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Abstract

Galois theory is one of the most beautiful areas of mathematics presented in undergradu-
ate studies. Most of its success is due to the brilliant idea by the French mathematician
Évariste Galois of associating a group to every algebraic equation in a way that its sol-
vability can be studied through the language of group theory. Later on, this same idea
was pursued by mathematicians Émile Picard and Ernest Vessiot in the field of linear dif-
ferential equations. The resulting theory of linear differential equations mirrors in great
part that of polynomial equations.

The purpose of this work is twofold. On the one hand, we are going to give an
alternative definition of the Galois group associated with a polynomial equation and prove
its equivalence with the usual definition. Although somewhat more laborious to deal with,
this definition allows for a deeper intuition of what the Galois group is about. On the
other hand, we want to study the extension of Galois theory applied to linear differential
equations. We will develop the theory of differential algebra in a way that will enable us
to translate the alternative definition of the Galois group of a polynomial given in the first
section to that of a linear differential equation. We will also prove its equivalence with
the usual definition for the differential Galois group. Finally, we will comment on some
ways in which these ideas are used to tackle the representation of solutions to differential
equations in terms of their coefficients.

Resum

La teoria de Galois és una de les àrees de les matemàtiques més boniques que es solen
presentar durant els estudis de grau. Gran part del seu èxit és causada per la genial
idea del matemàtic francès Évariste Galois d’associar un grup a cada equació algebraica
de tal manera que la seva resolubilitat pugui ser estudiada a través del llenguatge de la
teoria de grups. Més tard, aquesta mateixa idea va ser perseguida pels matemàtics Émile
Picard i Ernest Vessiot en el camp de les equacions diferencials lineals. La teoria resultant
d’equacions diferencial lineals és en gran part anàloga a la d’equacions polinòmiques.

El propòsit d’aquest treball és doble. Per una banda, donarem una definició alter-
nativa del grup de Galois associat a una equació algebraica i en demostrarem la seva
equivalència amb la definició usual. Tot i que lleugerament més laboriosa de construir,
aquesta nova definició permet una intüıció més profunda sobre el que representa el grup
de Galois. Per l’altre costat, volem estudiar l’extensió de la teoria de Galois aplicada al
camp de les equacions diferencials lineals. Desenvoluparem la teoria de l’àlgebra diferen-
cial de tal manera que traduirem la definició alternativa del grup de Galois donada a la
primera secció a la corresponent noció en les equacions diferencials. També en demos-
trarem l’equivalència amb la definició habitual del grup de Galois diferencial. Finalment,
comentarem en algunes de les maneres en què aquestes idees són útils en l’estudi de les
representacions de solucions d’equacions diferencials en termes dels seus coeficients.
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Introduction

Galois theory is one of the most beautiful areas of mathematics presented in undergraduate
studies. It gives one instance of a problem that can be given a complete solution while
historically developing new and useful mathematical ideas. And most of its success is due
to the brilliant idea by the French mathematician Évariste Galois of associating a group
to every polynomial equation in a way that its solvability can be studied through the
language of group theory.

The purpose of this work is twofold. On the one hand, we want to give an alternative
insight into the Galois group of a polynomial equation. This is why we are going to
build towards a different definition of the group associated with a polynomial. Although
requiring somewhat more preliminary work to be done, in the opinion of the author it
gives some extra insight on what symmetries do the solutions of the equation possess. On
the other hand, we want to extend this definition to the also successful Galois theory of
differential equations. After presenting the required basic notions of differential algebra,
we are going to successfully give an analogous definition for the differential Galois group
to the one we presented for polynomials and prove its equivalence with the usual one.

Before beginning with the discussion itself, it might be appropriate to comment briefly
on the work and its intention. The idea at the core of this work, that is, the definition
of the Galois group in terms of algebraic relations between the roots and of group action
stabilizers, is one that I have had on standby for some time now. I found it interesting to
pursue this line of thought when I was studying for the course in algebraic equations at
the University of Barcelona. When I had to chose which subject I wanted to study during
my final degree work, this one was the first that I wanted to try. Since at that moment it
was only a sketch of a possible definition that might work in the same way as the Galois
group, I did not think it likely that the definition was correct. I had never found it in
the books and it was natural to think that it was either incorrect or, in the best possible
case, right but totally uninteresting.

After the first weeks of investigation and after getting in touch with my advisor, Dra.
Maria Teresa Crespo, it was beginning to be clear to me that these concepts might be
right. After some more dedication, I was seeing that apart from being right, it was
also interesting (to me, at least). That is because it gives another kind of insight into
the symmetries of linear equations, which are somewhat hidden by the more modern (and
more straightforward) definitions involving automorphisms. So it seemed possible to write
my final degree work about it. Further, in order to expand the scope of the work and
make it more suitable to the length and content of such a work, I began studying the
differential Galois theory, with the hope of being able to extend my original definition
about polynomials to the differential case too. In this sense, I was greatly satisfied when I
was beginning to see that indeed this might be possible. Therefore, when I arrived at the
part when I was able to define the Galois group of a differential equation by considering
the differential relationships between its solutions, it was greatly satisfying to me. In what
follows, I hope with my best wishes that my intention has been successfully translated to
the work and that my enthusiasm is present in the following pages.
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Structure of the work

In Section 1 we are going to refresh the basic concepts from ring and field theory and
the theory of algebraic equations. We do this to establish the notation used throughout
the work and to make it somewhat more self-contained. Please, note that most of these
concepts were given during the undergraduate courses in algebraic structures and algebraic
equations, so we will try not to go too deep into them.

After this brief introduction, we proceed to the first central part of the work, where
we give an alternative and maybe original definition of the Galois group for a polynomial
in terms of the group of permutations. Giving this definition, with its correspondent
motivation, and proving its equivalence with the usual one was one of the main goals and
motivations for this work. Moreover, the great target of the second (and larger) part of
the work will be to build the theory of differential algebra in order to give an analogous
definition for the differential Galois group.

In Section 2 we will give the basic definitions and ideas about differential algebra. We
will try to make it clear that this is the appropriate structure in which we can study linear
differential equations. We will also emphasize the parallelisms between this structure and
the structure required for polynomial equations. Next, a precise (and intuitive) definition
is given for the notion of a linear differential equation and its solutions. A first study of
the space of solutions and their structure is conducted. We will finish with an important
result about the dimension of the space of solutions.

In the more technical Section 3, a discussion about the analog of the splitting field
for a differential equation is conducted. Most of the section is concerned with proving
the existence and uniqueness of such extensions, called Picard-Vessiot extensions. Before
diving into that, and following the general philosophy of the work, we will spend some
time carefully motivating the direction we are going to take with the proof. This approach
can seem rather tiring or cumbersome at times, but we will stick to it in compensation
for the abundance of more straightforward texts in the topic (and in other topics as well).

After covering most of our fundamental and technical prerequisites, we can now in
Section 4 proceed with another central part of the work, defining the differential Galois
group of a linear differential equation. Again, the definition that we are going to reach
will not be the standard contemporary definition, but one based on the same ideas that
led us towards our definition of the polynomial Galois group. After another brief space
dedicated to building towards this definition, we reach a passage that mirrors in great part
what we saw during the first section but stated in the framework of differential algebra.
Although some of the proofs will look very similar to the ones given about polynomial
Galois theory, we will not omit them. That is because the similarity and resemblance
between both theories are not obvious, and the fact that some proofs could almost be
translated verbatim should be highlighted more than skipped.

In order to finish the work somewhat nicely, we give in Section 5 a short view about
one of many ways in which this theory of differential Galois groups is successful. Without
any intention to present the results originally and borrowing from the appropriate sources
when required, we are going to present in a personal fashion the notions of solvability
by quadratures and of solvability in elementary functions. This is not by any means a
principal section of the work and it’s here only to give some completeness to the narrative.

Finally, in the Appendix we will give the basic definitions and results from the theory
of algebraic geometry in affine spaces. In order to have some background knowledge about
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algebraic groups, which as will be seen, play a key role in differential Galois theory, some
basic notions had to be studied. The result of these inquiries are briefly presented in this
appendix and will be referenced in some points throughout the work.
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1 The Galois Group of a Polynomial Equation

In this section, we are going to summarize the main results from Galois theory of polyno-
mial equations. One of the goals of the section is to present the ideas and results of the
theory in such a way that they can be exported into differential Galois theory as straight-
forwardly as possible. Another goal of the section is to give an alternative definition of the
Galois group associated with a given polynomial. This definition will hopefully give anot-
her kind of motivation and insight for the theory and is the one that we will try to bring
into the context of differential algebra. Please note, however, that most of the results
in this section are covered during the courses of either algebraic structures or algebraic
equations in the bachelor’s degree in mathematics at the University of Barcelona.

Let’s begin by stating the problem that we are going to tackle in this first section.
Since the differential equations that we are going to consider further on in this work
are going to be defined over a field of characteristic zero, we can develop the theory of
algebraic equations for this kind of fields.

Problem 1.1. Let K be a field of characteristic zero and let K[X] be its ring of poly-
nomials. We want to follow Evariste Galois’ genius idea and try to associate to each
polynomial in K[X] a group in such a way that this group, called the Galois group of
the polynomial, gives insight into its properties. This is going to be the main goal of this
chapter, and in order to get there, we are going to prove some of the main results of the
theory.

1.1 Algebra Preliminaries

1.1.1 Polynomials and results from the theory of fields

We will begin the section by defining the main object of study of this chapter, the polyno-
mial. Unless otherwise stated, all rings are considered to be commutative and with unity.
We will designate the additive and the multiplicative neutral elements by the symbols 0
and 1 respectively.

Definition 1.2. Let R be a ring (commutative with unity). Let RN = R × R × ... be
the numerable cartesian product of copies of R. An element p of RN is of the form
p = (p0, p1, ...). We can define two binary operations in RN as follows.

(i) For p = (p0, p1, ...), q = (q0, q1, ...) ∈ RN, define the addition of polynomials as
p+ q = (p0 + q0, p1 + q1, ...).

(ii) For p = (p0, p1, ...), q = (q0, q1, ...) ∈ RN, define the multiplication of polynomials as
p · q = (c0, c1, ...) where ck =

∑k
i=0 piqk−i for each k ∈ N.

For this product to be well-defined we require another condition, namely, that the num-
ber of non-zero coefficients in each polynomial is finite. If that’s the case, we denote as
X the polynomial X = (0, 1, 0, ...) ∈ RN and realise that we can write every polynomial
p = (p0, ..., pn, 0, ...) with finitely many non zero coefficients as p = p(X) =

∑n
k=0 pkX

k,
where pk = (pk, 0, ...) by a stretch of notation and with the product defined above. The
set of elements of RN with finitely many non-zero coefficients together with those two
operations will be denoted by R[X], and is easily seen to be also a commutative ring with
unity.
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Thus, we have seen that given a ring R we can construct from it a ring of polynomials,
R[X]. In what follows, we are going to review some of the basic properties of this cons-
truction. One can immediately see that if the ring R is an integral domain, then R[X] is
also an integral domain. Thus, we can see that the properties of the ring R[X] depend
a lot on those of the base ring R. One case of special interest arises when R is a field,
and this is the case that we will be studying deeply. Before diving into that, let us define
what is the degree of a polynomial

Definition 1.3. Let R be a ring and R[X] its ring of polynomials. We define the degree
of a polynomial as a map deg : R[X] → N ∪ {−∞} where for p = (p0, ..., ) ∈ R[X],
deg p = max{n ∈ N : pn 6= 0}. This is well defined by the definition of the polynomial
ring. By convenience, we define the degree of the zero polynomial to be −∞.

One can prove a number of basic useful results about the degree of the sum and
the product of polynomials. Namely, that deg(p + q) ≤ max{deg p,deg, q} and that
deg(pq) = deg p + deg q provided R is an integral domain and getting into account the
usual rules to operate with the symbol −∞. One remarkable property about polynomials
involving their degree is the division algorithm. While it still holds in rings in a somewhat
weaker form, it’s nicer to switch here from rings to fields. This has no consequence in
our work, since all this presentation is aimed towards Galois Theory, which is always
constructed over fields. Moreover, in order to avoid considerations that would take us
in other directions, we are going to consider only fields of characteristic zero, i.e., fields
where 1 + 1 + 1 + ... + 1 = n · 1 6= 0 for all positive n. Then, when we consider the ring
of polynomials over a field K, we automatically know that K[X] is a commutative ring
with unity and that it is an integral domain. K[X] inherits some other properties from
K, but we will present them further on. That said, let’s resume our discussion.

Theorem 1.4. Let K be a field and p(X), q(X) ∈ K[X], q(X) 6= 0. Then, there exist
unique d(X), r(X) ∈ K[X] so that p(X) = d(X)q(X) + r(X) with deg r(X) < deg q(X).

This remarkable property allows us to prove the very important fact that the ring of
polynomials over a field is a principal ideal domain. Let us first refresh the definition.

Definition 1.5. Let R be an integral domain. Then, R is a principal ideal domain if for
every I ⊆ R ideal, there exists a ∈ I so that I = (a) = {ra ∈ R : r ∈ R}. An ideal of this
kind is called a principal ideal.

Proposition 1.6. Let K be a field. Then, K[X] is a principal ideal domain.

Together with it, we have another very useful concept, namely that of the unique
factorization domain. Let R be an integral domain. We will denote R× = R \ {0} and
R∗ = {a ∈ R : ∃b ∈ R, ab = ba = 1}, and call R∗ the set of units of R. Then:

Definition 1.7. Let R be a ring and a, b ∈ R. We will say that a divides b, and denote
it by a|b, if there exists some c ∈ R so that ac = b.

Then, we can define the notions of primality and irreducibility:

Definition 1.8. Let R be a ring and a ∈ R. We will say that p is a prime element of R
if p 6= 0, p 6∈ R∗ and for all a, b ∈ R such that p divides ab, then either p divides a or p
divides b.
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Definition 1.9. Let R be a ring and q ∈ R. We will say that q is an irreducible element
of R if q 6= 0, q 6∈ R∗ and ∀a, b ∈ R such that q = ab, we have that either a ∈ R∗ or
b ∈ R∗.

We have the result that in an integral domain, every prime element is also irreducible.
With these definitions, we can define the very important notion of a unique factorization
domain.

Definition 1.10. Let R be an integral domain. We will say that R is a unique factori-
zation domain if for every a ∈ R×, there exist a1, ..., an ∈ R, all of them irreducible, such
that a = a1...an and such that if b1, ..., bm ∈ R are also all irreducible and a = b1, ..., bm,
we have that n = m and that, reordering the indices, ai = εibi for all i = 1, ..., n, where
εi ∈ R∗.

A fundamental result of the theory of rings states that:

Theorem 1.11. Let R be a principal ideal domain. Then, R is a unique factorization
domain.

This result is proved in every introductory algebra book and was studied in the un-
dergraduate course Algebraic Structures. Since we have proven that for K a field, K[X]
is a principal ideal domain, we have the also fundamental corollary:

Corollary 1.12. Let K be a field. Then, K[X] is a unique factorization domain.

With this result, let us reconduct our discussion to the area that interests us, that is,
that of polynomial equations.

1.1.2 Roots and splitting fields

First of all, given a field K and its ring of polynomials K[X], we can define the evaluation
map for a given p(X) = p0 + p1X + ... + pnX

n ∈ K[X] as ψp : K −→ K, ψp(a) =
p0 + p1a + p2a

2 + ... + pna
n. In order to avoid cumbersome notation, we will usually

denote ψp(a) ≡ p(a) when no confusion can arise. If a ∈ K is such that p(a) = 0, we will
say that a is a root of p in K.

We will now see that this simple step produces a whole new set of properties and
interesting things to study. Basically, by defining an evaluation map for every polynomial,
we have defined the idea of an algebraic equation and its solutions. Thus, if a is a root
for the polynomial p(X), we can equivalently say that a is a solution for the polynomial
equation p(X) = 0.

Let’s begin our exploration of this new set of ideas by seeing that the amount of
solutions for a given algebraic equation is limited by its degree, i.e., by the degree of the
polynomial.

Proposition 1.13. Let K be a field and p(X) ∈ K[X] a nonzero polynomial. Let a ∈ K
be a root of p(X). Then, the polynomial X − a divides p(X).

Proof. Since we have seen the division algorithm in the ring of polynomials over a field,
let q(X), r(X) ∈ K[X] be the unique polynomials such that p(X) = q(X)(X − a) + r(X)
with deg r < deg(X − a) = 1. But, since by evaluating the expression at a, we have that
0 = p(a) = q(a)(a − a) + r(a) and since r is a polynomial of degree less than 1, then
necessarily r(X) = 0 and we have that p(X) = q(X)(X − a), as wanted. �
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As a corollary, we get that nonzero polynomials of degree less than 1 cannot have
roots. If p(X) is a polynomial and a ∈ K is a root of p such that (X − a)m divides p(X)
for m ≥ 1 and m is the greater integer with this property, we will say that a is a root of
multiplicity m of p in K. A root of multiplicity one will be referred to as a simple root.

Proposition 1.14. Let K be a field and p(X) ∈ K[X] be a polynomial of degree n. Then,
p(X) has at most n roots in K, each root counted with its multiplicity.

Proof. Let p(X) ∈ K[X] be a polynomial of degree n and let a1, ..., ar ∈ K be distinct
roots of p, each of multiplicity mi. Then, we have seen that (X−ai)mi divides p(X). Since
none of this factors divide each other, we have that p(X) = q(X)(X−a1)m1 ·...·(X−ar)mr .
Then, in particular, m1 + ...+mr ≤ n, as we wanted to see. �

We turn now to study what happens when a polynomial has no roots. This is interes-
ting because as we will see, we can always construct a field in which the polynomial does
has a root. But prior to that, we must give some definitions about ideals.

Definition 1.15. Let R be a ring and I ⊆ R an ideal. We will say that I is a prime
ideal if ∀a, b ∈ R such that ab ∈ I, we have that either a ∈ I or b ∈ I.

Proposition 1.16. Let R be a ring and I ⊆ R a prime ideal. Then, the quotient ring
R/I is an integral domain. The reciprocal is also true.

Definition 1.17. Let R be a ring and I ⊆ R a proper ideal. We will say that I is a
maximal ideal if ∀J ⊆ R ideal so that I ⊆ J , we have that either J = I or J = M .

We also have the characterization of maximal ideals in terms of quotient rings.

Proposition 1.18. Let R be a ring and I ⊆ R a proper ideal. Then, I is a maximal ideal
if and only if the quotient ring R/I is a field.

With these two ideas, we can see that given a polynomial with no roots (of positive
degree), we can always construct a field containing the original field where the polynomial
does have a root.

Theorem 1.19. Let K be a field and let p(X) ∈ K[X] be a polynomial of positive degree
with no roots in K, that is, p(a) 6= 0 ∀a ∈ K. Then, there exists a field K̄ that contains
K as a subfield so that p(X) viewed as a polynomial in K̄[X] has a root.

Proof. Let’s assume without loss of generality that p(X) is an irreducible element of the
ring K[X]. Notice that if that’s not the case, since K[X] is a unique factorization domain,
there has to be an irreducible factor of p(X) that does not have a root. Thus, by proving
the result for irreducible polynomials, we are proving the general statement too.

Let then p(X) be irreducible and notice that then, the principal ideal generated by
p(X), (p), is a maximal ideal. Indeed, (p) is a proper ideal since p(X) has positive degree,
and hence it is nonzero and it does not contain a unit. Then, if I ⊆ K[X] is an ideal that
contains (p), being K[X] a principal ideal domain, I = (q) for some q(X) ∈ K[X]. But,
(p) ⊆ (q) implies that p ∈ (q), so that p(X) = r(X)q(X) for some r(X) ∈ K[X]. But
then, being p(X) irreducible, either r(x) is a unit (and then (q) = (p)) or q(X) is a unit,
and (q) = K[X]). Thus, (p) is a maximal ideal and then K̄ = K[X]/(p) is a field.
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Let’s now see that, in the first place, ϕ : K → K̄ given by ϕ(a) = a+ (p) ∈ K[X]/(p)
is an injective ring homomorphism, so that we can see K as a subfield of K̄. Then, notice
that p(X) as seen as an element of K̄[X] satisfies the equation:

p(X+(p)) =

n∑
k=0

(pk+(p))(X+(p))k =

n∑
k=0

(pk+(p))(Xk+(p)) =

n∑
k=0

(pkX
k+(p)) = 0+(p)

Then, this finishes the proof, sicne α ≡ X + (p) ∈ K̄ is a root of p(X). �

This is a very important result. We have just proven that if a polynomial of degree
greater than zero over a field has no roots, then we can construct a field containing the
original field where the polynomial does have a root. From now on, we will call the
construction where we have a field containing another one as a subfield a field extension.
The previous result has the very important corollary:

Corollary 1.20. Let K be a field and p ∈ K[X] a polynomial of positive degree n.
Then, there exists a field K̄ ⊇ K where there exists α1, ..., αn ∈ K̄ such that p(X) =
ε(X − α1) · ... · (X − αn), with ε ∈ K.

The result is easily proven by induction using the previous theorem.

Definition 1.21. Let K be a field and p(X) ∈ K[X] a polynomial. If K̄ ⊇ K is a field
extension where p(X) = ε(X −α1) · ... · (X −αn) for some αi ∈ K̄, ε ∈ K we will say that
p(X) splits into linear factors in K̄. If, morover, K̄ is such that ∀K̄ ′ ⊆ K so that p(X)
also splits in linear factors in K̄ ′, then K̄ = K̄ ′, we will say that K̄ is a splitting field for
the polynomial p(X).

Before moving to the next section, let us talk about the idea of adjoining an element
to a field. Let K be a field and K̄ be a field that contains K as a subfield. Then, given
α ∈ K̄ not on K, we can consider the smallest subfield of K̄ that contains both K and
α. Further, we define:

Definition 1.22. Let K̄ ⊇ K an extension of fields and α ∈ K̄. We define the field K(α)
to be the minimal subfield of K̄ containing K and α. Similarly, if α1, ..., αn ∈ K̄, then we
define the field K(α1, ..., αn) to be the smallest subfield of K̄ containing both K and the
set {α1, ..., αn}.

We don’t want to delve much further into the theory of algebraic extensions. We will
give the following definitions in order to state the next result.

Definition 1.23. Let K̄ ⊇ K be an extension of fields and α ∈ K̄. We will say that α is
algebraic over K if there exists p(X) ∈ K[X] so that p(α) = 0. Otherwise, we are going
to say that α is trascendental over K.
If an extension K̄ ⊇ K is such that ∀α ∈ K̄, α is algebraic over K, we are going to say
that it is an algebraic extension.

There are a number of interesting results that come out of these definitions. The only
result that we are going to use now is the following one.

Proposition 1.24. Let K be a field and p(X) ∈ K[X]. Let K̄ ⊇ K be a splitting field
for p(X) over K. Then, K̄ = K(α1, ..., αn), where α1, ..., αn ∈ K̄ are the roots of p(X)
in K̄.
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So, we have seen that for any polynomial we are able to construct a splitting field and
that the splitting field is precisely the field generated by its roots. With these ingredients,
we can construct the Galois group for a polynomial.

1.2 The Galois Group

In this section, we are going to follow Galois’ insight and associate a group to every
polynomial in such a way that this association reflects some of the properties of the
solutions of the polynomial equation. First of all, we are going to give a motivating
example to see how we are going to proceed.

Example 1.25. Consider the field Q and the polynomial p(X) = X4−2X2 +10 ∈ Q[X].
This has not been an arbitrary choice, it has been chosen because we know its roots in
the field C. Those are ±

√
1± 3i. Let’s label those four roots as α1 =

√
1 + 3i, α2 =

−α1, α3 =
√

1− 3i, α4 = −α3. There are, as we can easily see, some algebraic relations
between those four roots. Some of them are:

α1 + α2 = 0, α3 + α4 = 0, α2
1 + α2

3 − 2 = 0 (1.1)

In order to associate a group to p(X) so that it translates some of the properties of the
roots to the proprties of groups, that is, so that it encodes their symmetries, we can think
along the following path. We can think of the group of permutations of 4 elements, S4,
as a group acting upon the set of roots of p(X) as ∀σ ∈ S4, αi 7→ ασ(i). Then, we can see
that those elements of S4 that leave invariant the relations between the roots α1, ..., α4

are clearly representing a symmetry of those roots. In this example, we can see that for
the permutation σ = (1 2) we clearly have that

ασ(1) + ασ(2) = 0, ασ(3) + ασ(4) = 0, α2
σ(1) + α2

σ(3) − 2 = 0

Further, we can see that the permutation τ = (1 3 2 4) also preserves the above relations.
Therefore, the group generated by the permutations σ and τ , G = 〈τ, σ〉, will leave
invariant those relations, since clearly the composition of two permutations with this
property also has this property. This group is isomorphic to the dihedral group of order
8. It can be checked that no other elements of S4 preserve the above relations. We should
prove also that every other algebraic relation with coefficients in the field of rational
numbers between the roots is a combination of the above relations, but we are going
to leave it here for now and simply say that if that is the case, the group G ∼= D2,4

is naturally associated to the polynomial p(X) = X4 − 2X2 + 10 since it encodes the
symmetries between its roots.

The goal of the following section is to generalize this procedure to an arbitrary poly-
nomial over an arbitrary field (of characteristic zero). To do so, we will have to define
precisely what we mean by an algebraic relation between the roots and what is the group
action we are considering. In return, we are going to get a definition for the Galois group
of a polynomial that gives a different kind of insight into Galois theory. Further, as we
are going to see, this way of thinking about Galois groups also generalizes to the case of
linear differential equations, and this alone should be a good motivation to study it.
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1.2.1 Properties about group actions and multivariate polynomials

In order to give a formal construction of the group associated with the polynomial and
so to define the Galois group, we first need to refresh some properties of polynomial rings
in multiple indeterminates and of group actions.

Definition 1.26. Let R be a ring. The ring of polynomials in n indeterminates, R[X1, ..., Xn],
is defined by induction as the ring of polynomials (of a single indeterminate) with coeffi-
cients in the ring R[X1, ..., Xn−1]. That is, R[X1, ..., Xn] = R[X1, ..., Xn−1][X]

There are a lot of interesting facts about the ring of polynomials in n indeterminates.
However, we won’t need them at the moment. Let’s only keep in mind that the ring
K[X1, ..., Xn], K a field, can be seen as a K-vector space that admits as a basis {Xα1

1 ·
... ·Xαn

n }α1,...,αn=0,1,....

Now that we have defined the ring of multivariate polynomials, let’s get some insight
into why are we going to use them. Let K be a field and p(X) ∈ K[X]. Let K̄ be a
splitting field for p(X) and α1, ..., αn ∈ K̄ be its roots. Since we are going to consider the
permutations of Sn that preserve the algebraic relations between the roots, we need first
to identify those algebraic relations. Let’s then consider the ring K[X1, ..., Xn] and the
map ψp defined as

ψp : K[X1, ..., Xn] −→ K̄, ψp(q(X1, ..., Xn)) = q(α1, ..., αn)

We can see that this is a well-defined map and that it is a ring homomorphism. In
fact, it is an homomorphism of K-algebras, since we have defined it over the K-basis of
multivariate polynomials as ψp(X

m1
1 · ... ·Xmn

n ) = αm1
1 · ... ·αmn

n . We can then see that the
kernel of this homomorphism, kerψp, contains every algebraic relation between the roots
of the polynomial p(X) over the field K. Notationally, we are going to refer to this kernel
as kerK ψp when the base field is not clear by the context.

Next, since we will end up considering the elements of a group acting on a set that
leaves invariant certain relations, we will refresh some definitions and results about group
actions and stabilizers.

Definition 1.27. Let G be a group and X be a set. An action of the group G over the
set X is a map ρ : G×X −→ X so that:

(i) ρ(g, ρ(h, x)) = ρ(gh, x), ∀g, h ∈ G, ∀x ∈ X

(ii) ρ(1, x) = x, ∀x ∈ X

Straight from the definition, we can see that given a group action ρ : G × X −→ X
and an element g ∈ G, there is an induced bijection ρg : X −→ X defined as ρg(x) =
ρ(g, x). This is indeed a bijection, since it is injective (ρg(x) = ρg(y), then ρ(g−1, ρg(x)) =
ρ(g−1, ρg(y)), and then x = y) and it is surjective (if x ∈ X, then ρg(g

−1, x) = x).

Another concept that we are going to use is that of a stabilizer:

Definition 1.28. Let ρ : G×X −→ X be a group action and let x ∈ X. We define the
stabilizer of x to be the subgroup of G that leaves invariant x. That is, Stabρx = {g ∈ G :
ρ(g, x) = x}. This is indeed a subgroup of G.
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In this same way, we can define the stabilizer of a subset of X if we think about the
induced action of G upon P(X), defined as ρ̃(g, S) = {ρ(g, s) ∈ X : s ∈ S} ∈ P(X).
Thus, we define:

Definition 1.29. Let G be a group, X a set and ρ : G ×X −→ X a group action. Let
ρ : G×P(X) −→ P(X) the induced action of G upon the subsets of X. Let S ⊆ X. We
define StabρS ≡ Stabρ̃S, so StabρS = {g ∈ G : ρ(g, s) ∈ S, ∀s ∈ S}.

Being ρg a bijection of X, we can easily see that StabρS as defined above is indeed the
same as Stabρ̃S, since if ρ̃(g, S) ⊆ S, then ρ̃(g, S) = S. Let’s now consider the action of
the permutation group Sn upon the set of multivariate polynomials.

Observation 1.30. Let K be a field and ρ : Sn ×K[X1, ..., Xn] −→ K[X1, ..., Xn] the
action defined ∀σ ∈ Sn as ρ(σ, q(X1, ..., Xn)) = q(Xσ(1), ..., Xσ(n)). This is a well-defined
action, since the induced map is defined over the basis ρσ(Xα1

1 · ... ·Xαn
n ) = Xα1

σ(1) · ... ·X
αn

σ(n)
and this is a morphism of K-algebras.

Finally, let’s take a look at a result about conjugacy classes that we are going to use
in the next section. Remember that if ρ : G × X −→ X is a group action, g ∈ G, and
S ⊆ X, then we denote gS = {ρ(g, s) ∈ X : s ∈ S}. Further, if H ⊆ G is a subgroup, we
denote its conjugate by g as gHg−1 = {ghg−1 ∈ G : h ∈ H}. Indeed, it is a subgroup of
G. Then, the results that interest us are:

Proposition 1.31. Let ρ : G ×X −→ X be a group action, S ⊆ X and g ∈ G. Then,
Stabρ(gS) = gStabρ(S)g−1.

Proposition 1.32. Let G be a group and H ⊆ G a subgroup. Then, ∀g ∈ G, gHg−1 ∼= H.

They were proven during the undergraduate course about algebraic structures.

1.2.2 The Galois group of a polynomial

We have now gathered all the ingredients we need in order to define the Galois group.
We present the definition as follows.

Definition 1.33. Let K be a field and p(X) ∈ K[X]. Let K̄ ⊇ K a splitting field for
p(X) and α1, ..., αn ∈ K̄ the roots of p(X) in K̄. Let ψp : K[X1, ..., Xn] −→ K̄, defined as
ψp(q(X1, ..., Xn)) = q(α1, ..., αn), be the evaluation homomorphism defined above and ρ :
S ×K[X1, ..., Xn] −→ K[X1, ..., Xn], defined as ρ(g, q(X1, ..., Xn)) = q(Xσ(1), ..., Xσ(n)),
be the action defined above. Then, we define the Galois group of the polynomial p(X)
over the field K as the stabilizer of the kernel of the evaluation map by the permutation
action, that is,

GalK p(X) = Stabρ kerψp

We can clearly see that it puts together the ideas exposed in the motivating example.
In this section, we are going to see that indeed it is the Galois group of the polynomial
when defined in the usual way. From this definition, there arise a number of trivial but
important results, such as:

Corollary 1.34. Let p(X) ∈ K[X] be a polynomial of degree n ≥ 1. Then, the order of
its Galois group satisifies #GalK p(X) ≤ n!
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Corollary 1.35. If p(X) ∈ K[X] is such that it splits in K and all of its roots are simple,
then its Galois group is the trivial group, GalK p(X) = {id} ⊆ Sn

Proof. Indeed, if there are α1, ..., αn, ε ∈ K such that p(X) = ε(X − α1) · ... · (X − αn),
then we can see that ∀i = 1, ..., n, the polynomial qi(X1, ..., Xn) = Xi − αi is an element
of kerψp ⊆ K[X1, ..., Xn]. But if σ ∈ GalK p(X), then in particular ρ(σ, qi) must belong
to kerψp for all i = 1, ..., n. But ρ(σ, qi) = Xσ(i)−αi ∈ kerψp if and only if σ(i) = i, ∀i =
1, ..., n. Thus, GalK p(X) = {id}. �

Before proving that this definition coincides with the usual one, we must be sure that
the object is well defined. Note that we have already checked that most of the objects
involved in this definition are well defined, namely that the Galois group is indeed a
group and that the action and homomorphism used are well defined. Thus, the only
thing that we must check is that the definition is independent of arbitrary choices. The
only arbitrary choice involved in the definition is that of the order of the roots. Then, we
must check that if we rearrange the roots of the polynomial, thus changing the definition
of the evaluation morphism ψp, we still get the same object.

Proposition 1.36. Let K be a field, p(X) a polynomial, K̄ a splitting field for p(X)
and α1, ..., αn its roots in that field. If β1, ..., βn ∈ K̄ is a rearangement of those roots,
and ψp, ψ̃p : K[X1, ..., Xn] −→ K̄ are the evaluation morphisms defined as ψp(Xi) =
αi, ψ̃p(Xi) = βi , then Stabρ kerψp ∼= Stabρ ker ψ̃p.

Proof. If α1, ..., αn and β1, ..., βn are the same elements rearanged, then there exists
σ ∈ Sn so that βi = ασ(i). Then, we can see that if q(X1, ..., Xn) ∈ ker ψ̃p, then

ψ̃p(q(X1, ..., Xn)) = q(β1, ..., βn) = q(ασ(1), ..., ασ(n)) = ψp ◦ ρ(σ, q(X1, ..., Xn)) = 0, and

so σ ker ψ̃p ⊆ kerψp. Similarly, we can see that αi = βσ−1(i), so that by the same argu-

ment, σ−1 kerψp ⊆ ker ψ̃p. Therefore, since σ−1(σ kerψp) = kerψp, we get the chain of
inclusions

ker ψ̃p = σ−1σ ker ψ̃p ⊆ σ−1 kerψp ⊆ ker ψ̃p

And therefore, σ kerψp = ker ψ̃p. But by the previous result on group stabilizers (propo-
sition 1.31), we have that Stabρ(ker ψ̃p) = σ−1Stabρ kerψpσ ∼= Stabρ kerψp. �

Then, we have seen that indeed this object is well defined, in the sense that a rearran-
gement of the roots gives isomorphic Galois groups. We will now see that this definition
is in fact equivalent to the one usually given in algebra textbooks and in the Algebraic
Equations course. This definition uses the idea of a field automorphism of the splitting
field of the polynomial that is the identity map when restricted to the base field.

Definition 1.37. Let K̄ ⊇ K be a field extension. A K-automorphism of K̄ is a field
homomorphism ϕ : K̄ −→ K̄ such that ϕ(a) = a, ∀a ∈ K. We will denote the set of
all K-automorphism by AutKK̄. It is a group toghether with the composition of field
homomorphisms.

Then, the usual definition of the Galois group is the following one:

Definition 1.38. Let K be a field, p(X) ∈ K[X] a polynomial and K̄ a splitting field.
Then, we define the Galois group of the polynomial p(X) over K as GalK p(X) = AutK K̄.
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We can see that this definition is simpler, cleaner, and requires fewer previous concepts
to be defined in order to reach it. However, the opinion of the author of this text is that
some of its intuition gets hidden behind this simplicity and although it is easier to work
with, it hides the idea that the roots of a polynomial possess some kind of symmetry.
The definition exposed in this work, although somewhat impractical to work with, clearly
exposes the symmetries of a polynomial and therefore is, in a sense, more natural.

We now turn to the task of proving that indeed both definitions are equivalent, in the
sense that both groups are isomorphic.

Theorem 1.39. Let p(X) ∈ K be a polynomial and K̄ a splitting field for p(X), where
its roots are α1, ..., αn. Then, with the previous definitions, Stabρ kerψp ∼= AutKK̄.

Proof. Supose for the sake of simplicity that all the roots are different to one another.
Consider the group homomorphism given by ϕ : Stabρ kerψp −→ AutKK̄, ϕ(σ) 7→ ϕσ,
where ϕσ is the K-automorphism of K̄ given by ϕσ(αi) = ασ(i) and ϕσ(a) = a, ∀a ∈ K.
This is a well-defined group homomorphism, since ϕ(στ) = ϕσ ◦ ϕτ . Further, ϕσ is a
K-automorphism of K̄, since it is a field homomorphism. Morover, it is an injective
homomorphism, since if ϕσ = ϕτ , then clearly σ = τ .

The only thing left to prove it that ϕ is exhaustive. Let then be φ ∈ AutKK̄. Since
for every αi we know that φ(αi) must be again a root of p(x), let’s define σ ∈ Sn so
that φ(αi) = ασ(i). Now, we have to see that σ ∈ Stabρ kerψp. But since φ is a K-
automorphism of the field K̄, if q(X1, ..., Xn) is an element of kerψp, we have that ψp ◦
ρ(σ, q) = q(φ(α1), ..., φ(αn)) = φ(q(α1, ..., αn)) = φ(0) = 0. Since obviously φ = ϕ(σ) and
we have seen that σ ∈ Stabρ kerψp, we get that ϕ is exhaustive and therefore it is an
isomorphism of groups. �
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2 Differential Algebra

In this chapter, we are going to introduce the basic structure needed to study linear
differential equations from an algebraic point of view, the differential field. Then, we
will construct a theory as analogous as possible to the one constructed in the previous
chapter, with the goal of defining in an analogous way an associated group to every linear
differential equation.

2.1 Differential Rings

Let us begin by defining the structure in which we are going to develop the theory. All
rings will be assumed to be with unity and of characteristic zero.

Definition 2.1. Let R be a ring. A derivation in R is a map ∂ : R −→ R such that:

(i) ∀a, b ∈ R, ∂(a+ b) = ∂(a) + ∂(b)

(ii) ∀a, b ∈ R, ∂(ab) = ∂(a)b+ a∂(b)

A ring R together with a derivation ∂ : R −→ R will be called a differential ring (R, ∂).

We can easily see that a number of properties follow directly from this definition, such
as:

Lemma 2.2. Let (R, ∂) be a differential ring and a ∈ R. Then:

(i) ∂(1) = 0

(ii) If ∂(a) commutes with a, then ∂(an) = nan−1∂(a) for all n > 0.

(iii) If a ∈ R is an invertible element and ∂(a) commutes with a, then ∂(a−1) =
−a−2∂(a).

Proof. (i) is obvious, since ∂(a) = ∂(1 ·a) = ∂(1)a+∂(a) for any a ∈ R. (ii) can easily bee
seen starting from ∂(a2) = ∂(a)a + a∂(a) = 2∂(a) and then using induction on the case
∂(an) = ∂(a)an−1 + a∂(an−1). FInally, (iii) comes from the fact that ∂(1) = ∂(a−1a) =
∂(a−1)a+ a−1∂(a) = 0. �

Unless otherwise stated, all rings are going to be commutative rings. We will denote
a differential extension of rings as:

Definition 2.3. Let (R, ∂), (R̄, ∂̄) be a differential rings so that R̄ ⊃ R is a ring extension.
Then, it is a differential extension if ∂̄|R = ∂. If R̄, R are differential fields and R̄ ⊇ R
is a field extension, then it is a differential field extension if the same condition holds.

Lemma 2.4. Let (R, ∂) be a diferential integral domain and let Q(R) be the quotient field
of R. Then, the derivation in R extends in a unique way to Q(R) so that Q(R) ⊇ R is a
differential ring extension.

Proof. From property (iii) of the previous lemma and since every non zero element a ∈
Q(R) is invertible, we know that ∂̃(a−1) = −∂̃(a)a−2. Therefore, if a ∈ R ⊆ Q(R) and
we want (Q, ∂̃) to be a differential field that contains (R, ∂) as a differential subfield (i.e.,
∂̃|R = ∂), necessarily we must have that ∂̃(a−1) = −∂(a)a−2 for every nonzero a ∈ R. �
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In a way similar to that of ring theory, we can define a differential ideal as the kind of
structure that allows us to construct quotients. Thus:

Definition 2.5. Let (R, ∂) be a differential ring. A differential ideal of R is an ideal
I ⊆ R such that ∀a ∈ I, ∂(a) ∈ I.

This is the extra condition needed in order to bring the differential ring structure to
the quotient. Indeed, if (R, ∂) is a differential ring and I ⊆ R is an ideal, we will only
have that R/I is a differential ring (with the induced operations from R) if ∂ is well
defined in the quotient. That is, if ∂̃ : R/I −→ R/I is a derivation. we demand that
∂̃(a + I) = ∂(a) + I. Thus, for this derivation to be well defined, we need that, since
a+ I = (a+ i) + I, i ∈ I, then ∂(a)− ∂(a+ i) ∈ I. That is, ∂(i) ∈ I, ∀i ∈ I. And that is
precisely the structure of differential ideal that we have just defined.

Corollary 2.6. Let (R, ∂) be a differential ring and I ⊆ R a differential ideal. Then,
R/I is a differential ring with the projected derivation ∂(a+ I) = ∂(a) + I.

We can present here some properties of differential ideals.

Definition 2.7. Let (R, ∂) be a differential ring and I ⊆ R a differential ideal. We will
say that I is a maximal differential ideal if ∀J ⊆ R differential ideal so that I ⊆ J , then
either J = R or J = I. Similarly, we will say that I is a prime differential ideal if it is a
prime ideal.

We can see that since a prime differential ideal is in particular a prime ideal, we have
the same characterization as in the case of a prime ideal. Namely, I ⊆ R is a prime
ideal if and only if R/I is an integral domain. However, when talking about maximal
differential ideals, we have to be more careful, since a maximal differential ideal need not
be a maximal ideal. Indeed, we have the following property of maximal differential ideals,
which is a key result that we are going to use further on.

Theorem 2.8. Let (R, ∂) be a differential ring and I ⊆ R a maximal differential ideal.
Then, I is a prime ideal.

Proof. This proof will follow that of [5](pp. 16). First of all, notice that if R ⊇ K is
a differential ring and M ⊆ R is a differential maximal ideal, then R/M has no proper
differential ideals. This is true, since the projection π : R −→ R/M has the property
that π−1(I) is a differential ideal of R containing M for every I ⊆ R/M differential
ideal. Therefore, π−1(I) must be either M (and then I = (0) ⊆ R/M) or R (and then
I = R/M). Thus, we can from now on consider the ring R as having no proper differential
ideals. The task is then to prove that if R has no proper differential ideals, then it is an
integral domain.

In order to prove that, we can supose the existence of a zero divisor in R. Therefore,
there are two nonzero elements a, b ∈ R so that ab = 0. We are going to see that then, the
differential ideal generated by a, that is, 〈a〉 = (a, ∂(a), ∂2(a), ...), is a proper differential
ideal or R. First of all, we have that since ∂(ab) = ∂(a)b+a∂(b) = 0, we can multiply by b
to get ∂(a)b2+ab∂(a) = ∂(a)b2 = 0. By induction, we can easily see that if ∂n(a)bn+1 = 0,
then deriving and multiplying by b we get:

∂(∂n(a)bn+1)b = ∂n+1(a)bn+2 + (n+ 1)∂n(a)bn+1 = ∂n+1(a)bn+2 = 0

15



Therefore, ∂n(a)bn+1 = 0 for any two zero divisors a, b and for every n. Here, if bn 6= 0
for every n > 0, we would get that ∂n(a) is a zero divisor for every n and therefore the
differential ideal 〈a〉 is properly contained in R, since it only contains zero divisors (and
therefore 〈a〉 6= R) and it a 6= 0 (and therefore 〈a〉 6= (0)). Thus, it must be that bn = 0
for some n > 0. Now, since b was any zero divisor, we have proved that every zero divisor
of R is nilpotent.

But now we are almost there, since being a nilpotent, we can choose n minimal so
that an = 0. Therefore, we have that ∂(an) = nan−1∂(a) = 0 but an−1 6= 0 and n 6= 0,
being K a subfield of zero characteristic of R. Therefore, ∂(a) is again a zero divisor in R
for every zero divisor a. Then, 〈a〉 is a differential ideal that only contains zero divisors
and again that allows us to conclude that it is a proper differential ideal of R. Therefore,
we have a contradiction with the initial assumption and it must be that R is an integral
domain.

�

Before seeing some examples of differential rings, we define the idea of a differential
homomorphism.

Definition 2.9. Let (R, ∂), (R′, ∂′) be differential rings. A map ϕ : R −→ R′ is a
homomorphism of differential rings if it is a homomorphism of rings that commutes with
the derivation. That is, such that ϕ(∂(a)) = ∂′(ϕ(a)), ∀a ∈ R.

We will take the chance now to see that a differential ring homomorphism can be
extended in a unique way to the field of quotients.

Proposition 2.10. Let (A, ∂), (B, ∂′) be differential integral domains and let ϕ : A −→
B be a differential ring homomorphism. Then, there exists a unique differential field
homomorphism ϕ̃ : Q(A) −→ Q(B) so that ϕ̃|A = ϕ.

Proof. This is immediate, since we know from ring theory that ϕ extends in a unique
way to the quotient field of R via ϕ̃(a−1) = ϕ(a)−1. We only have to check that this
is indeed a differential field homomorphism provided that ϕ is. But trivially ϕ̃(∂(a)) =
ϕ(∂(a)) = ∂(ϕ̃(a)) and ϕ̃(∂(a)−1) = ϕ(∂(a))−1 = (∂(ϕ(a)))−1 = (∂(ϕ̃(a)))−1 for every
a ∈ R nonzero. �

Example 2.11. Let us now see some examples of differential rings.

(i) Let R be a ring and define the trivial derivation on R as ∂ : R −→ R as ∂(a) = 0
for all a ∈ R. Then, (R, ∂) is a differential ring. Thus, any ring can be turned into
a differential ring. Observe that since ∂(1) = 0, the only derivative that can be
defined in the ring of integers Z or in the field of rationals Q is the trivial derivative.

(ii) Let (R, ∂) be a differential ring. We want to extend ∂ to its ring of polynomials
R[X] so that when restricted to R we have the same derivation as ∂. If that’s the
case, we can easily see that for every p(X) =

∑n
0 pkX

k and for every derivation ∂̃
in K[X] so that ∂̃|R = ∂, we will have ∂̃(p(X) =

∑n
0 ∂(pk)X

k +
∑n

0 kpkX
k−1∂̃(X).

So the derivation in K[X] is determined up to the choice of ∂̃(X) ∈ K[X], which we
can take arbitrarily.
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(iii) Let (R, ∂) be a differential integral domain. By extending the previous construction
to the field of fractions as in proposition 2.4, given the arbitrary choice of ∂̃(X), we
can see that Q(R[X]) = R(X) is a differential field.

(iv) Let (Q, ∂) be a differential field over the rationals, where ∂ must be the trivial
derivative. Then consider the field of rational functions Q(X) and define ∂(X) = 1.
Then, (Q(X), ∂) is a differential field and the derivative ∂ obeys the usual formal
rules for differentiating rational functions.

(v) Let (K, ∂) be a differential field and let A,B ⊇ K be K-algebras that are also
differential ring extensions of K. Then, we can consider the ring given by the tensor
product A ⊗ B, which is again a K-algebra. We can extend the derivation ∂ to
the tensor product by defining ∂(a ⊗ b) = ∂(a) ⊗ b + a ⊗ ∂(b) and extending by
linearity. This is indeed a derivation since by definition the derivative of a sum
is the sum of derivatives and the derivative of a product is ∂((a ⊗ b)(c ⊗ d)) =
∂(a⊗ b)(c⊗ d) + (a⊗ b)∂(c⊗ d), as can be seen expanding each term.

Finally, let us define some terminology.

Definition 2.12. Let (R, ∂) be a differential ring and c ∈ R. We will say that c is a
constant element of R if ∂(c) = 0. We will denote CR = {c ∈ R : ∂(c) = 0}. It is a
subring of R. If R is a field, then it also is a subfield.

Definition 2.13. Let K ⊆ K̄ be a differential extension with derivation ∂. Then, α ∈ K̄
is primitive element of K if ∂(α) ∈ K. Also, α ∈ K̄ is an exponential element of K if
∂(α)α−1 ∈ K.

Definition 2.14. Let (K, ∂) be a differential field and R ⊇ K be a differential ring
extension. We are going to say that R is finitely generated over K as a K-algebra if there
exist α1, ..., αn ∈ R so that R = K[α1, ..., αn].

2.2 The Linear Differential Equation

From now on, let (K, ∂) be a differential field of characteristic zero. In what follows, we
are going to introduce the notion of a linear differential equation, mirroring as much as
possible the ideas from the polynomial equations of the previous chapter. First of all, as
an example, let us consider the intuitive idea of what a linear differential equation is, at
least as they appear in real analysis or in physics.

Example 2.15. Consider the field of real numbers, R. A linear homogeneous differential
equation of order n with coefficients in R is given by a set of n + 1 elements of R, like
{a0, ..., an} ⊆ R, and is solved by a function f(t) ∈ Cn(R) that satisfies the relation
an

dnf
dtn + ...+ a1

df
dt + a0f = 0. We can also consider a set of functions f1, ..., fn : R −→ R

and the linear differential equation with those coefficients, which is going to be solved by
a differentiable function f(t) ∈ Cn(R) that satisfies fn(t)d

nf
dtn + ...+ f1(t)dfdt + f0(t)f = 0

This, however, is not the definition we are looking for. Notice how, in contrast with the
polynomial case, there will be some important considerations to be taken with respect
to the domains of definition of the coefficients and of the solutions. We know from
the courses taken in real and complex analysis that the domains of definition play an
important role in the solution of a differential equation. Those considerations we want
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to avoid in the algebraic study of differential equations since it is not clear how we can
study them algebraically.

In order to solve this issue, we can work in a somewhat restricted domain and consider
the differential equations as defined only over differential fields.

Example 2.16. Let (K, ∂) be a differential field. A linear homogeneous differential
equation of order n will be given by an ordered set of n+ 1 elements (a0, ..., an) ⊆ Kn+1

and will be solved by an element b ∈ K if and only if an∂
n(b) + ...+ a1∂(b) + a0b = 0. If

K̄ ⊇ K is a differential field containing K as a differential subfield, we can view the n+ 1
elements defining the equation as elements of K̄ and similarly say that an element α of K̄
solves the equation if an∂

n(α) + ... + a1∂(α) + a0α = 0. This way, we can find solutions
in field extensions.

This definition looks much more like the one we would like to have. First of all, it is
purely algebraic, in the sense that in order to talk about differential equations and their
solutions we did not need to define any notion of continuity or of limit. Moreover, in the
case where the differential field is for example (R(X), ddt), the definition agrees with the
one used in analysis. Then, we can finally give the following definition:

Definition 2.17. Let (K, ∂) be a differential field. A linear homogeneous differential
equation of order n in K is an ordered n + 1 tuple of elements (a0, ..., an) ∈ Kn+1, with
an 6= 0. An element α ∈ K̄, for some differential extension of K, is a solution for the
equation if an∂

n(α) + ...+ a1∂(α) + a0α = 0.

This is the formal definition of a linear homogeneous differential equation of order n.
However, in order to have a greater analogy with the polynomial case, we might want
to give further structure to those linear differential equations. In order to do so, we can
define the ring of differential operators, which will work in much the same way as the ring
of polynomials except for the fact that it won’t be commutative, as we can expect.

Definition 2.18. Let (K, ∂) be a differential field and consider the set KN = K ×K ×
..., the infinite numerable cartesian product of K. Its elements are of the form a =
(a0, ..., an, ...) ∈ KN. We can define two binary operations on KN as follows.

(i) ∀a = (a0, a1, ...), b = (b0, b1, ...) ∈ KN, we define its sum as a + b = (a0 + b0, a1 +
b1, ...) ∈ KN.

In order to define the product, we need to work a bit more, since the product of linear
differential operators won’t in general be commutative.

(ii) Consider the elements a = (0, ..., 0, a, 0, ...), b = (0, ..., 0, b, 0, ...) ∈ KN with zeros
everywhere except at the i-th and j-th coordinates respectively. Then, define its
product as a · b = (0, ..., 0, cj , 0, ..., 0, ci+j , 0, ...) with zeros everywhere except at the
j-th and i+ j-th positions and with cj = a∂i(b), ci+j = ab.

For this product to be well defined, we need again to restrict ourselves to the set of elements
in KN with finitely many nonzero elements, which we are going to denote as K[d] and
name as the ring of linear differential operators over K. Then, by defining the element
d = (0, 1, 0, ...) ∈ K[d] and denoting ∀a ∈ K, a = (a, 0, ...), the product defined in (ii)
can be written as (adi) · (bdj) = a∂i(b)dj + abdi+j. Then, we can write every element
L(d) ∈ K[d], L(d) = (l0, ..., ln, 0, ...), as a polynomial in d, L(d) =

∑n
k=0 lkd

n
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Thus, much in the same way as with the polynomials in the previous section, we have
represented (homogeneous) linear differential equations by a ring of polynomials. Before
introducing the idea equivalent to the roots of those differential operators, let’s give some
results about the structure of this noncommutative ring. Note that we define the degree
of a differential operator in an obvious way.

Proposition 2.19. Let (K, ∂) be a differential field and let K[d] be its ring of differential
operators. Then, given p(d), q(d) ∈ K[d], with q(d) 6= 0, there exist unique aR(d), rR(d) ∈
K[d] and aL(d), rL(d) ∈ K[d] so that p(d) = q(d)aR(d) + rR(d), p(d) = aL(d)q(d) + rL(d)
and deg(rR(d)),deg(rL(d)) < deg(q(d)).

2.3 The Solutions of a Linear Differential Equation

Let us now follow our discussion of linear differential equations in the same way as we did
with algebraic equations. In order to study the solutions of those equations, we defined
the evaluation map of a polynomial. We are now going to do the same for differential
equations.

Definition 2.20. Let (R, ∂) be a differential ring and L(d) ∈ R[d] a differential operator.
We define the differential evaluation map of L(d) as the map ψL : K −→ K sending
ψL(α) =

∑n
k=0 lk∂

k(α). When there’s no risk of confusion, we will denote ψL(α) = L(α).

For algebraic equations, we had that the evaluation map had no extra structure. In
particular, it was not a ring homomorphism. For differential equations, however, the
evaluation map does have an interesting structure when the differential ring is also a field.
Remember that in that case, if (K, ∂) is a differential field and CK = {c ∈ K : ∂(c) = 0},
then CK is a subfield of K and we can view K as a CK-vector space.

Proposition 2.21. Let (K, ∂) be a differential field and L(d) ∈ K[d] a differential ope-
rator. Then, ψL : K −→ K is a CK-linear map between vector spaces over CK . In
particular, kerψL is a vector subspace over CK .

Proof. Let L(d) =
∑n

k=0 lkd
k and let λ, µ ∈ CK and α, β ∈ K. Then, by the additivity

property of the derivation, ∂k(α+ β) = ∂k(α) + ∂k(β) and being λ, µ constants, we have
that

ψL(λα+ µβ) =
n∑
k=0

lk∂
k(λα+ µβ) =

n∑
k=0

lk(λ∂
k(α) + µ∂k(β)) = λψL(α) + µψL(β)

Thus, ψL is a CK-linear map and then kerψL is a vector subspace of K over CK . �

This is indeed a remarkable property. We have as a corollary that the sum of solutions
and the product of a solution by a constant are again solutions. Further, we can now
study the notions of linear independence over constants of the solutions. What more
can we say about this vector space of solutions? This will be the main object of our
study during the following sections. The symmetries that we will be pursuing with Galois
theory are those exhibited by this vector space. Then, let’s center our efforts in studying
its properties with more detail.

We can start by asking about the dimension of the vector space of solutions. First of
all, notice that if L(d) =

∑n
k=0 lkd

k and α ∈ kerL, then we can write the n-th derivative
of α as a linear combination of the previous derivatives, ∂n(α) = −

∑n−1
k=0

lk
ln
∂k(α). This

is a property that we are going to exploit in the following proposition.
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Definition 2.22. Let (K, ∂) be a differential field. Let {α1, ..., αn} ⊆ K. We define the
wronskian matrix of those elements as W (α1, ..., αn) ∈Mn(K),

W (α1, ..., αn) =


α1 α2 · · · αn

∂(α1) ∂(α2) · · · ∂(αn)
...

...
. . .

...
∂n−1(α1) ∂n−1(α2) · · · ∂n−1(αn)


That is, W (α1, ..., αn) = (∂i−1(αj))i,j=1,...,n. Then, we define the wronskian determinant,
or simply the wronskian, as detW (α1, ..., αn).

We can clearly see that the wronskian matrix encodes some information about linear
dependence, since if α1, ..., αn are linearly dependent elements over the field of constants,
then the wronskian (determinant) vanishes. What is not so obvious at first sight is that
the converse is also true. If the wronskian vanishes, then the n elements are linearly
dependent over the field of constants.

Proposition 2.23. Let (K, ∂) be a differential field, CK its field of constants and α1, ..., αn ∈
K. Then, α1, ..., αn are linearly dependent over CK if and only if detW (α1, ..., αn) = 0.

Proof. For the first implication, we can obviously see that if α1, ..., αn are linearly de-
pendent over CK , then its wronskian determinant is going to be zero since the linear
dependence of the first row extends to the other ones.

For the converse implication, if detW (α1, ..., αn) = 0, then there exist λ1, ..., λn ∈ K
not all zero so that

∑
k λk∂

iαk = 0, for i = 0, ..., n − 1. We have to prove that all
of them are constants. Without loss of generality, we can assume that all minors of
the wronskian determinant of order n − 1 are nonzero (if not, we can always study one
of those minors). Now, the k + 1-th equation given by the linear dependence of the
α1, ..., αn is

∑
i λi∂

k+1αi = 0, while the derivative of the k-th equation is
∑
∂(λ)i∂

k(αi)+∑
λi∂

k+1(αi) = 0. Combining those two equations for every k = 0, ..., n − 2 we obtain∑
∂(λi)∂

k(αi) = 0. If we make the extra assumption that λ1 = 1 (we can always do
that), then we have

∑n
i=2 ∂(λi)∂

k(αi) = 0 for k = 0, ..., n− 2. But if ∂(λ1), ..., ∂(λn) are
not all zero, then

detW (α2, ..., αn) = det


α2 α3 · · · αn

∂(α2) ∂(α3) · · · ∂(αn)
...

...
. . .

...
∂n−2(α2) ∂n−2(α3) · · · ∂n−2(αn)

 = 0

But this is a minor of order n− 1 of the wronskian matrix, and by assumption it cannot
be zero. Therefore, the coefficients ∂(λ2), ..., ∂(λn) must all be zero, and so λi ∈ CK for
all i = 1, ..., n.

�

Then, as we were anticipating, we can see the following key consequence.

Corollary 2.24. Let (K, ∂) be a differential field with field of constants CK , L(d) ∈ K[d]
a linear operator of order n. Then, dimCK

kerL(d) ≤ n. That is, its solutions form a
vector space of dimension at most n.
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Proof. Let α1, ..., αn+1 ∈ kerL and lets proof that W (α1, ..., αn+1) = 0. But since
the last row consists of the elements ∂n(αi) for i = 1, ..., n + 1 and since ∂n(αi) =
− 1
ln

∑n−1
k=0 lk∂

k(αi) we can easily see that the last row is indeed a linear combination of
the previous n rows. Then, the wronskian determinant vanishes and given the previous
proposition, α1, ..., αn+1 are CK-linearly dependent. �
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3 Picard-Vessiot Extensions

In this section, we are going to find the equivalent concept to the splitting field of a poly-
nomial. We are going to see that given a differential field (with the restrictive assumption
that its field of constants must be algebraically closed) and a linear differential operator of
order n, we can always construct a differential extension of fields that contains n linearly
independent solutions to the equation and that is minimal, in a sense that we are going
to discuss below.

3.1 Motivating Examples

Our goal during this whole section is to prove that a linear differential equation of order
n has exactly n linearly independent solutions over constants and to construct the field
where these solutions are. In the following subsections, we are going to take a look at
some simple examples in order to see in what direction we are going.
First of all, remember that in the case of polynomials, given a field K and an irreducible
nonconstant polynomial p(X) ∈ K[X], we had that K[X]/〈p(X)〉 is a field and contains
a root of p(X). What is the analogue of this construction?

Example 3.1. Let (K, ∂) be a differential field and consider the linear differential ope-
rator l(d) = d − c ∈ K[d]. Remember that l(α) = ∂(α) − cα. Suppose that ∀α ∈
K, ∂(α)α−1 6= c. Then, l(α) = 0 has no solution in K.
Consider now the ring extension K[X] ⊇ K. We want to turn it into a differential ring in
a way that l(d) has a solution in it. The simplest way to do so is to turn X ∈ K[X] into
a solution, and since the extension of ∂ to K[X] is determined up to the choice of ∂(X),
we can define ∂(X) = cX. Then, (K[X], ∂) is a differential ring where l(X) = 0. Further,
since K[X] is an integral domain (since K is a field), we can consider its field of quotients
Q(K[X]) = K(X) with the derivative again extended as ∂(X) = cX. Then, K ⊆ K(X)
is a differential field extension where l(d) = 0 has a solution. With this construction, we
have adjoined an exponential element to K.

Example 3.2. Let us now consider the adjunction of an integral. Let (K, ∂) be a diffe-
rential field and let c ∈ K be so that ∀α ∈ K, ∂(α) 6= c. We want to find a differential
extension for K where there exists a primitive element for c. One immediate way to do
so is to consider as before the field of rational funcions K(X) and extend the derivation
∂ as ∂(X) = c. Then, denoting α = X ∈ K(X), we have that K(α) ⊇ K is a differential
field extension where c has a primitive element α.
Notice that in this construction, we have not defined a linear differential operator in L[d]
associated with the differential equation. In the way those objects have been defined, all
operators in K[d] represent homogeneous linear equations, and ∂(x) = c is not an homo-
geneous equation. We can, however, turn this into a homogeneous equation by noticing
that c−1∂(α) = 1 for any α that solves it, and then ∂(c−1∂(α)) = 0. Thus, α would be a
solution for the second order homogeneous equation given by l(d) = d2 − ∂(c)c−1d.

We generalize this procedure in the following remark

Observation 3.3. Let (K, ∂) be a differential field and l(d) ∈ K[d] be a linear differential
operator. If α ∈ K is so that l(α) = 0, then it is a solution for the homogeneous equation
defined by l(d). However, we can consider c ∈ K and the nonhomogeneous equation
l(d) = c. In order to make this equation suitable for the theory we have developed,
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we have to consider the homogenized operator lc(d) associated to the inhomogeneous
equation l(d) = c, defined as lc(d) = d∂(c−1)l(d). In this (noncommutative) factorization,
we can easily see that any α ∈ K for which l(α) = c is a solution to lc(α) = 0. Since
the order of lc(d) has increased by one, the upper bound on the dimension of its vector
space of solutions has also increased by one. However, since l(k) = l0k, ∀k ∈ CK , we can
easily see that any constant of K will also be a solution to the nonhomogeneous equation.
Then, the extra linearly independent element of the solution space can be associated with
a constant being also a solution.

Finally, following the previous two examples (adjunction of an exponential and ad-
junction of an integral) we can see that we can construct a field extension containing a
solution for a given linear differential equation.

Example 3.4. Let (K, ∂) be a differential field and l(d) =
∑n

k=0 lkd
k ∈ K[d] a linear

differential operator. We can adjoin a solution of the homogeneous equation l(d) = 0 to
the field K by considering the ring of polynomials in n indeterminates K[X0, ..., Xn−1] and
by extending the derivative as ∂(Xi) = Xi+1 for i < n−1 and ∂(Xn−1) = − 1

ln

∑n−1
k=0 lkXk.

Then, denoting α = X0 ∈ K[X0, ..., Xn−1], we can see that l(α) = 0. Further, this ring
of polynomials can be seen as K[X0, ..., Xn−1] = K[α, ∂(α), ..., ∂n−1(α)] and since it is an
integral domain, we can consider its field of quotients Q(K[α, ∂(α), ..., ∂n−1(α)]) = K〈α〉,
the smallest differential field containing both K and α.

Notice that by repeating this procedure, we can adjoin any number of solutions linearly
independent over K (and therefore, over CK). In particular:

Observation 3.5. Following the notation of the previous example, with the differential
operator l(d) ∈ K[d] and the differential field extensionK〈α〉, we can produce an extension
containing both K and K1 = K〈α〉 that adjoins a new solution. We simply consider
the field of rational funcions K1(Y0, ..., Yn−1) with the derivation defined previously as
∂(Yi) = Yi+1 for i < n − 1 and ∂(Yn−1) = − 1

ln

∑n−1
k=0 lkYk. Denoting β = Y0 we see

again that l(β) = 0 and that K1(Y0, ..., Yn−1) = K1〈β〉 = K〈α, β〉, the smallest field
containing both K and α, β. Notice how K〈α, β〉 = Q(K[X0, ..., Xn−1, Y0, ..., Yn−1]) with
the previously defined derivation. Morover, those solutions are linearly independent over
K since X,Y ∈ K〈α, β〉 are trascendental elements over K.

Therefore, we arrive to the construction we were pursuing:

Corollary 3.6. Let (K, ∂) be a differential field and l(d) ∈ K[d] a linear differential
operator given by l(d) =

∑n
k=0 lkd

k. Then, for any integer m, there exists a differential
field extension of K containing m solutions of the equation l(d) = 0 linearly independent
over K.

Proof. Consider the ring of polynomials in m ·n indeterminates K[Xij ] where i = 1, ...,m
and j = 0, ..., n− 1. If we extend the derivation ∂ of K as ∂(Xij) = Xi(j+1) for all i and

for j < n − 1 and define ∂(Xi(n−1)) = − 1
ln

∑n−1
k=0 lkXik, then, denoting αi = Xi0, we can

see that l(αi) = 0 for all i = 1, ...,m. Since it is an integral domain, we can consider
the differential field K(Xij) = K〈α1, ..., αm〉. This is a differential field extension of K
that contains m solutions of l(d) that are linearly independent over the field K, since the
indeterminates are trascendental elements. �
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Notice that this does not contradict the result in the previous chapter, where we saw
that the solution space to a linear differential equation of order n has dimension at most n
over the field of constants. This last part is crucial since in the previous examples we have
been thinking about linear independence over the base field, but this is not, in general,
the same as the field of constants of the extension. That is, if K̄ = K〈α1, ..., αm〉 ⊇ K
is the field extension considered above, while α1, ..., αm are linearly independent over CK
(because they are over K, which contains CK), they need not (and in fact, must not for
m > n) be linearly independent over the field of constants of K̄, CK̄ . The whole thing
rests upon the fact that in general CK̄ 6= CK . Consider the following observation.

Example 3.7. Let (K, ∂) be a field, c ∈ K and a ∈ K so that ∂(a) = ca. Then, a ∈ K
is a solution for the differential equation given by the operator l(d) = d − c already
considered above. If we consider again the field of rational functions K(X) with the
derivative ∂(X) = cX and denote β = X ∈ K(X), we have K(X) = K〈β〉 = K̄ and we
have adjoined a new solution, linearly independent over K and over CK . However, since
l(d) is of order one, we know that kerCK̄

l(d) has dimension at most one over the field of
constants of K̄, CK̄ . That means that α, β ∈ K̄ cannot be linearly independent over CK̄
and therefore that CK̄ cannot be equal to CK .

Indeed, if we consider ∂(βα) = ∂(β)α−β∂(α)
α2 = 0 since ∂(β)α = cβα = β∂(α), we get that

λ = β
α ∈ CK̄ is a constant. Further, λ 6∈ K since β = λα 6∈ K. Therefore, λ is a constant

in CK̄ that does not belong to CK and then CK̄ 6= CK .

Therefore, before proceeding to the following section, we must highlight the following
fact.

Proposition 3.8. Let L(d) ∈ K[d] be a linear differential operator of order n. Let
K̄1 ⊇ K be a differential extension where L(d) = 0 has n CK̄1

-linearly independent
solutions α1, ..., αn ∈ K̄1. Let K1 = K〈α1, ..., αn〉 ⊆ K̄1 with field of constants C1.
Let K̄2 ⊇ K̄1 be another extension containing the previous one where there are also n
linearly independent solutions over its field of constants, CK̄2

, β1, ..., βn ∈ K̄2, and let
K2 = K〈β1, ..., βn〉 ⊆ K̄2 with field of constants C2. Then, if they are so that K1 ( K2,
then, C1 ( C2.

Proof. First of all, we have V1 = kerK̄1
L = 〈α1, ..., αn〉C1 and V2 = kerK̄2

L = 〈β1, ..., βn〉C2 ,
where the subscript C1 and C2 denotes that we are considering the vector space generated
by those elements over those fields respectively. But since α1, ..., αn are linearly indepen-
dent over C1, their wronskian determinant must be nonzero. And so, they will be linearly
independent over C2 as well. Therefore, 〈α1, ..., αn〉C2 is a C2-vector space of dimension
n contained in V2 and so they are equal. But then, if K1 ( K2 we have that V1 ( V2, and
since V1 = 〈α1, ..., αn〉C1 ( 〈α1, ..., αn〉C2 = V2, necessarily we must have that C1 ( C2.
In particular, C2 6= CK . �

Therefore, with this previous result, we can see that in order to find a minimal ex-
tension containing a full set of solutions for a differential equation, we must study the
minimality of the field of constants. In particular, we can see that it has the following
corollary.

Corollary 3.9. Let (K, ∂) be a differential field, L(d) ∈ K[d] a linear differential operator
of order n and K̄ a differential extension of K so that it contains n linearly independent
solutions for L(d) = 0 over its field of constants CK̄ and is differentially generated by
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them. Let K̄ also be so that CK̄ = CK . Then, if K̃ ⊇ K is a differential field extension
so that L(d) = 0 also has a set of n linearly independent solutions over its constants that
differentially generate it and K̃ ⊆ K̄, then K̃ = K̄.

Proof. In the light of the previous result, if we had K̃ ( K̄, we would also have CK̃ ( CK̄ .
But since CK ⊆ CK̃ ⊆ CK̄ , we would have a contradiction. �

With these results, we have enough motivation to see what kind of analog to the
splitting field of a polynomial we are looking for. We have also seen that the minimality
of the field of constants will play a very important role.

3.2 Existence and Uniqueness of Picard-Vessiot Extensions

In the following discussion, we are going to see that given a differential field and a linear
differential equation, we can always construct an extension where it has all of its solutions
(meaning a set of linearly independent solutions over constants which size coincides with
the order of the equation) and that we can do it in such a way that the construction is
minimal. First of all, consider the following observation:

Observation 3.10. Let (K, ∂) be a differential field and L(d) ∈ K[d] a linear differential
operator of order n. If K̄ is a differential extension that contains n-linearly independent
over CK̄ solutions of L(d) = 0 (by the result on the wronskian, it cannot contain more
than that) and those solutions are α1, ..., αn ∈ K̄, then we can consider the smallest
differential subfield contained in K̄ that contains K as well as α1, ..., αn. We are going to
denote this field as K〈α1, ..., αn〉.

With this in mind, we can define what we mean by the minimal extension that contains
a fundamental set of solutions to the linear equation. Consider, with the previous notation,
a differential extension K̄ ⊇ K containing n linearly independent solutions α1, ..., αn ∈ K̄
so that:

(i) It is differentially generated by the solutions, i.e., K̄ = K〈α1, ..., αn〉.

(ii) It has no new constants, i.e., CK̄ = CK .

Then, we can see that such an extension is minimal, in the following sense.

Proposition 3.11. Let (K, ∂), L(d) ∈ K[d] and K̄ as above. If K̄ ′ ⊆ K̄ is a differential
extension of K so that it also contains n linearly independent solutions of L(d) = 0 over
the field of constants of K, then K̄ ′ = K̄.

Proof. This is again a consequence of the previous corollary 3.9 �

Then, it follows that this is the definition that we are looking for.

Definition 3.12. Let (K, ∂) be a differential field and L(d) ∈ K[d] a linear differential
operator of order n. Then, a differential extension K̄ ⊇ K is a Picard-Vessiot extension
for L(d) over K if:

(i) There exists {α1, ..., αn} ⊆ K̄ linearly independent over CK̄ so that L(αi) = 0 for
all i = 1, ..., n.

25



(ii) The field K̄ is differentially generated over K by the solutions to the linear differen-
tial equation, K̄ = K〈α1, ..., αn〉.

(iii) It adds no new constants, that is, CK̄ = CK .

3.2.1 Existence

We now turn to the task of proving that such extensions do exist for every differential
operator over certain fields and that they are unique up to the isomorphism of differential
fields. We have already seen in the previous section how the construction is going to be,
that is, to construct a field where the operator has a given number of solutions we need
only consider the ring of differential polynomials in that many indeterminates. In order to
turn that into a Picard-Vessiot extension, we will need the following result, which comes
from the theory of algebraic geometry.

Theorem 3.13. Let (K, ∂) be a differential field and R ⊇ K be a differential ring exten-
sion. Let R be an integral domain finitely generated as a K-algebra. Then, if R does not
contain any proper differential ideal and if CK is algebraically closed, the field extension
Q(R) given by its field of quotients has CK as the field of constants.

We have not developed the tools needed in order to prove this result since it depends on
a number of concepts from algebraic geometry. A proof for this result can be found in [4]
(pp. 129). It is of capital importance due to the role played by the field of constants when
looking for a minimal field extension, as was seen in 3.9. Indeed, thanks to this result
we can see that if we construct a differential ring that contains the solutions to a given
equation and without proper differential ideals, we will automatically have that it does
not add constants. Further, thanks to proposition 2.8 from the previous chapter, we know
that every maximal differential ideal is also a prime differential ideal. Therefore, if for a
ring extension R ⊇ K we take the quotient ring R/M , where M is a maximal differential
ideal of R, we have that R/M is a differential integral domain (since M is a prime ideal)
that is also without proper differential ideals, since M is a maximal differential ideal of
R.

Let’s then work towards our goal in a constructive manner.

Observation 3.14. Let (K, ∂) be a differential field (with CK field of constants alge-
braically closed) and L(d) ∈ K[d] a linear differential operator given by L(d) = l0 +
l1d + ... + lnd

n. We know from the discussion of the previous section that K[∂iXj ] with
i = 0, ..., n − 1 and j = 1, ..., n is a differential ring and that X1, ..., Xn are n-linearly
independent solutions over CK , since we defined ln∂

n(Xj) = −ln−1∂
n−1(Xj) + ...+ l0Xj .

Morover, it is an integral domain and it is clearly generated differentially by the n inde-
pendent solutions. One might therefore think that then Q(K[∂iXj ]) is a Picard-Vessiot
extension for L over K. But this fails to be true, since in general the field of constants of
this field will contain new constants not in CK .

In order to solve this problem and still thinking about K[∂iXj ] as the first step towards
a Picard-Vessiot extension, we can consider a maximal differential ideal M ⊆ K[∂iXj ]
and take the quotient K[∂iXj ]/M . From the previous results, we know that this is a diffe-
rential integral domain and that it does not contain proper differential ideals. Therefore,
Q(K[∂iXj ]/M) is a field extension of K that adds no new constants and that is generated
by the solutions of L(d). This, however, won’t completely solve the problem either, since
the linear independence of the solutions over CK might be lost in the process.
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Indeed, in K[∂iXj ] we have that the wronskian determinant w(X1, ..., Xn) is clearly
nonzero since it is a polynomial of positive degree. But if M ⊆ K[∂iXj ] is a maximal
ideal that contains w(X1, ..., Xn), then the wronskian of the solutions will be zero in the
quotient ring. In order to solve that, we will localize the ring of polynomials in the inverse
of the wronskian determinant. We will see how below.

Definition 3.15. Let R be a ring that is an integral domain. A multiplicative system
of R is a subgroup S ⊆ R that is closed under the product of R. That is, 1 ∈ S and
∀a, b ∈ S, ab ∈ S. Then, the localization of R in S, denoted as R[S−1], is the ring of
conjugacy classes of R × S given by the equivalence relation (a, s) ∼ (b, t) if and only
if at = bs and with operations defined in the same way as with the quotient field of an
integral domain. The multiplicative group condition is required for the denominators to
belong always to the set S.

With this idea, we can consider instead of the ring of polynomials K[∂iXj ], the loca-
lized ring of polynomials with respect to the multiplicative system of the powers of the
wronskian, the set W = {w(X1, ..., Xn)k : k ∈ N}. Then, the ring K[∂iXj ][W

−1] has the
property that for any maximal differential ideal M , the wronskian w(X1, ..., Xn) 6∈ M ,
since it is now a unit of the ring. This is the last ingredient we need in order to prove the
existence of Picard-Vessiot extensions.

Theorem 3.16. Let (K; ∂) be a differential field with algebraically closed field of constants
CK . Let L(d) = lnd

n + ... + l0 ∈ K[d] be a linear differential operator of order n. Then,
there exists a differential field K̄ containing K as a subfield that is a Picard-Vessiot
extension for L(d) over K.

Proof. We have already done most of the proof in parts, we only need now to join
the pieces. First of all, consider the ring of differential polynomials given by K[∂iXj ],
i = 0, ..., n−1, j = 1, ..., n, with the derivation ln∂

n(Xj) = −ln−1∂
n−1(Xj)− ...−Xj . This

is a differential integral domain that contains K as a subfield and that is generated by n
CK-linearly independent solutions of L(d) = 0. Now, consider the wronskian determiant
w(X1, ..., Xn), which is nonzero, and consider the multiplicative system formed by its
powers, W ⊆ K[∂iXj ]. If we now consider the localization K[∂iXj ][W

−1] and a differen-
tial maximal ideal M ⊆ K[∂iXj ][W

−1], we know that in particular, w(X1, ..., Xn) 6∈ M ,
since it is an invertible element in the localized ring, and that M is also a prime ideal.
Therefore, the quotient ring K[∂iXj ][W

−1]/M is a differential integral domain which does
not contain proper differential ideals. Therefore by the previous theorem 3.13 we get that
K̄ = Q(K[∂iXj ][W

−1]/M) is a field that has the same field of constants as K. Morover,
the classes of the elements X1, ..., Xn are clearly solutions to the equation L(d) = 0 viewed
in this field and are linearly independent over CK since w(X1, ..., Xn) 6= 0. And finally,
K̄ is clearly generated over K by the classes of the solutions X1, ..., Xn. Therefore, it is
a Picard-Vessiot extension for L(d) over K. �

Observation 3.17. As a remark on the previous proof, we see that the fact that the
field Q(K[∂iXj ]) is differentially generated over K by the elements X1, ..., Xn does not
prevent K̄ to also be generated over K by the classes of X1, ..., Xn. The reason for this
remark is that the notation K̄ = K〈X1, ..., Xn〉 is misleading since the field Q(K[∂iXj ])
could also be denoted this way. One has to be careful when the field that contains this
extension denoted as K〈X1, ..., Xn〉 is omitted.
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3.2.2 Uniqueness

Having seen that Picard-Vessiot extensions always exist given that the field of constants
is algebraically closed, we now turn to see whether they are unique. We want to see that
if (K, ∂), L(d) ∈ K[d] and L1, L2 ⊇ K are Picard-Vessiot extensions for L over K, then
they will be equal in a certain sense.

The main idea will be to see that Picard-Vessiot extensions are minimal in the sense
that if they can be embedded in another extension, then they can be embedded in a
unique way. Consider the following observation.

Observation 3.18. Let L(d) ∈ K[d] be a differential operator and K̄ = K〈α1, ..., αn〉 be
a Picard-Vessiot extension for L(d) over K with its solutions. Let F ⊇ K be a differential
extension that has the same field of constants as K. If there exists a differential K-
morphism ϕ : K̄ −→ F , then ϕ(kerK̄ L) is a CK vector space of dimension n, since ϕ is
an injective map (since it is in particular a field homomorphism) and then ϕ(α1), ..., ϕ(αn)
are linearly independent over CK . But since ϕ(kerK̄ L) ⊆ kerF L and CF = CK , then we
must have that they are indeed equal. Then, if a K-morphism exists between a Picard-
Vessiot extension and another extension that has the same constants, then it contains a
fundamental set of solutions for L(d) = 0.

This is the key property that we are going to use in order to prove that Picard-Vessiot
extensions are unique. Indeed, from the previous observation, we can prove the following
result.

Corollary 3.19. Let (K, ∂) be a differential field and L(d) ∈ K[d]. Let K̄1, K̄2 ⊇ K be
Picard-Vessiot extensions for L over K and let K̄ ⊇ K be a field extension that adds no
new constants. If there exist differential K-morphisms ϕi : K̄i −→ K̄, for i = 1, 2, then
ϕ1(K̄1) = ϕ2(K̄2).

Proof. This follows from the previous observation. Indeed, since ϕi is injective, commutes
with the derivation and is the identity on K, we have that ϕi(kerK̄i

L) is a CK vector
space of dimension n. But since K̄ has CK as its field of constants and since kerK̄ L has
dimension at most n over CK and since clearly ϕi(kerK̄i

) ⊆ kerK̄ L, then we have that
ϕ1(kerK̄1

L) = ϕ2(kerK̄2
L) = kerK̄ L. But then, since K̄i = K〈kerK̄i

L〉, we then have
that ϕ1(K̄1) = ϕ2(K̄2). �

Therefore, the only thing that we have to do in order to prove that Picard-Vessiot
extensions are unique is to make sure that for any two Picard-Vessiot extensions for the
same equation over the same field, we can always construct a differential extension that
adds no new constants and embed them into it. If that’s the case, then this last result
will allow us to prove that there is a differential K-isomorphism between them. The first
question is solved by the following observation.

Observation 3.20. We want to construct a differential field K̄ containing K as a subfield,
adding no new constants and so that any Picard-Vessiot extension of K for an operator
L(d) ∈ K[d] can be embedded into it. For the no-new-constants part, we would very
much like to use our previous result 3.13. Then, we need an integral domain R ⊇ K
finitely generated as a K-algebra so that it has no proper differential ideals. Further, it
needs to be big enough in order to contain a Picard-Vessiot extension for L(d). Given two
Picard-Vessiot extensions K̄1, K̄2 ⊇ K, our first idea would be to consider their tensor
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product K̄1 ⊗ K̄2, where both extensions can be easily embedded. However, neither of
those is finitely generated as a K-algebra (they are finitely generated differentially, but
infinitely generated algebraically since they are fields).

In order to solve that issue, we can supose that one of the extensions has been cons-
tructed as in the existence theorem. Thus, K̄1 = Q(K[∂iXj ][W

−1]/I), where R =
K[∂iXj ][W

−1]/I is a differential integral domain finitely generated as a K-algebra. Then,
we can consider the tensor product R ⊗ K̄2. This is still not finitely generated as a K-
algebra, but it is finitely generated as a K̄2-algebra. But this is good enough, since if
M ⊆ R⊗ K̄2 is a differential maximal ideal, then K̄ = Q((R⊗ K̄2)/M) has the same field
of constants as K̄2. But since K̄2 is a Picard-Vessiot extenision, it has the same field of
constants as K.

Now, we can turn our efforts towards finding field homomorphisms from K̄1, K̄2 to this
recently constructed extension K̄. We do so in the following proof.

Proposition 3.21. Let (K, ∂) be a differential field with algebraically closed field of cons-
tants CK , L(d) ∈ K[d] be a differential operator and K̄1, K̄2 ⊇ K be two Picard-Vessiot
extensions for it. Then, there exists a differential field extension K̄ ⊇ K that adds no
new constants and two field homomorphisms ϕi : K̄i −→ K̄.

Proof. Following the previous observation, let K̄1 be of the form K̄1 = Q(R) and let K̄ =
Q((R ⊗ K̄2)/M). Now, consider the injective differential ring homomorphism ψ : R −→
R⊗ K̄2 given by the obvious inclusion ψ(a) = a⊗ 1. We can project ψ into the quotient
ψ̃ : R −→ (R ⊗ K̄2)/M without losing injectivity, since the preimage ψ−1(M) ⊆ R is
a differential ideal and if ψ−1(M) = R, then ψ(1) = 1 ⊗ 1 would be an element of M ,
which is a contradiction with the fact that M is a maximal differential ideal (and thus is
a proper ideal). Then, ψ−1(M) = {0} and therefore ψ̃ is again injective.

Now, since it is an injective differential ring homomorphism, we can extend ψ̃ : R −→
(R ⊗ K̄2)/M to their fields of fractions in a unique way, and define ϕ1 : K̄1 = Q(R) −→
K̄ = Q((R⊗ K̄2)/M) as this extension. This is a differential field homomorphism.

Finally, we can consider ϕ2 : K̄2 −→ Q((R⊗ K̄2)/M) defined as ϕ2(a) = (1⊗ a) +M ,
which is injective since it is a field homomorphism. Morover, by their definition, ϕ1, ϕ2

are differential K-morphisms. �

We now are at last able to prove the uniqueness of Picard-Vessiot extensions:

Theorem 3.22. Let (K, ∂) be a differential field with algebraically closed field of cons-
tants, L(d) ∈ K[d] a differential linear operator and K̄1, K̄2 be two Picard-Vessiot exten-
sions for L over K. Then, there exists a field K-isomorphism ψ : K̄1 −→ K̄2.

Proof. Without loss of generality, we can assume K̄1 to be the Picard-Vessiot extension
constructed in the existence proof, K̄1 = Q(R), where R = K[∂iXj ][W

−1]/I. Define
K̄ ⊇ K as K̄ = R⊗ K̄2 and consider the field K-morphisms ϕi : K̄i −→ K̄ defined in the
previous proposition. Then, by corollary 3.19, we have that ϕ1(K̄1) = ϕ2(K̄2) and since
they are field K-morphisms (and therefore, are injective), we get that ϕ−1

2 ◦ϕ1 : K̄1 −→ K̄2

is a differential field K-isomorphism. �
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4 The Galois Group of a Differential Equation

During this section, we are going to fulfill our objective of associating a group to every
linear differential equation. The idea, due to Galois, will be to study the set of solutions
to a given differential equation and its structure in order to encode information about its
symmetries in the form of a group. Much in the same way as with algebraic equations,
our intuition is going to take us to a different definition to the one usually given. We are
going to prove, however, that both definitions give us the same object, the differential
Galois group.

4.1 Motivating Examples

Let’s begin with some examples in order to get an idea of how we are going to proceed.
We have already seen some of those examples. We are now going to associate a group
with their solutions.
Given a differential field (K, ∂) with algebraically closed field of constants CK and a linear
differential operator L(d) ∈ K[d] of order n, we can consider a Picard-Vessiot extension
K̄ for it. Let α1, ..., αn ∈ K̄ be a set of CK-linarly independent solutions of L(d) = 0.
Then, denoting L : K̄ −→ K̄ the evaluation map by a stretch of notation, we can see that
it is a CK linear map and kerL(d) = 〈α1, ..., αn〉 is a vector space over CK of dimension
n.
We want to associate a group with L(d) so that it encodes the structure and symmetry of
its space of solutions. To begin with, the structure of the space of solutions kerL(d) is that
of a vector space and the group that encodes this information is the group of CK linear
automorphisms of kerL(d). But since these solutions belong to a differential field, they
possess some extra structure that is not considered in the group of linear automorphisms.
So, in a sense, the group of linear automorphisms is “too big”since all of its elements
preserve the linear structure of kerL(d) but not all of them preserve its supplementary
differential structure. In the following examples, we are going to consider the subgroup of
those linear automorphisms that also preserve the differential structure of the solutions
and call it the Galois group associated with the differential equation.

Example 4.1. Let (K, ∂) be a differential field with algebraically closed field of constants
CK and consider the linear differential operator L(d) = d2 − ∂(c)c−1d ∈ K[d]. We know
from the preceding section that we can consider a Picard-Vessiot extension K̄ ⊇ K for L(d)
where, if α, β ∈ K̄ are two linearly independent solutions over CK (which is equal to CK̄),
we can write as K̄ = K〈α, β〉. Since 1 ∈ K is a solution for L(d) = 0, we can pick β = 1
and then the other linarly independent solution can be picked so that ∂(α) = c. Then,
K̄ = K〈α, 1〉 = K〈α〉 is a Picard-Vessiot extension for L(d) and kerL(d) = 〈α, 1〉 ⊆ K̄ as
a CK-vector space.
Now, as said above, since the solutions of L(d) have the structure of a vector space over
CK , our first idea to consider as the group that encodes the structure and symmetry of
the solutions is the group of linear automorphisms of kerL(d), denoted as AutCK

kerK̄ L.
Once we have fixed a basis for the vector space, its linear automorphisms are in bijection
with the group of invertible matrices GL2(CK) and in fact this is a group isomorphism.
Then, if ϕ : kerL −→ kerL is a linear isomorphism, its matrix Φ = (ϕij) ∈ GLn(CK) in
the basis {α, 1} is given by the images

ϕ(α) = ϕ11α+ ϕ121 ϕ(1) = ϕ21α+ ϕ221
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The group GL2(CK) is in general too large for it to succesfuly give the information we
want about the linear equation. In particular, we would like the images of the solutions to
behave in the same way as the solutions themselves. By considering linear automorphisms,
we already have by definition that the image of a solution is again a solutions to the same
differential equation. In order to make the images behave in the same way differentially,
we consider some particular relations which we want to be preserved. For example, since
1 is a constant, we demand ϕ(1) to be again a constant. Morover, since ∂(α) = cα, we
want its image to satisfy the same relation, ∂(ϕ(α)) = cα. Finally, we want ϕ(1) = 1
since 1 belongs to the field K and therefore it is not only a property of the differential
equation but of the base field itself. With this three conditions we get:

(i) ∂(ϕ(1)) = 0 : ∂(ϕ21α+ ϕ221) = ϕ21∂(α) = cϕ21α = 0 =⇒ ϕ21 = 0

(ii) ∂(ϕ(α)) = cα : ϕ11∂(α) = cα =⇒ ϕ11 = 1

(iii) ϕ(1) = 1 : ϕ22 = 1

Therefore, if we consider the elements of GL2(CK) that preserve those three relations, we
are considering the invertible matrices over CK of the form(

1 ϕ
0 1

)
Where ϕ ∈ CK . The elements of this form are indeed a subgroup of GL2(CK). We should
now proof that there are no more requirements to satisfy and that this group is indeed
the one we were looking for, but for now we are going to stop here and associate to this
operator the group:

G =

{(
1 ϕ
0 1

)
∈ GL2(CK) : ϕ ∈ CK

}
∼= C+

K

Which is indeed isomorphic to the additive subgroup of CK .

Before studying the general case, let’s do another example.

Example 4.2. This time, let’s consider the real field R with the trivial derivation and
extend it to the field of real rational functions R(X) with ∂(X) = 1. Consider L(d) ∈
R(X)[d] given by L(d) = d2 +1. We know from elementary calculus that the real funcions
cosx, sinx : R −→ R are linearly independent solutions for this equation, and thus
R(X){sinx, cosx} is a Picard-Vessiot extension for the operator L(d) over the field R(X).
Therefore, kerL = 〈sinx, cosx〉 since we know that it has to be a vector space over
R = CR(X) of dimension 2.
Following the previous example, we are going to define its Galois group as the group of real
linear automorphisms that also preserve its differential structure. Let ϕ ∈ AutR(kerL)
and let (ϕij) ∈ GL2(R) be its matrix in the basis sinx, cosx. Then,

ϕ(sinx) = ϕ11 sinx+ ϕ12 cosx ϕ(cosx) = ϕ21 sinx+ ϕ22 cosx

What differential relations do we want ϕ to preserve? First of all, the relations
∂(sinx) = cosx and ∂(cosx) = − sinx must remain valid when changing sinx, cosx
by its images under ϕ. Then, we also want the relation cos2 x+sin2 x = 1 to be preserved
under ϕ, that is, we want ϕ(sinx)2 + ϕ(cosx)2 = 1. By imposing this conditions we get
the following restrictions upon the coefficients of (ϕij):
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(i) ∂(ϕ(sinx)) = ϕ(cosx) : ϕ11 cosx − ϕ12 sinx = ϕ21 sinx + ϕ22 cosx =⇒ ϕ11 =
ϕ22, ϕ12 = −ϕ21.

(ii) ϕ(sinx)2 + ϕ(cosx)2 = 1 : (ϕ11 sinx + ϕ12 cosx)2 + (ϕ21 sinx + ϕ22)2 = 1 =⇒
ϕ2

11 + ϕ2
12 = 1.

Again, it remains to be seen that every other differential relation between the solutions
of L(d) has already been taken into account with those two relations. Then, the group
associated to the equation L(d) = d2 + 1 = 0 over the field R(X) is:

G =

{(
λ µ
−µ λ

)
∈ GL2(R) : λ2 + µ2 = 1

}
= SO2(R)

4.2 The Differential Galois Group

During the following discussion, we are going to construct the Galois group associated
with a given linear differential equation. As we have seen in the previous examples, we
will define it as the subgroup of the group of linear automorphisms that preserve the
differential relations between the solutions of the equation. Moreover, we are going to
closely follow the same construction studied in the context of polynomial equations.

Let’s begin by defining what we understand as a differential relation.

Definition 4.3. Let (K, ∂) be a differential field. We define the ring of differential
polynomials over K as the ring of polynomials in a countable number of indetermina-
tes K[X0, ..., Xn, ...] together with the derivation given by ∂(Xi) = Xi+1. This is a well-
defined differential ring since we have extended the derivation to every indeterminate. We
are going to denote it by K{X}. An element of K{X} will be denoted by p{X} ∈ K{X},
remembering that in fact p{X} = p(X, ∂X, ...).
In a similar way, we can define the ring of diffrential polynomials in several indetermi-
nates as the ring of polynomials K[Xij ] with j = 1, ..., n and i = 0, ... together with the
derivation given by ∂(Xij) = Xi(j+1). We are going to denote it by K{X1, ..., Xn}. An
element of this differential ring will be denoted by p{X1, ..., Xn}.

Now that we have defined the set where differential relations are going to be, we define
the following map:

Definition 4.4. Let (K, ∂) be a differential field and K{X1, ..., Xn} the ring of polyno-
mials in n differential indeterminates. Let L(d) ∈ K[d] be a differential operator and
K̄ = K〈α1, ..., αn〉 a Picard-Vessiot extension, where α1, .., αn are linearly independent
solutions of L(d) = 0 over the field of constants. We define the map
ψα : K{X1, ..., Xn} −→ K̄ as ψα(p{X1, ..., Xn}) = p{α1, ..., αn}. It is a differential ring
homomorphism. Then, we are going to say that the differential polynomial p{X1, ..., Xn}
represents a differential relation between solutions if p{X1, ..., Xn} ∈ kerK ψα.

Notice that the previously defined map is indeed a ring homomorphism, sinceK{X1, ..., Xn} =
K[Xij ] is in particular a K-vector space that admits {ΠijX

mij

ij } as a basis and we have

defined ψα(ΠijX
mij

ij ) = Πij∂
i(αj)

mij . Therefore, since it is also compatible with the pro-
duct in K[Xij ], it is also a morphism of K-algebras. Further, it is indeed a differential
ring homomorphism. Thus, kerψα is a differential ideal of K{X1, ..., Xn}. We are not
going to use this property by now, but let us note that it allows the following result:
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Corollary 4.5. Let L(d) ∈ K[d] be a differential operator over K and let K̄ = K〈α1, ..., αn〉 ⊇
K be a Picard-Vessiot extension for L. Let ψα : K〈X1, ..., Xn〉 −→ K̄ be the ring homo-
morphism defined above and kerK ψα its kernel. Then, K̄ ∼= Q(K〈X1, ..., Xn〉/ kerK ψα).

Proof. This is a simple application of the isomorphism theorem for rings. Since kerK ψα
is an ideal of the ring of differential polynomials, we have that K〈X1, ..., Xn〉/ kerK ψα ∼=
ImK(ψα). But kerK ψα is a prime ideal, since K̄ is a field. Therefore, the quotient
is an integral domain. Morover, it is a differential integral domain, since kerK ψα is
clearly a differential ideal. Therefore, Q(K〈X1, ..., Xn〉/ kerK ψα) ∼= Q(Im(ψα)) ⊆ K̄ is
a differential field. But since it contains a full set of solutions for L(d) = 0 and K̄ is a
Picard-Vessiot extension, we must have the isomorphismQ(K〈X1, ..., Xn〉/ kerK ψα) ∼= K̄.
�

Following the notation of the previous definition, the object we are interested in
studying is precisely kerL ⊆ K̄, which as we have already seen is a CK-vector spa-
ce. The linear structure of this space is reflected by its group of linear automorphisms,
AutCK

kerL. Once a basis has been fixed for the vector space, we can identify every linear
automorphism with an element of GLn(CK), its associated matrix. As we have already
seen, we are going to find a subgroup of AutCK

kerL (or, once a basis has been fixed, a
subgroup of GLn(CK)) that preserves the differential relations between the solutions. In
order to do so, we define the following group action:

Definition 4.6. Let (K, ∂) be a differential field and L(d) ∈ K[d] be a linear differential
operator. Let K̄ = K〈α1, ..., αn〉 be a Picard-Vessiot extension for L(d) with its basis of
solutions. Consider the ring K{X1, ..., Xn} of differential polynomials. We define the
group action of GLn(CK) over the differential polynomials as

ρ : GLn(CK)×K{X1, ..., Xn} −→ K{X1, ..., Xn}, ρ((λrs), ∂
jXi) =

∑
k

λkj∂
jXk

This action is well defined and it can be seen as the action of AutCK
kerL over the

polynomials once its basis has been fixed.

That the action is well defined is easily seen. In fact, much more than that, since
for every Λ = (λrs) ∈ GLn(CK), the induced map ρΛ(p) = ρ(Λ, p) is in fact a ring
homomorphism. Since the monomials Πi,j(∂

iXj)
mi,j are generators for K{X1, ..., Xn} as

a K-algebra, the action is defined so that ρλ(Πi,j(∂
iXj)

mi,j ) = Πi,j(
∑

k λkj∂
iXk)

mi,j .

With these definitions, and with the same idea that worked for algebraic equations in
the first chapter of this work, we are going to define the Galois group of a differential
linear equation as:

Definition 4.7. Let (K, ∂) be a differential field, L(d) ∈ K[d] a linear differential
equation, K̄ = K〈α1, ..., αn〉 a Picard-Vessiot extension for L(d) generated by a ba-
sis of solutions. Let ψα : K{X1, ..., Xn} −→ K̄ be the evaluation map defined as
ψα(p{X1, ..., Xn}) = p{α1, ..., αn}. Let ρ : GLn(CK)×K{X1, ..., Xn} −→ K{X1, ..., Xn}
be the group action defined above. Then, we define the Galois group of L(d) over K as

GalKL = Stabρ kerK ψα

This is the definition we have been working towards during all this work. It naturally
captures the symmetries of the space of solutions by considering the group of morphisms
that preserve them.
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We now turn to see that it is in fact well defined. The only thing that we have to check
is that there are no arbitrary choices involved. We can see that in the previous definition
we did make an arbitrary choice, that is, we fixed a basis for the vector space of solutions.
In order to prove that different choices of basis give the same Galois group, we begin by
the following observation:

Observation 4.8. Let (K, ∂) be a differential field with algebraically closed field of
constants, L(d) ∈ K[d] be a differential operator and let K̄ ⊇ K be a Picard-Vessiot
extension for L over K. Let {α1, ..., αn}, {β1, ..., βn} ⊇ kerK L be basis for the vector space
of solutions, with their respective evaluation morphisms ψα, ψβ : K{X1, ..., Xn} −→ K̄.
What is the relation between kerK ψα and kerK ψβ? First of all, notice that we can
consider the change of basis matrix Λ = (λij) ∈ GLn(CK) as αi =

∑
j λijβj . Now, if

p{X1, ..., Xn} ∈ kerK ψα, we have that ψα(p{X1, ..., Xn}) = p{α1, ..., αn} = 0. But, using
the change of basis matrix, we can write p{α1, ..., αn} = p{

∑
k λ1kβk, ...,

∑
k λnkβk} =

ψβ ◦ ρ(Λ, p) = 0.

Remember that given the group action ρ, an element Λ ∈ GLn(CK) and a subset
S ⊆ K{X1, ..., Xn}, we can consider the set ΛS = {ρ(Λ, p) : p ∈ S}. Thus, we can see
that

Λ kerK ψα = {ρ(Λ, p) : p ∈ kerK ψα} ⊆ kerK ψβ

Using a similar argument and taking into account that the reciprocal change of basis
matrix from α to β is just the inverse matrix Λ−1, we can see that

(Λ−1) kerK ψβ ⊆ kerK ψα

Therefore, since Λ−1Λ kerK ψα = kerK ψα and since group actions respect inclusions, we
have the following chain of inclusions:

kerK ψβ = Λ(Λ−1 kerK ψβ) ⊆ Λ kerK ψα ⊆ kerK ψβ

Allowing us to conclude that Λ kerK ψα = kerK ψβ. Thus, we can easily prove the result
we were looking for.

Corollary 4.9. Let (K, ∂), L(d) ∈ K[d] be as before and let K̄ ⊆ K be a Picard-Vessiot
extension for L(d) over K. Let kerK L be the CK-vectror space of solutions of L(d) =
0 in K̄ and let {α1, ..., αn}, {β1, ..., βn} ⊆ kerK L be two basis for it. Then, with the
evaluation morphisms ψα, ψβ : K{X1, ..., Xn} −→ K̄ defined accordingly, we have that
Stabρ kerK ψα ∼= Stabρ kerK ψβ

Proof. Let Λ = (λij) ∈ GLn(CK) be the change of basis matrix so that αi =
∑

j λijβj .
Then, by the previous observation, we know that kerK ψβ = Λ kerK ψα. But by the proper-
ties of group actions and stabilizers reviewed in Section 1 we know that Stabρ kerK ψβ =
Stabρ(Λ kerK ψα) = Λ(Stabρ kerK ψα)Λ−1 ∼= Stabρ kerK ψα, since conjugate subgroups
are isomorphic. �

Another important fact about the differential Galois group is that it is a linear algebraic
group. The theory of algebraic groups is briefly developed in the appendix to this work.

Proposition 4.10. With the previous notation, if L(d) ∈ K[d] is a linear operator over
a differential field with algebraically closed constants, then GalKL is a closed subgroup of
GLn(CK) under the Zariski Topology of the affine space Kn2+1.
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Proof. According to the theory of affine varieties developed in the appendix, we have
to see that there exists a finite set of polynomials f1, ..., fm ∈ K[X11, ..., Xnn] so that
GalKL = {(λ11, ..., λnn) ∈ GLn(CK) : fi(λ11, ..., λnn) = 0, i = 1, ...,m}. In order to find
them, let’s consider a basis {α1, ..., α} for kerK L ⊆ K̄, where K̄ is a Picard-Vessiot exten-
sion for L over K. Then, if ψα : K{X1, ..., Xn} −→ K̄ is the evaluation morphism defined
above, we can consider kerK ψα. This is an ideal of the ring of polynomials in n2 indetermi-
nates K{X1, ..., Xn} and by the Hilbert basis theorem (see appendix), there exist a finite
number of polynomials so that kern ψα = 〈f1(X11, ..., Xnn), ..., fm(X11, ..., Xnn)〉. Now, for
each one of those, if Λ = (λij) ∈ GalKL, we know that ψα(ρ(Λ, fi)) = 0. Therefore, expan-

ding it out, we can write that fl(
∑

k λjk∂
iαk) =

∑
r f

(l)
r (λ11, ..., λnn)ψαgr{X1, ..., Xn} = 0,

where f
(l)
r (λ11, ..., λnn) are the coefficients for the polynomial fl(

∑
k λjk∂

iαk) when ex-
panded and written in terms of a finite set of differential polynomials gr{X1, ..., Xn} not
depending on the λij . Since each one of those coefficients has to be identically zero for
the whole polynomial to be zero, we then have that

f (l)
r (λ11, ..., λnn) = 0, r = 1, ..., rl, l = 1, ...,m

is a finite set of polynomials that is zero when evaluated on the elements of the matrix
Λ, for every such matrix in the Galois group. Conversely, it is a rather long but easy

calculation to see that if Λ = (λij) ∈ GLn(CK) satisfies f
(l)
r (λ11, ..., λnn) = 0 for every

r, l, then fl(
∑

k λjk∂
iαk) = 0 for every fl generating kerK ψα, and therefore by definition

Λ ∈ GalKL. �

Having seen that the Galois group is a well-defined object and that it has by cons-
truction the properties that we expect it to have, we can now prove that this definition
coincides with the usual definition of the differential Galois group. We begin by giving
this usual definition:

Definition 4.11. Let (K, ∂) be a differential field with an algebraically closed field of
constants. Let L(d) ∈ K[d] be a linear differential operator and let K̄ ⊇ K be a Picard-
Vessiot extension for L over K. Then, the differential Galois group of L(d) over K is
defined to be the group of differential K-automorphisms of the field K̄, that is, AutKK̄.

First of all, we can see that AutKK̄ can be embedded in the general linear group
GLn(CK), where n is the order of the differential operator L(d).

Proposition 4.12. Let (K, ∂), L(d) ∈ K[d], K̄ be as above and let AutKK̄ be its dif-
ferential Galois group. Then, there exists an injective group homomorphism AutKK̄ ↪→
GLn(CK)

Proof. Let α1, ..., αn ∈ K̄ be a basis for kerK̄ L. Then, K̄ = K〈α1, ..., αn〉 and if ϕ ∈
AutKK̄, then it is completely determined by the images ϕ(αi) for i = 1, ..., n. Since
ϕ(αi) ∈ kerK̄ L, we can write it in terms of the basis α1, ..., αn and so for every ϕ ∈ AutKK̄
we have a set of n2 constants λij(ϕ) ∈ CK , i, j = 1, ..., n, so that ϕ(αi) = λi1(ϕ)α1 + ...+
λin(ϕ)αn.

Then, we define the map Φα : AutKK̄ −→ GLn(CK) as Φα(ϕ) = (λij(ϕ))i,j=1,...,n ∈
GLn(CK). It is a group homomorphism, since the image of the identity map is the identity
matrix and the image of the composition of K-automotphisms is the product of their ma-
trices. Indeed, if Φα(ϕ) = (λij), Φα(ψ) = (µij), we have that ϕ ◦ ψ(αi) = ϕ(

∑
j µijαj) =∑

j µijϕ(αj) =
∑

k(
∑

j µijλjk)αk and therefore Φα(ϕ ◦ ψ) = (
∑

j µijλjk)i,k=1,...,n ∈
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GLn(CK). In particular, the image of the inverse of a K-automorphism is the inverse
matrix. Finally, Φα is obviously injective.

�

We are going to use this result to prove the conclusion that we were very much looking
forward to.

Theorem 4.13. Let (K, ∂), L(d) ∈ K[d], K̄ ⊇ K be as before, α1, ..., αn ∈ K̄ be a basis
for the vector space of solutions of L(d) = 0 and Stabρ kerψα, AutKK̄ be defined as above.
Then, Stabρ kerψα ∼= AutKK̄.

Proof. Using our previous result, what we are going to prove is that given a basis
α1, ..., αn ∈ K̄ for the CK-vector space of solutions of L(d), the groups ImΦα and
Stabρ kerK ψα are in fact equal. Then, being Φα injective, we are going to have the
desired isomorphism AutKK̄ ∼= Stabρ kerK ψα.

Let then Λ = (λij) ∈ Φα(AutKK̄) ⊆ GLn(CK) and let ϕ ∈ AutKK̄ be its preimage.
Then, if p{X1, ..., Xn} ∈ kerK ψα, we clearly have that ψα◦ρ(Λ, p) = p{ϕ(α1), ..., ϕ(αn)} =
ϕ ◦ ψα(p{X1, ..., Xn}) = 0, being ϕ a K-differential automorphism. Therefore, Λ ∈
Stabρ kerK ψα.

In order to prove that Stabρ kerK ψα ⊆ ImΦα(AutKK̄), let Λ = (λij) ∈ Stabρ kerK ψα
and let’s define a differential K-automorphism of K̄ that has Λ as its image under Φα.
Consider the map ψ = ψα ◦ Λ : K{X1, ..., Xn} −→ K̄, which is a differential ring homo-
morphism. Then, since kerψα ⊆ ker(ψα ◦ Λ), being Λ ∈ Stabρ kerψα, we can define it
in the quotient ring K{X1, ..., Xn}/ kerψα and therefore, we can get a differential field
K-isomorphism ψ̃ : Q(K{X1, ..., Xn}) −→ Imψ̃ ⊆ K̄. But by corollary 4.5, we have a
differential K-isomorphism K̄ ∼= Q(K{X1, ..., Xn}/ kerψα). Combining this two, we have
a differential K-isomorphism ϕ : K̄ ∼= Q(K{X1, ..., Xn}/ kerψα) ∼= Imψ̃.

We only have to see that Imψ̃ = K̄, since its injectivity is given by the fact that it is a
field homomorphism. Morover, it is surjective since Im(ψ̃) contains a full set of solutions
for L(d) and K̄ is a minimal differential field with this property. Therefore, ϕ : K̄ −→ K̄
is a differential K-automorphism. Also, by construction of ψ̃ and of the isomorphism of
corollary 4.5, it is clear that Φα(ϕ) = Λ, finishing our proof.

�

4.3 Some examples

Before finishing this section, let us comment on some basic examples for the Galois group
of a differential equation. First of all, we can consider the simplest examples of a linear
differential equation, already commented. During this section, let (K, ∂) be a differential
field with an algebraically closed field of fractions.

Example 4.14. Let’s consider the differential operator L(d) = d − λ ∈ K[d], with
λ 6= 0. Let K̄ = K〈α〉 ⊇ K be a Picard-Vessiot extension for it. This corresponds to
the adjunction of an exponential, since L(α) = ∂(α) − λα = 0. Then, we can consider
its Galois group GalKL, which is going to be a closed subgroup of GL1(CK) ∼= C∗K ,
the multiplicative group of CK . This particular subgroup will be determined by the
differential relationships between the solution α an the field K.
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Since for every p{X} ∈ K{X}, ψα(p{X}) ∈ K[α], we only have to study whether
there are any polynomials in K[X] which evaluate to zero at α. We will not enter into too
much detail, but if there are no such polynomials (i.e, if α is trascendental over K), then
kerψα consists only of homogeneous polynomials in K{X}, and clearly for every µ ∈ C∗K ,
p{µX} = µkp{X} for some k > and therefore ψα ◦ ρ(µ, p{X}) = 0. Then, GalKL = C∗K .

Otherwise, if α is not trascendental over K, then we can consider the minimal poly-
nomial of α over K, IrrKα(X) ∈ K{X}. It clearly belongs to kerψα. As is shown in
[5] (pp. 22), by seeing that the derivative of IrrKα(X) evaluated at α divides IrrKα(X),
we get that αk ∈ K for some k > 0. Therefore, since if µ ∈ GalKL, then in particular
ψα ◦ ρ(µ,Xk − c) = µkαk − c = 0, then µk = 1 and it has to be a k-th root of unity in
C∗K . Therefore, GalKL ∼= CK is a finite cyclic subgroup of C∗K .

Example 4.15. The next simple equation corresponds to the inhomogeneous first-order
linear equation, L(d) = d ∈ K[d], which we want to be solved when L(α) = a ∈ K.
As we saw in the begining of this chapter, we can turn this inhomogeneous problem
into an homogeneous one by defining La(d) = d2 − a−1∂(a)d. We then can consider a
Picard-Vessiot extension for it K̄ = K〈1, α〉, where α is a solution for the inhomogeneous
equation. Then, its Galois group GalK(La) is going to be a subgroup of GL2(CK). As
we saw in example 4.1, if Λ = (λij) ∈ GL2(CK), then it is of the form:

Λ ∈
{(

1 c
0 1

)
∈ GL2(CK) : c ∈ CK

}
∼= C+

Which is clearly an element of the additive subgroup of CK . Since we can easily see

that for every c ∈ CK , the element Λc ∈ GL2(CK) given by

(
1 c
0 1

)
gives the differential

K-auromorphism defined by ϕc(α) = α+c, which is clearly an element of the Galois group.
Therefore, GalKL ∼= C+.

Example 4.16. Finally, let’s consider an example of order two. Let (K, ∂) be a differential
field with an algebraically closed field of constants and consider the differential operator
L(d) = d2 +1. In the field of real rational functions, we recognize it as the operator having
the trigonometric functions sin and cos as solutions. In the field K, however, being CK
algebraically closed, we know that −1 is a square. That is, −1 = λ2 for some λ ∈ CK .

In that case, we can give the following two non equivalent factorizations L(d) =
L−(d)L+(d) and L(d) = L+(d)L−(d), where L−(d) = d − λ and L+(d) = d + λ. If
K̄ = K〈α, β〉 is a Picard-Vessiot extension for L(d) over K, we can chose them so that
L+(α) = 0 and L−(β) = 0. We can see that they are linearly independent over CK , becau-
se if α+ µβ = 0 with some nonzero µ ∈ CK , then differenciating we get −λα+ µλβ = 0,
and combining it with λα + µλβ = 0 we would end up with α, β = 0. (We can also
consider an alternative argument, where K1 = K〈α〉 is a Picard-Vessiot extension for
L+(d) and K2 = K〈β〉 is a Picard-Vessiot extension for L−(d). Then, we can see that
K1,K2 ⊆ K̄)

To calculate it differential Galois group, which is going to be a subgroup of GL2(CK),
we can see that since the relations ∂(α) = −λα and ∂(β) = λβ have to be preserved,
then:

GalKL ⊆
{(

µ 0
0 ν

)
∈ GL2(CK) : µ, ν 6= 0

}
∼= C∗ × C∗

We can then determine GalKL by using our previous considerations about the Galois
group of the operators L+(d) and L−(d).

37



5 Liouville Extensions and Elementary Functions

In this section, and with the only intention to give some extra completeness to this work
and to indicate some of the ways in which this theory can be useful, we will present some
concepts that derive from those already developed. Those are the notion of a Liouville
extension and its relationship with closed-form formulas and the idea of integration and
elementary functions. We are going to expose and develop the results concerning those
two ideas. However, we will not prove the results involved in this part of the work and
refer the reader to appropriate references.

5.1 Liouville Extensions

In this section, we are going to study the most immediate analogue to solvable extensions
in the case of a polynomial equation. Remember that, as was seen during the undergra-
duate course in Galois theory, a solvable equation was defined as follows:

Definition 5.1. Let K be a field and p(X) ∈ K[X] of degree n. Let K̄ = K(α1, ..., αn) be
a splitting field for p(X). Then, we will say that p(X) is a solvable by radicals equation if
there exists a field K̃ ⊇ K̄, a chain of intermediate subfields K0 = K ⊆ K1 ⊆ ... ⊆ Km =
K̃, elements β1, ..., βm ∈ K̃ and strictly positive integers n1, ..., nm > 0 so that:

(i) Ki = Ki−1(βi) and therefore K̃ = K(β1, ..., βm).

(ii) βni
i ∈ Ki−1. That is, βi is obtained extracting a radical from Ki−1.

We can clearly see that this definition encapsulates the notion of expressing the root
of a polynomial in terms of the basic algebraic operations, +,−, ·,÷, n

√
. Indeed, if a

polynomial is solvable by radicals, then its roots can be expressed doing a finite number
of algebraic operations with elements of the base field K. Then, there is the important
result of Galois:

Theorem 5.2. Let K be a field of characteristic zero and p(X) ∈ K[X]. Then, p(X) is
solvable by radicals if and only if GalKp(X) is a solvable group.

This alone should justify the approach of Galois theory to the study of polynomial
equations. That’s why it seems natural to look for a similar result in the theory of linear
differential equations. And indeed, that’s precisely the result we are studying in this
section. First of all, we should address the question of what is the differential analogue of
extracting a root? Since, in the previous section, we saw that linear differential equations
of order one give either exponentials (homogeneous case) or primitives (nonhomogeneous
case), it is natural to think of those as the basic field extensions of differential algebra.
Then, having seen that the differential analogues of a root extraction are primitives and
exponentials of primitives, we can define a similar type of differential field extensions to
the solvable ones in polynomial equations. First of all, we give the definition of an element
expressible by quadratures:

Definition 5.3. Let (K, ∂) be a differential field and K̄ ⊇ K be a differential field ex-
tension. An element α ∈ K̄ is expressible by quadratures over K if there exists a chain
of differential subfields K = K0 ⊆ K1 ⊆ ... ⊆ Kn so that α ∈ Kn and there exist
α1, ...αn ∈ Kn so that Ki = Ki−1〈αi〉 and αi is either an algebraic element, a primitive
or the exponential of a primitive over Ki−1.
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This definition can be followed by the more general definition of a Liouville extension:

Definition 5.4. Let (K, ∂) be a differential field and K̄ ⊇ K be a differential extension.
We are going to say that K̄ is a Liouville extension if there exist intermediate fields
K0 = K ⊆ K1 ⊆ ... ⊆ Kn = K̄ and elements α1, ..., αn ∈ K̄ so that Ki+1 = Ki〈αi〉 and
either ∂(αi) ∈ Ki, or ∂(αi)/αi ∈ Ki, or αi is algebraic over Ki.

We can easily see the following corollary:

Corollary 5.5. If K̄ ⊇ K is a Liouville extension and α ∈ K̄, then α is expressible by
quadratures over K.

Thus, the concept of a Liouville extension and of an element expressible in quadratures
are analogous concepts to a radical extension and an element expressible by radicals in the
theory of polynomial equations. We could, however, consider another kind of analogous
ideas, and indeed we are going to do so in the next section.

We would very much want to find a characterization of this new notion of solvability
in terms of the Galois group of the differential equation. And indeed, that’s the case.
The differential counterpart of Galois’ theorem relating the solvability of a differential
equation with its Galois group is the following:

Theorem 5.6. Let (K, ∂) be a differential field with algebraically closed field of constants,
L(d) ∈ K[d] a differential operator and K̄ a Picard-Vessiot extension for L(d). Then, L(d)
is solvable in closed form if and only if its differential Galois group, GalKL is so that its
identity component, (GalKL)0, is a solvable group (as an algebraic group).

Observation 5.7. We can see that in contrast to polynomial Galois theory, here what is
required to be solvable is the identity component of the differential Galois group. As can
be seen in [11] (pp. 98), there is a stronger notion of representability by quadratures which
excludes the possibility of extracting roots. In this context, the notion of quadrature that
we have defined above is usually referred to as “solvable by generalized quadratures”.
Then, if we define an element as representable in quadratures if it can be expressed using
only primitives and exponentials of primitives, then the above result would indeed relate
this representability with the solvability of the whole differential Galois group, not only
of its identity component.

We will not go deeper into these results in this work. Let us, however, comment on
some examples. Appropriate bibliography will be referenced in each case.

Example 5.8. Let C be the field of complex numbers and consider the differential field
of rational functions (C(X), ∂), where ∂ is the trivial derivation in C extended to C(X) as
∂(X) = 1. We can consider the Airy equation in C(X), given by the differential operator
LA(d) = d2 −X ∈ C(X)[d]. We can then consider C(X)〈α, β〉 ⊇ C(X) a Picard-Vessiot
extension for LA(d), where α, β are two C-linearly independent solutions. Following the
development as in A. Magid [13] (pp. 56), J. Hubbard [8] (pp. 16), we can see that the
differential Galois group of the Airy operator is GalC(X)LA = SL2(C). Further, those
references show that the connected component of this Galois group is the whole group
and that it is not a solvable group. Therefore, by our previous results, the solutions to
the Airy equation are not representable by quadratures over the field of complex rational
functions.

The second example can be found in [10] (pp. 417).
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Example 5.9. Let again (C(X), ∂) be the differential field of rational complex functions

and consider the Bessel operator Lν = d2 + 1
X d+(1− ν2

X2 ), where ν ∈ C. Following the cal-
culations in [10], one can see that for the case where ν− 1

2 6∈ Z, then GalC(X)Lν = SL2(C)
which by the previous example is not solvable and neither is its identity component. Then,
the solutions to the Bessel differential equation are not expressible by quadratures over
the field of rational functions with complex coefficients when 2ν is not an integer, as is
well known in physics.

5.2 Integration in Terms of Elementary Functions

To finish our work, let us give another application of the differential Galois theory. Con-
tinuing with our interest in what kind of relation do the solutions of an equation have
with respect to the coefficients of the equation, we are going to introduce the idea of
elementary functions. For the following definitions, we are going to follow the text of J.
Murphy, [15] (pp. 13).

Definition 5.10. Let (K, ∂) be a differential field and K̄ ⊇ K a differential field exten-
sion. Let α ∈ K̄. Then, it is elementary over K one of the following holds:

(i) α is algebraic over K.

(ii) α is a logarithm over K. That is, there exists β ∈ K nonzero so that ∂(α) = ∂(β)
β .

(iii) α is an exponential over K. That is, there exists β ∈ K nonzero so that ∂(α)
α = ∂(β).

This is not enough in order to introduce the idea of an elementary function. Over the
field C(X) we would like our elementary functions to be the above elements together with
compositions among them. According to the above definition, logX would be elemen-
tary over C(X) in some differential extension that contains it, but log log(X) would not.
Neither would XX be elementary, since it can be written as XX logX and it satisfies none
of the above criteria. Then, it is clear that we have to take compositions into account in
order to have a satisfactory notion of elementary functions. Then, we give the following
definition:

Definition 5.11. Let (K, ∂) be a differential field and K̄ ⊇ K be a differential field
extension. Then, K̄ is a field of elementary functions over K if there exists a chain of
differential field extensions K0 = 0 ⊆ K1 ⊆ ... ⊆ Kn = K̄ and elements β1, ..., βn ∈ K̄ so
that Ki = Ki−1〈βi〉 and βi is elementary over Ki−1.

With this definition, previous examples such as log logX or XX are now elementary
functions over C(X), since we can consider the chain C(X) ⊆ C(X)〈α〉 ⊆ C(X)〈α, β〉,
where ∂(α) = 1

X and ∂(β) = ∂(α)
α , giving β = log logX, where each α and β is a logarithm

in the previous field.

We then arrive at the following necessity condition for a differential field extension to
be elementary over a certain field. This result is due to A. Magid, and the corresponding
proof can be found in [13] (pp. 82).

Theorem 5.12. Let C be an algebraically closed field and consider the differential field
(C(X), ∂) of rational functions with trivial derivation in C and ∂(X) = 1. Let L(d) ∈ K[d]
be a linear differential operator and C̄ ⊇ C(X) be a Picard-Vessiot extension for L(d) over
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C(X). If there exists a field of elementary functions E over C(X) so that C(X) ⊆ C̄ ⊆ E,
then the identity component of GalC(X)L is an abelian group.

For the sake of completeness, we are going to borrow the following argument from A.
Magid [13](pp. 82) to give an example of the case where the solution to a differential
equation is not expressible in terms of elementary functions.

Example 5.13. Let (C(X), ∂) be the field of rational functions with complex coeficients
as defined before. Then, if in some extension C̃ of C(X) there’s an element α ∈ C̃ so
that ∂(α) = exp(−X2) (i.e., α =

∫
e−x

2
), then α is not contained in an elementary field

of functions over C(X). Therefore, there is no combination of logarithms, exponenti-
als, algebraic elements and arithmetic operations we can do in C(X) in order to get an
expression for α.

A proof for this can be found in A. Magid [13] (pp. 81, 82) , and rests upon the fact
that we can consider the linear differential operator L(d) = d2 + 2x ∈ C(X)[d]. Then,
we can consider a Picard-Vessiot extension C̃ ⊆ C(X) for it so that C̃ = C(X)〈1, α〉,
where α is a primitive of exp(−X2). Then, the argument follows until it is shown that
GalC(X)(L) ∼= GL2(C)+ o GL2(C)∗ and that its identity component is not an abelian
group. Hence, by the above theorem, there’s no field of elementary functions containing
both 1 and α, and since 1 is cleary elementary, α is not an elementary function over C(X).
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6 Conclusions

During the course of this work, we have introduced another way of thinking about the
known topic of Galois theory. We have also seen how this slightly different approach also
works for the Galois theory of differential equations. In doing so, we have developed the
advanced machinery of differential algebra and exposed it in the clearest way possible.
And finally, we have given some hints of what is all of this useful for.

Overall, I think that this project works in various ways. Firstly, the narrative (or
the guiding plot) of the work has worked out pretty well. The brief but complete first
section about algebraic equations contains most of the ideas that have been, later on,
developed in great length in the context of differential algebra. Therefore, this structure
has been useful to highlight the great analogy existent between those two parts of the
work. Moreover, the somewhat original parts of the work, which include both definitions
of the Galois group (algebraic and differential) as well as the results that follow from
them, are in a way parallels too. This further manifests the success of these ideas, in that
they can be extended without much modification to the differential case.

Secondly, with respect to the contents of the work themselves, I consider it a great thing
that those original ideas (or faintly original, without the intention of overemphasizing it)
have worked out well. Indeed, as was said during the introduction, I was not at all
sure that this investigation was going to allow me to carry out my own ideas. Therefore
having established that those ideas, although insightful but not necessarily useful, are
indeed correct, and having proved some results from them, is in my opinion a greater
success than I was expecting.

Finally, with respect to the theory studied in order to progress with the work, I have
found it a highly satisfying theory in mathematics. Algebraic Galois theory is beautiful
for its complete solution to an interesting mathematical problem. Therefore, seeing that
its ideas can also be extended to the field of linear differential equations greatly enhances
the beauty of the original theory too. Besides, I have found the study of concepts usually
within the field of analysis through the lens of algebra a very interesting instance of what
can be done by combining the ideas we have gathered during our undergraduate studies.
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A Affine Varieties and Algebraic Groups

In this section, we are going to study some basic notions of affine varieties and algebraic
geometry. Let’s begin by defining:

Definition A.1. Let K be a field. Define the affine n dimensional space over K as
Kn = K×...×K. Consider also the set of multivariate polynomials over K, K[X1, ..., Xn].
An affine variety in Kn is a subset A ⊆ Kn so that there exist a finite subset {p1, ..., pm} ⊆
K[X1, ..., Xn] that is zero precisely on the set of points of A. That is, A = {a ∈ Kn :
pi(a) = 0, ∀i1, ...,m}.

Here, we must recall the great result by Hilbert:

Theorem A.2. Let K be a field. Then, every ideal of K[X1, ..., Xn] is finitely generated.

Then, with this result, we have that for every ideal I ⊆ K[X1, ..., Xn] we can consider
the affine variety V(I) defined as the set of zeroes of a finite set of generators of I. This
affine variety is well defined and is independent of the choice of generators.

Definition A.3. Let K be a field. Then, I(K[X1, ..., Xn]) denotes the set of ideals of
K[X1, ..., Xn] and V(Kn) denotes the set of affine varieties of Kn.

An important fact is the following one:

Proposition A.4. Let K be a field, Kn its affine n-space. Then

(i) ∅,Kn ∈ V(Kn).

(ii) If A,B ∈ V(Kn), then A ∪B ∈ V(Kn).

(iii) If {Ai}i ⊆ V(Kn) is an arbitrary indexed subset of V(Kn), then ∩iAi ∈ V(Kn).

Thus, V(Kn) are the closed sets of a topology for Kn, called the Zariski topology.

The proof is straightforward and is based upon the following mappings between the
sets of ideals of K[X1, ..., Xn] and the set of varieties of Kn.

Lemma A.5. With this definition, we can define the map ψV : I(K[X1, ..., Xn]) −→
V(Kn) associating to each ideal its affine variety. This map reverses inclusions, ie., if
I ⊆ J ∈ I(K[X1, ..., Xn]), then ψV(J) ⊆ ψV(I).

This map is not injective, since for example ψV(〈X〉) = ψV(〈X2〉). It is, howe-
ver, exhaustive, since for every affine variety X ∈ V(Kn), there are some f1, ..., fm ∈
K[X1, ..., Xn] so that ψV(〈f1, ..., fm〉) = X. We are going to study this later.

In that same way, given a set S ⊆ Kn, we can consider the set of polynomials that are
zero on S. That is, we can consider the set I(S) = {p ∈ K[X1, ..., Xn] : p(a) = 0, ∀a ∈ S}.
It is clearly an ideal. Thus, we can also consider the following map ψI : V(Kn) −→
I(K[X1, ..., Xn]) that associates to every affine variety the ideal of polynomials that are
zero on it. It also reverses inclusions in the same sense as ψV . However, this map fails
to be exhaustive, since if K is not algebraically closed, there are nontrivial ideals of
K[X1, ..., Xn] that cannot be reached by ψI . For the sake of simplicity, when the meaning
is clear by the context, we are going to denote ψV(J) = V(J) and ψI(X) = I(X).
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We would like ψI and ψV to be inverses of each other. This problem is solved by the
theorem known as Hilbert’s Nullstellensatz. Remember first that given a ring R and an
ideal I ⊆ R, it’s radical is given by

√
I = {a ∈ R : an ∈ I forsomen ≥ 0}. It is also an

ideal. An ideal is called radical if it is equal to its radical.

Theorem A.6. Let K be an algebraically closed field. Then:

(i) If M ⊆ K[X1, ..., Xn] is a maximal ideal, then there exists p = (p1, ..., pn) ∈ Kn so
that M = 〈X1 − p1, ..., Xn − pn〉.

(ii) If I ⊆ K[X1, ..., Xn] is a proper ideal, then V(I) 6= ∅. That is, multivariate polyno-
mial equations always have solution.

(iii) If I ⊆ K[X1, ..., Xn] is an ideal, then I ◦ V(I) =
√
I

With this important result, we can see that ψI is exhaustive when K is algebraically
closed and that ψV is injective when restricted to the set of radical ideals of K[X1, ..., Xn].
Thus, we have seen that:

Corollary A.7. Let K be an algebraically closed field. Then, there is a bijection ψ :√
I(K[X1, ..., Xn]) −→ V(Kn).

Indeed, the bijection is given by ψ = ψV and ψ−1 = ψI . We can see from this result and
from Hilbert’s Nullstellensatz that through the bijective correspondence between radical
ideals of K[X1, ..., Xn] and affine varieties of Kn, maximal ideals correspond to points
in Kn and prime ideals correspond to irreducible closed sets of Kn under the Zariski
topology.

Let’s now define what are the maps between affine varieties that preserve their struc-
ture.

Definition A.8. Let K be an algebraically closed field and X ⊆ Kn, Y ⊆ Km affine
varieties. A map φ : X −→ Y is a morphism of affine varieties if there exist polynomials
p1, ..., pm ∈ K[X1, ..., Xn] so that ϕ(k1, ..., kn) = (p1(k1, ..., kn), ..., pm(k1, ..., kn)) ∈ Y .

As an example, we can see that:

Example A.9. Let K be an algebraically closed field and X ⊆ Y ⊆ Kn be affine varieties.
Then, the inclusion map φ : X ↪→ Y given by φ(x1, ..., xn) = (x1, ..., xn) is a morphism
of affine varieties.

Before proceeding with the next example, we are going to define the notion of the
product of varieties.

Definition A.10. Let K be an algebraically closed field and X ⊆ Kn, Y ⊆ Km affine
varieties. Let I(X) = 〈p1, ..., pr〉 ⊆ K[X1, ..., Xn] and I(Y ) = 〈q1, ..., qs〉 ⊆ K[X1, ..., Xm].
If we now consider the ring K[X1, ..., Xn, Y1, ..., Ym], we can view the previous polynomial
rings as subrings of this one, and so consider p1, ..., pr, q1, ..., qs ∈ K[X1, ..., Xn, Y1, ..., Ym].
Then, we define the affine variety product of X and Y as X×Y = V(〈p1, ..., pr, q1, ..., qm〉).

Example A.11. Let K be a field and X ⊆ Kn, Y ⊆ Km be affine varieties. The
projection maps πX , πY : X × Y −→ X,Y are morphisms of affine varieties.
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We now have all the ingredients we need in order to define what a linear algebraic
group over an affine space is.

Definition A.12. Let K be an algebraically closed field and G ⊆ Kn an affine variety
that has also a group structure, i.e, a product ∗ : G×G −→ G, a neutral element e ∈ G
and an inverse function i : G −→ G satisfying the group axioms. Then, G is a linear
algebraic group if the product ∗ and the inverse function i are morphisms of affine varieties
(when considering G × G as the product variety) and if e : G −→ G giving the neutral
element is also a morphism of affine varieties.

Example A.13. As an example, we can consider C and the complex affine n-space
Cn. Then, the set A = {(z, 0, ..., 0) ∈ Cn : z ∈ C} is a linear algebraic group. In
the first place, A is indeed an affine variety, since it is the variety defined as the set of
zeroes of the polyniomials p2(X1, ..., Xn) = X2, ..., pn(X1, ..., Xn) = Xn. Then, the map
i(X1, ..., Xn) = (−X1, 0, ..., 0) and the map e(X1, ..., Xn) = (0, ..., 0) are morphisms of
affine varieties corresponding to the additive operations of the group A. Further, the map
+(X1, ..., Xn, Y1, ..., Yn) = (X1 + Y1, 0, ..., 0) is a morphism too. Therefore, A ⊆ Cn is a
linear algebraic group.

We are now in the position to see how the group of invertible matrices over a given
field is indeed an algebraic group, thus giving sense to its name: the general linear alge-
braic group. Let K be an algebraically closed field and let GLn(K) ⊆ Mn×n(K) be the
group of invertible n by n square matrices with coefficients in K, together with matrix
multiplication.

Observation A.14. Let K be a field and GLn(K) the group of invertible square matrices
over K of dimension n described above. Since we want to see it as an algebraic group, we
first have to embed it in an affine space. The obvious impulse would be to see it as a subset
of Kn2

. This, however, won’t work, since we would have GLn(K) = {(λ11, ..., λnn) ∈ Kn2
:

det(λij) 6= 0}, but this is the complementary of the set {(λ11, ..., λnn) ∈ Kn2
: det(λij) =

0} which is a closed set in the Zariski topology, being the set of zeroes of a polynomial
(the determinant). Then, GLn(K) is not a closed set in Kn2

and therefore it is not an
affine variety in Kn2

.

From this observation, we can see that our next guess is indeed the correct one.

Proposition A.15. Let K be an algebraically closed field and let GLn(K) be the group
of invertible n by n matrices over K. Then, it is a linear algebraic group in the affine
space Kn2+1.

Proof. In order to turn GLn(K) into an affine variety of Kn2+1 we need it to be closed in
the Zariski topology. That is, it has to be the set where some polynomials are zero. Since
the defining property of an invertible matrix is that its determinant is nonzero, we can
see that GLn(K) = {(λ11, ..., λnn, λ) ∈ Kn2+1 : det(λij)λ−1 = 0} is a good embedding of
the invertible matrices, in the sense that it is a closed subset under the Zariski topology.

In order to see that it is a linear algebraic group, we need to see that the group
operations are morphisms of affine varieties. We can, in a rather cumbersome and long
way, see that the inverse matrix is given by polynomials on each component, while the
neutral element (the identity matrix) is obviously given by a morphism. Further, matrix
multiplication is also given by polynomials. Then, we get that the general linear group
over K is indeed a linear algebraic group. �
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Straight from the definition, we can see the following result.

Lemma A.16. Let K be a field and G ⊆ Kn a linear algebraic group. Then, every
subgroup of G that is closed under the Zariski topology is again a linear algebraic group.

This allows us to give some examples of linear algebraic groups as closed subgroups of
the general linear group.

Example A.17. Let K be a field and let GLn(K) ⊆ Kn2+1 be the general linear group
over K. The following subgroups are also linear algebraic groups:

(i) The group of upper triangular matrices, Tn(K) = {(λ11, ..., λnn, λ) ∈ GLn(K) :
λij = 0, ∀i > j}.

(ii) The group of diagonal matrices, Dn(K) = {(λ11, ..., λnn, λ) ∈ GLn(K) : λij =
0, ∀i 6= j}.

(iii) The special linear group, SLn(K) = {(λ11, ..., λnn, λ) ∈ GLn(K) : λ = 1}.

We can see that those are indeed closed subsets of Kn2+1, since we have described them
as the zero sets of extra polynomials.

Finally, before ending this appendix about affine varieties and algebraic groups, we
are going to give the notions of connectedness and solvability of an algebraic group. As
we are going to see, they are relevant in the context of the Lie-Kolchin theorem.

Definition A.18. Let K be an algebraically closed field and Kn its affine n-space. Let
X ⊆ Kn be an affine variety of Kn. Then, X is connected if it is a connected topological
space under the induced Zariski topology. That is, X is connected if and only if for all
A,B ⊆ X affine varieties of Kn so that X = A∪B and A∩B = ∅, then either A = ∅ or
B = ∅.

With this notion of connectedness, we can define the identity component of an algebraic
group.

Definition A.19. Let K be an algebraically closed field and G ∈ V(Kn) be an algebraic
group. Then, the identity component of G, denoted as G0, is the connected subgroup of G
that contains the identity element.

We can also give an notion of solvability restricted to the context of algebraic groups.

Definition A.20. Let K be an algebraically closed field and G ∈ V(Kn) be an algebraic
group. Then, G is solvable as an algebraic group if there is a chain of algebraic subgroups
G0 = {i} ⊆ G1 ⊆ ... ⊆ Gn = G so that Gi is a normal subgroup of Gi+1 for every
i = 0, ..., n− 1 and so that the quotient groups Gi/Gi−1 are all abelian.

Then, we can present the celebrated theorem due to Sophus Lie and Ellis Kolchin. A
proof can be found in [5] (pp. 69).

Theorem A.21. If G ⊆ GLn(K) is a connected and solvable subgroup of the general
linear group over the algebraically closed field K for n > 1, then G is conjugate to a
triangular subgroup of GLn(K).
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rential Equations. Universitat Autònoma de Barcelona, Treball Final de Grau, 2014.

[3] Conrad, B: Impossibility Theorems for Elementary Integration. 2005

[4] Crespo, T; Hajto, Z: Algebraic Groups and Differential Galois Theory. Graduate
Studies in Mathematics, Volume 122. American Mathematics Society, 2010.

[5] Crespo, T; Hajto, Z: Introduction to Differential Galois Theory. Cracow University
of Technology Press, Cracow, 2007.

[6] Goldstein, L. J: Abstract Algebra: A First Course. Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1973.

[7] Hartshorne, R: Algebraic Geometry. Graduate Texts in Mathematics, Springer-Verlag
New York, 1977.

[8] Hubbard, J. H; Lundell, B: A First Look at Differential Algebra. The American
Mathematical Monthly, Vol 2018, pp 245-261, 2011.

[9] Kaplansky, I: An Introduction to Differential Algebra. Hermann, 1957.

[10] Kolchin, E. R: Differential Algebra and Algebraic Groups. Pure and Applied Mathe-
matics, vol. 54, Academic Press, New York, 1973.

[11] Khovanskii, A: Topological Galois Theory. Springer Monographs in Mathematics,
Springer-Verlag Berlin Heidelberg, 2014.

[12] Khovanskii, A; Alekseev, V.B: Abel’s Theorem in Problems and Solutions. Appendix
by A. Khovanskii: Solvability of equations by explicit formulae (Liouville’s theory,
differential Galois theory, and topological obstructions). Springer Netherlands, 2004.

[13] Magid, A: Lectures on Differential Galois Theory. American Mathematical Society,
University Lectures Series, vol 7, 1994.

[14] Morales Ruiz, J. J: Differential Galois Theory and Non-Integrability of Hamiltonian
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