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An effect of multiplicative noise in the time-dependent Ginzburg-Landau model is reported, namely, that
noise at a relatively low intensity induces a phase transition towards an ordered state, whereas strong noise
plays a destructive role, driving the system back to its disordered state through a reentrant phase transition. The
phase diagram is calculated analytically using a mean-field theory and a more sophisticated approach and is
compared with the results from extensive numerical simulations.@S1063-651X~96!06412-4#
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In recent years, it has been demonstrated that noise can
play a constructive, ordering role in nonequilibrium situa-
tions through its interaction with the nonlinearities of a sys-
tem @1,2#. A first example is the case of stochastic resonance
@2,3#, in which the signal-to-noise ratio of the system reaches
a maximum for a given value of the noise intensity. Another
example is the pattern-forming transition~from a homoge-
neous phase to roll structures! controlled by multiplicative
noise in the Swift-Hohenberg model@4,5#. A disorder-order
transition induced by multiplicative noise has also been
found in the Ginzburg-Landau model@5–7#.

Recently, a spatially extended model has been reported
that exhibits a genuine noise-induced nonequilibrium phase
transition @8#. In this case another interesting phenomenon
has been observed: once the noise-induced transition has
brought the system to an ordered state, a reentrant second-
order phase transition takes place at a higher value of the
multiplicative noise intensity, disordering the system again.
In other words, the order parameter is exactly zero for small
and large noise intensities, but nonzero and going through a
maximum in a window of intermediate intensities. This phe-

nomenon resembles stochastic resonance in that the order-
producing effect of noise is optimal for a specific intermedi-
ate value of the noise intensity. For larger values of the
intensity, the noise resumes its more familiar order-
destroying role. In this Brief Report we present another ex-
ample of such a phenomenon, namely, the existence of a
reentrant transition under the influence of multiplicative
noise in the time-dependent Ginzburg-Landau model@9#,
which is a generic model describing phase transitions and
critical phenomena in both equilibrium and nonequilibrium
situations.

The time-dependent Ginzburg-Landau model is described
by the field equation

ċ~r ,t !52ac~r ,t !2c~r ,t !31D¹c~r ,t !1ja~r ,t !, ~1!

wherec(r ,t) is a scalar field andja(r ,t) is a spatially un-
correlated Gaussian white noise that accounts for the thermal
fluctuations in the system. For simplicity, we consider a dis-
cretized version of the Ginzburg-Landau model@6,7,10# on a
square lattice. We assume that the control parameter, i.e., the
coefficienta of the linear term, is subject to fluctuations that
are also white in space and time. The system is then de-
scribed by the scalar field variablec(r ,t), with r defined on
a square lattice, obeying the coupled set of stochastic differ-
ential equations
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The sum overn(r ) runs over the nearest neighbors ofr
and the corresponding term stands for the discretized form of
the diffusion operator.ja(r ,t) and jm(r ,t) represent inde-
pendent Gaussian white noises with zero mean value and
correlation

^ja,m~r ,t !ja,m~r 8,t8!&5sa,m
2 d r ,r8d~ t2t8!. ~3!

The additive noise termja(r ,t) models the presence of ther-
mal fluctuations, while the multiplicative noisejm(r ,t) rep-
resents the effect of a parametric noise on the control vari-
able a. They will be interpreted according to the
Stratonovich calculus@1#. We have chosen the coefficient of
the third-power term and the intensity of the additive noise
sa to be equal to 1 in Eq.~2!. This can always be achieved
by an appropriate choice of the units forc and t ~see Ref.
@10# for a review of other parametrizations!.

Even in the absence of the multiplicative noisesm
2 50,

the exact phase diagram for the Ginzburg-Landau model is

not known analytically, but the location of the phase bound-
ary between the disordered phase^c(r ,t)&50 and the or-
dered phasêc(r ,t)&Þ0 has been evaluated through exten-
sive numerical simulations@10#. We have simulated the
model defined by Eqs.~2! and~3! on a cubic lattice in spatial
dimensiond52, using Heun’s method, for system sizes up
to 50350, and have obtained the phase boundaries when the
multiplicative noise is present. Our results are plotted in Fig.
1~a!. The qualitative form of this boundary can be obtained
theoretically on the basis of a Weiss mean-field theory,
which replaces in~2! the value of the field atn(r ) by its
mean density@6,11#, and is reproduced in Fig. 1~b!. The
mean-field theory predicts that the location of the critical-a
value, at which order sets in, is shifted by the multiplicative
noise in a nontrivial way: for a large value of the spatial
couplingD, the transition is advanced, while it is delayed for
small values ofD. A closer inspection of the figure suggests
that the transitions can be reentrant as a function of the in-
tensity of the multiplicative noise. For example, those points
within the dark region in Fig. 1~b! belong, according to the
mean-field theory, to the disordered phase forsm50 and
sm54, but to the ordered region forsm52. The main pur-
pose of this paper is to confirm this somewhat surprising
existence of reentrant transitions by extensive simulations.

The main results are collected in Figs. 1~a! and 2. Fig.
1~a! represents the phase boundary for three different values
of the intensity of the multiplicative noise. The ordered and
disordered regions are separated by a line of critical points.
The figure confirms the general tendencies predicted by the
mean-field theory, cf. Fig. 1~b!. It also serves as a guideline
for identifying the parameter values at which a reentrant
transition occurs, while at the same time taking into account
accuracy and computation limits of the simulations. The best
result was obtained forD53,a50.75, corresponding to the
point where the two straight lines in Fig. 1~a! intersect. This
point belongs to the disordered region forsm50 and lies in
the ordered region for the valuessm51 andsm52. How-

FIG. 1. Phase diagram in theD vs a plane.~a! Numerical re-
sults and~b! mean-field theory. The dark region in~b! illustrates the
occurrence of a reentrant phase transition.

FIG. 2. Order parameterm and relative fluctuationsx as a func-
tion of the intensity of the external noisesm for sa51, a50.75,
D53, and different lattice sizes. The stars in the upper figure are an
extrapolation of the finite-size results and the vertical lines are the
estimates of the critical boundaries.
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ever, in view of the shape of the critical lines for increasing
sm , one can expect that the point will again belong to a
disordered region for slightly higher values ofsm . To verify
this expectation, we have measured the order parameterm as
a function of the noise intensity.m is defined as usual@10# in
terms of the field variablec(r ,t),

m5
^C&
L2

, ~4!

whereC5u( rc(r ,t)u, with the sum running over the entire
lattice, andL2 is the number of sites. The relative fluctua-
tions of the order parameter have also been evaluated:

x5
^C2&2^C&2

L2
. ~5!

In a disorder-order transition we expect thatm will be very
small in the disordered region, and going to zero as the sys-
tem size increases, while it converges to a finite nonzero
value, almost independent of the system size, in the ordered
phase. In analogy to equilibrium critical phenomena, the
transition can also be characterized by a singularity of the
relative fluctuationsx. As is clear from Fig. 2, these critical
properties are observed twice, once at an entrant transition,
estimated numerically by a finite-size analysis to be located
at sm.0.78, and again at the reentrant transition, taking
place atsm.5.25.

Figure 3 presents analytical results for the phase diagram
in the (D,sm) plane for a50.75 obtained by using the
mean-field theory and the correlation function approach
~CFA! introduced in@8#, whereas Fig. 4 shows the order
parameterm as a function of the intensity of the noisesm for
D53 anda50.75. In Fig. 3, the plotted transition line for
the CFA corresponds to those points where the disorder so-
lutionm50 becomes unstable. Notice that in the absence of
external noise (sm50) and in the limitD→`, the mean-

field approximation, which is exact in this limit, predicts the
system to be in the ordered phase for any positivea @6#.
Consequently, the transition line in the (D,sm) plane ~see
Fig. 3! starts at a finite value ofD, Dc(sm50). For
a50.75, the mean-field theory predictsDc(sm50).1.66
belowD53 and therefore it does not account for theentrant
transition, as is also clear from Fig. 4. On the other hand, in
the CFADc(sm50) is aboveD53 and this theory gives a
critical valuesm.0.645 at the entrant transition, which is
not too far from the observed value of 0.70. Note, however,
that the theory predicts a first order transition~jump to a
finite value ofm) with hysteresis effects~see Fig. 4!, which
are not observed in the simulations. We expect that this is an
artifact of the approximations involved in the theoretical ap-
proach, but further numerical and theoretical work is needed
to settle this issue. For strong noise, both mean-field theory
and the CFA present large deviations from the numerical
results~cf. Figs. 2 and 4!.

In conclusion, we have presented clear evidence of a re-
entrant phase transition in the Ginzburg-Landau model in-
duced by parametric noise on its control parameter, thereby
demonstrating once more the dual role of the noise intensity
as an order-producing and order-destroying control param-
eter. These noise-induced reentrant transitions are not par-
ticular to this model and can be expected to occur also in
pattern-forming transitions@4,12# ~in this case from roll
structures to an homogeneous phase!.

J.G.O. and J.M.S acknowledge financial support from the
Dirección General de Investigacio´n Cientı́fica y Tecnica
~Spain! under Project No. PB93-0769 and J.M.R.P. from
Project No. PB94-0388. C.V.d.B. thanks the Program on
Inter-University Attraction Poles, Prime Minister’s Office,
Belgian Government and the NFWO Belgium for financial
support. J.M.P.R. and C.V.d.B. were also supported by
NATO Grant No. CRG95055. Most of the numerical simu-
lations reported here have been done on the computers of the
Centre de Computacio´ i Comunicacions de Catalunya.

FIG. 3. Phase diagram in the (D,sm) plane for sa51 and
a50.75: mean-field theory~dashed line! and CFA~solid line!. In
the CFA the line corresponds to those points where the disorder
solutionm50 becomes unstable.

FIG. 4. Order parameterm as a function of the intensity of the
external noisesm , for sa51, a50.75, andD53: mean-field
theory~dashed line! and CFA~solid line for the stable branches and
dotted line for the unstable branch!. Note that the CFA predicts a
first-order phase transition.
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