory, without invoking surface tension to e
plain selection. This seems to support the claim, in cl
contradiction with Ref.@10#, that surface tension is unesse
tial to the dynamics. In this paper we sustain the oppo
conclusion@14,15#.

Our approach here consists of identifying specific d
namical features that can be viewed as essential to the
cess of finger competition from a physical standpoint, a
check them in exactly solvable zero surface tension ca
This will allow for a precise diagnosis on the physical co
tent of the idealizeds50 problem.

The evolution equation for the time-dependent conform
mappingf (w,t) of the interior of the unit circle in the com
plex planew into the region occupied by the viscous fluid
the physical planez5x1 iy , in the case of zero surface ten
sion and in the comoving frame~the frame moving with the
mean interface velocity! can be written as

Re$w]wf ~w,t !@11] t f * ~w,t !#%521. ~1!

This is an alternative form to the equation of motion d
scribed for instance in Refs.@1# or @7#. An infinite channel of
width 2p is considered along thex axis, and periodic bound
ary conditions are assumed in they direction.

The basic idea is to find a simple, low-dimensional no
singular class of solutions of Eq.~1! which contains the
physical fixed points of the regularized problem, and co
pare the phase space flow topology in both cases. The
point is that we do not need to know the exact phase sp
trajectories of the regularized problem, which are particula
difficult to obtain even numerically for long times, but on
the phase space flow topology. The latter can indeed be
ferred unambiguously from existing empirical evidence bo
experimentally and simulationally. For finite surface tensio
a two-finger configuration subspace, for instance, must c
tain three fixed points, namely the~unstable! planar interface
R3707 © 1998 The American Physical Society
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~PI!, the ~stable! ST single finger~1ST!, and a saddle fixed
point corresponding to the degenerate double ST fin
~2ST!. For finite s ~and in the high viscosity contrast lim
@16#!, the 1ST fixed point is known to be the universal a
tractor of this problem so all trajectories start at PI and e
up at 1ST. The 2ST fixed point will have a lower dimensi
attracting manifold conected to PI, and will presumably go
ern the dynamics of finger competition.

A class of solutions withs50 which contains planar
one-finger, and two-finger fixed points is of the form

f ~w,t !52 ln w1d~ t !1~12l!$ ln@12a~ t !w#

1 ln@11a* ~ t !w#%, ~2!

wherea(t)5a8(t)1 ia9(t). This corresponds generically t
two unequalfingers. The interface shape has two symme
axes along the fingers, separated a distancep. Such symme-
try simplifies the analysis but does not affect the competit
of fingers in any fundamental way@16#.

The casea8(t)50 corresponds to a single finger with th
asymptotic ST shape fora9→1. The casea9(t)50 corre-
sponds to two identical fingers which tend to a doubly d
generate ST solution asa8→1. For ua(t)u!1 the ansatz~2!
describes sinusoidal perturbations of a planar interface@17#.
l is a constant of motion and takes real values in the inte
@0,1#. For well developed fingersl is the total filling fraction
of the channel occupied by the invading fingers.

For s50 this ansatz is exactly solvable in the sense t
if we insert Eq.~2! into Eq. ~1! we obtain a closed set o
ordinary differential equations for the parametersa8, a9,
and d. According to Ref.@7# this case is free of finite-time
singularities. The parameterd accounts for a global displace
ment and is irrelevant for the present discussion.

For the sake of discussion and visualization, we find c
venient to parametrize the phase space in terms of the
ables u512a92 and r 5(a821a9221)/(a9221). Thus,
the phase space is the cube@0,1#3@0,1#3@0,1# in the
(u,r ,l) space. In these variables, the time evolution is giv
by the equations

u̇52ru~12u!
3r 242gr~12ru !

11gTg~u,r !
, ~3!

ṙ 52r ~12r !
3r 22~11ru !1g~12ru !~22r !

11gTg~u,r !
, ~4!

where

Tg~u,r !5~12g!@2r 1g~2r 21!#2
1

2
~12g!2ru

2gur2@11g~ru23!# ~5!

and whereg5122l5const.
In order to compare with the physical case ofsÞ0 we

introduce the following construction. Consider a on
dimensional set of initial conditions (t50) of the form Eq.
~2! surrounding the planar interface~PI! fixed pointu51, r
51, for a fixedl. We take them infinitesimally close to PI i
such a way that the interface is in the linear regime@17#. The
time evolution fromt52` to t5` of this set spans a com
er
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pact two-dimensional phase space (u8,r 8) embedded in the
infinite dimensional space of interface configurations. W
may define the space (u8,r 8)0 as the limiting case ofs→0
~taken after the limitst→6`!. Since in the linear regime the
regularized problem for vanishingly smalls converges regu-
larly to thes50 solution, the manifolds (u,r ) and (u8,r 8)
must be tangent at the PI fixed point,u51,
r 51 ~see Fig. 1!. According to selection theory, fors→0,
the 1ST and 2ST fixed points must approach the correspo
ing single-finger and double-finger fixed points of Eqs.~3!–
~5! with l51/2, which occur atu50, r 51 and u51, r
50 respectively. Furthermore, we expect that the limiti
case (u8,r 8)0 and the space (u,r ) with l51/2 must intersect
not only at PI, 1ST, and 2ST, but they must have in comm
the two linesr 51 andu51.

Following the topological approach of Ref.@16#, it is use-
ful to consider the stream functionc, defined as the imagi-
nary part of the complex potentialF(w,t)52 f (w,t)
2 ln w, in the comoving frame. Along the interface,c is then
a periodic function which provides a natural definition
individual aerial growth rate of fingers, which we callDcL
and DcS for the longer and shorter fingers respectively.
this simple case these are given as maximum-to-minim
differences of the stream function extrema along the in
face. c may have only one maximum even for two-fing
configurations, in which case we takeDcS50 and qualify
the finger as ‘‘nongrowing.’’ In our case, and for finite widt
fingers,Dc.0 ~growing! and Dc50 ~nongrowing! corre-
spond respectively to positive and negative tip velocit
relative to the mean interface position.

The physical scenario of finger competition which w
want to test, extracted from experiments and simulations@16#
can be briefly described as follows. In the linear and ea
nonlinear regimes two different fingers grow with bo
DcL(t) andDcS(t) increasing with time. When the finger
are well developed and the ‘‘growth’’ functionG(t)
5@DcL(t)1DcS(t)#/(12l) @with 12l5DcL(`)
1DcS(`)# is of order 1, the competition takes over. This

FIG. 1. Phase space flow of the dynamical system defined
Eqs.~3!–~5! for l51/2. See explanation in text.
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signaled by an enhanced growth of the ‘‘competition’’ fun
tion C(t)5„DcL(t)2DcS(t)…/„DcL(t)1DcS(t)… as DcL
starts to increase at the expense ofDcS . Existence of com-
petition can thus be identified withDcS decreasing with
time. The competition may be termed ‘‘successful’’ wh
DcS→0 asymptotically@C(`)51#, that is when a ‘‘grow-
ing’’ finger is turned into ‘‘nongrowing’’ due to the presenc
of another finger. As discussed in Ref.@16#, this dynamical
elimination of the small finger is associated to topolo
changes in the physical velocity field, which occur via t
crossing of topological defects through the interface.

We now discuss the zero surface tension dynamics of
ansatz~2!, by analyzing the phase portrait of the dynamic
system defined by Eqs.~3!–~5!. This is plotted in Fig. 1 for
l51/2. In this case Eqs.~3!–~5! can be integrated analyti
cally. Dynamical trajectories are of the form

2u23ru1r 2u2

Au~12r !~12ru !
5const ~6!

and are plotted as solid lines with arrows. The dashed li
are l-independent boundaries. The short-dashed line s
rates the one-finger~above! and the two-finger~below! re-
gions. The long-dashed one is the defect boundary separ
the no-defect~above! and the 1-defect~below! regions, with
DcS50 andDcS.0 respectively.

Our central result is that the topological structure of t
phase portrait fors50 ~Fig. 1! is radically different from
that of finite surface tension. Its most salient feature is
fact that the ST single-finger solution has a limited basin
attraction. Part of the flow evolves towards a continuum
~attractive! fixed pointsr 50. The separatrix of the two re
gions is a critical trajectory ending in a new~saddle! fixed
point located atu* 50 andr * 52l/(11l).

For arbitraryl, the liner 50 is a continuum of stationary
solutions with coexistingunequalfingers ~different widths
l1 , l2 with l11l25l! advancing with thesamevelocity
and with tip positions separated in thex direction by a finite
distanceD5(12l)log@(11A12u)/(12A12u)#. Solutions
of this type have been reported previously@7,8#. We would
like to call the attention upon the fact that the screening
the Laplacian field, as the mechanism usually invoked
explain competition, applies actually to the aerial growth
the small fingerDcS , which is reduced indeed by the pre
ence of the longer neighboring finger, but not to the veloc
which may be in fact the same. Concepts such as scree
length and time in competing fingers such as used in@6#, are
only well defined after and additional constraint fixing t
relative finger widths is supplied.

The fixed point (u* ,r * ) corresponds to a new type o
asymptotic stationary solution of thes50 ST problem. It
consists of two fingers with unequal positive velocities. T
length ratio of the fingers satisfies@15# limt→`LS /LL51/3
independently of l. For the r 50 solutions we have
limt→`LS /LL51 while, for the 1ST fixed point when ap
proached from the two-finger region we have limt→`LS /LL
50. In the latter case, the residual nongrowing finger wh
subsists is reminiscent of the ‘‘frozen’’ fingers observed
real experiments.
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Our basic point is that, according to the above discuss
the possibility of successful competition is associated to
fact that dynamical trajectories cross the defect bound
from below~annihilation of topological defects@16#!. In Fig.
1 we see that, forl51/2, there is no successful competitio
whatsoever since the critical trajectory is located above
defect boundary@18#.

The cases oflÞ1/2 ands50 are not directly relevant to
the viscous fingering problem, but may be relevant to ot
generic situations of Laplacian growth in the spirit of Re
@6#, and will be discussed in detail elsewhere@15#. Here we
will just remark thatr * (l) is monotonically increasing, be
tween r * (0)50 and r * (1)51. Therefore, the basin of at
traction of the single finger solution is larger for narrow
fingers. Furthermore, since the defect boundary is indep
dent ofl, there exists a criticallc51/3 for whichr * crosses
the defect boundary. This implies that, forl,1/3, there are
dynamical trajectories which cross the defect boundary fr
below, and therefore the competition is then successful
some finite region of phase space.

In summary, from the analysis of thes50 dynamics of
the class Eq.~2! we conclude that~i! only a small l-
dependent part of phase space behaves qualitatively as
sÞ0 problem, leading to a ST single finger~with maybe a
residual non-growing finger!; ~ii ! dynamical elimination of
growing fingers does not occur for finger widths relevant
the problem of viscous fingering (l51/2); ~iii ! the picture of
competition based solely on Laplacian screening is insu
cient, since relative widths of fingers and not only relative
positions come into play.

In order for the ‘‘screening’’ picture to be valid, an add
tional dynamical constraint is required to force the fing
widths to be equal. In growth processes based on aggrega
of particles, the finger width may be fixed by particle si
~set to zero in Refs.@6#!. In the problem of viscous fingering
such constraint is supplied precisely by surface tension. T
suggests that an extension of MS, which is essentiall
static theory, to multifinger configurations, may shed ne
light on thedynamicsof the problem.

The generalized multifinger MS scenario can be sketc
as follows. For two-finger configurations, there exists a t
parameter continuum family of steady state solutions wh
we can parametrize byl5l11l2 and p5l1 /(l11l2).
The casesp50,1 correspond trivially to the single-finge
case. The casep51/2 ~two identical fingers! is also reduc-
ible to single-finger MS in a channel of half width. Mos
interestingly, one can show@19# that, for nonzero surface
tension, nontrivial stationary solutions withunequalfingers
(pÞ1/2) exist. In this case, surface tension selects an infi
set of values ofl which differs from the single-finger case
but which scale also as (l21/2);s2/3. Furthermore, for any
givenl of the above discrete set, there exists another co
ably infinite set of possible values ofp with (p21/2);
6s1/3 @19#. We plan to present this new set of fixed points
the problem with surface tension and its physical releva
elsewhere@19#. It is reasonable to expect that all two-fing
solutions except thep51/2, l5lm(s) ~with lm the mini-
mum value ofl from MS! lie outside the space (u8,r 8).
Despite the fact of being globally unstable, thep51/2, l
5lm fixed point is then the physically relevant one to d
scribe finger competition since it has an attracting manif
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which includes the PI fixed point~linear regime!. The pro-
cess of finger competition can thus be pictured as follo
From the linear instability a given number of fingers emer
As far as this early stage is dominated by the most linea
unstable mode~in the limit of weak white noise on PI, the
emerging configuration will indeed be nearly periodic!, the
interface is relatively close to the attracting manifold of t
nST fixed point @n equal fingers withl i5lm(s)/n#. The
fingers tend thus to adopt the same fingertip curvature
select their widths at early stages of the nonlinear reg
according to single-finger MS theory. ThenST fixed will
then govern the process of competition in the sense tha
path connecting typical initial configurations with the sing
finger attractor, must necessarily pass near that saddle p
The phenomenon of competition is then viewed as the cr
over to the unstable directions of thenST,l5lm fixed point.
Such crossover is what is missed in thes50 problem, since
C
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int.
s-

the unstable direction of the 2ST fixed point becomes infi
telly marginal ~a line of fixed points! in that limit. In the
terminology of dynamical systems, this reflects the fact t
Eqs.~3!–~5! are structurally unstable@20#. We thus conclude
that surface tension plays a fundamental role in thedynamics
of finger competition and that, for the long time asymptoti
it can only be treated as a ‘‘regular’’ perturbation in a ve
limited region of phase space which excludes multifing
configurations.

We are indebted to David Jasnow for stimulating disc
sions. We acknowledge financial support from the Direcc´n
General de Ensen˜anza Superior~Spain!, Project No. PB96-
1001-C02-02, and the European Commission Project
ERB FMRX-CT96-0085. F.X.M. also acknowledges fina
cial support from the Comissionat per a Universitats i R
cerca~Generalitat de Catalunya!.
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