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Generalized synchronization in directionally coupled systems with identical individual dynamics
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Departamento de Fisica Fundamental, Universidad de Barcelona, Avenida Diagonal 647, 08028 Barcelona, Spain

~Received 13 November 2001; published 11 April 2002!

A simple chaotic flow is presented, which when driven by an identical copy of itself, for certain initial
conditions, is able to display generalized synchronization instead of identical synchronization. Being that the
drive and the response are observed in exactly the same coordinate system, generalized synchronization is
demonstrated by means of the auxiliary system approach and by the conditional Lyapunov spectrum. This is
interpreted in terms of changes in the structure of the system stationary points, caused by the coupling, which
modify its global behavior.
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Synchronization of chaos is an issue of major interes
nonlinear dynamics. A significant result is the discovery o
variety of different synchronization phenomena that inclu
identical synchronization~IS!, and generalized synchroniza
tion ~GS! among others@1#. Such variety of chaos synchro
nization scenarios raises questions regarding fundament
sues such as the conditions for the occurrence of the diffe
phenomena. The present paper addresses GS, which is a
nomenon defined in the frame of directionally coupled c
otic systems, and refers to the situation when there is a c
tinuous mapping that allows to define the trajectory of
response from the trajectory of the drive@2#. This form of
synchronization, which includes identical synchronizati
@3# as a particular case, was introduced and has been stu
@1,2,4,5# as a form of synchronization proper of chaotic sy
tems with nonidentical individual dynamics. IS is then se
as the form of synchronization proper of identical chao
systems, while GS is understood as its generalization to
with nonidentical systems. In the present paper, it will
shown that nonidentity of the systems is not a necess
condition for GS, because identical systems are also ab
exhibit nontrivial forms of GS. This will be done by mean
of the example of two identical three-dimensional flux
coupled directionally and monitored in exactly the same
ordinate system; which, however, display GS combined w
IS, depending on initial conditions. The origin of GS will b
traced by a qualitative analysis of the global dynamics of
coupled six-dimensional system. Moreover, because of
existence of different basins of attraction, these results
provide an example of a case in which the test for GS kno
as the auxiliary system approach may fail to detect GS
warned, although not demonstrated, in Ref.@4#.

Synchronization under a drive-response scheme is stu
here. The drive system is an autonomous three-dimensi
flow, x5(x1 ,x2 ,x3), whose dimensionless equations of m
tion are

ẋ15x213.2 sin~1.4 x2!, ~1!

ẋ252x22~x32R!x1 , ~2!

ẋ35x1
22x3 , ~3!
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with R a parameter of the model. This system was introdu
to study the stability of IS in spatially symmetric chaot
systems and its use in communications@6#. In what follows
we will takeR55.2, which makes the system chaotic with
Lyapunov spectrum (0.13,0,22.13). A plot of the chaotic
attractor, given in Fig. 1, shows that the system dynam
behavior can be described as a coherent rotation in a sim
chaotic band attractor. Local stability analysis shows that
system has three fixed points. One, atX(0)5(0,0,0), is a
saddle node, with eigenvaluesl1

(0)521, l2
(0)'25.86, and

l3
(0)'4.86. The respective eigenvectors aree1

(0)5(0,0,1),
e2

(0)'(1,21.07,0), ande3
(0)'(1,0.89,0). The other fixed

points are located atX(1,2)5(6AR,0,R), and are spiral-out
saddles, with eigenvaluesl1

(1,2)'24.54 and l2,3
(1,2)'1.27

6 i3.31, and eigenvectorse1
(1,2)5(20.59,0.49,20.76), and

e2,3
(1,2)'(0.376 i0.92, 20.476 i0.44, 21.107 i0.25). These

fixed points are displayed in Fig. 1. There, it is seen how
motion in the attractor results form the interplay between
spiral dynamics around the pointsX(1,2): a departing phase
space point that rotates aroundX(2), after having completed a
bit more than a half rotation falls down onto the neighbo
hood ofX(1), this makes it to swirl around this point goin

FIG. 1. Dynamic behavior of the flow given by Eqs.~1!–~3! for
R55.2. The stationary points appear as filled circles. Trajecto
and points appear in black, and their projections onto the coordi
planes are plotted in gray. All quantities plotted are dimensionle
©2002 The American Physical Society02-1
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over a new arc back to the influence ofX(2). The whole
dynamics results from a back and forth motion between th
two repellors. The fixed point atX(0) acts as a repellor whe
the phase space trajectories approach their lowerx3 values.

In Ref. @6# the focus was on IS and symmetry. Howev
there are other dynamic behaviors available that will be sh
here to be a case of GS in directionally coupled systems w
identical individual dynamics. For this aim, we consider t
response system,y5(y1 ,y2 ,y3), with

ẏ15y213.2 sin~1.4 y2!, ~4!

ẏ252y22@x32R#y1 , ~5!

ẏ35y1
22y3 , ~6!

which generalizes the driving scheme studied in Ref.@6# be-
cause here a full copy of the drive is used instead of a pa
it @3#. According to the literature,@3,7#, this sort of coupling,
being the systems identical, may produce IS. If this were
case, the full dynamics occurring in the six-dimension
space defined by the combined set of Eqs.~1!–~6! will col-
lapse onto a manifold such thatxi(t)5yi(t), for i 51,2,3.
Results of a study of that possibility are given in Figs. 2~a!
and 2~b! for two realizations that differ on the set of initia
conditions used:xD

(0)5(22.5,22.6,4.2) for the drive, and
ya

(0)5(3,0,0) or yb
(0)5(10,0,0), respectively, for the re

sponse. In these plots and other similar that follow, only
third component of each subsystem is displayed because
plots for the other components would provide no new inf
mation. Figure 2~a! displays a clean straight line with slop
equal to one, after a short transient~not shown!, while Fig.
2~b! looks cloudy despite 104 cycles aftert50 have been

FIG. 2. Test for IS using initial conditionsxD
(0) for the drive, and

~a! ya
(0) , or ~b! yb

(0) , for the response. Auxiliary system approa
test for GS whenyb

(0) is used for the initial conditions of the re
sponse, and~c! za

(01) , or ~d! zb
(0) for the auxiliary system. All quan-

tities plotted are dimensionless.
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neglected before starting to plot. So one obtains IS only
certain initial conditions but not for all.

To study the case when no IS was observed the auxil
system approach~ASA!, which is a test for GS introduced b
Abarbanel, Rulkov, and Sushchik@4# was used. For that aim
an auxiliary system,z5(z1 ,z2 ,z3), was constructed, given
by

ż15z213.2 sin~1.4 z2!, ~7!

ż252z22@x32R#z1 , ~8!

ż35z1
22z3 . ~9!

According to Ref. @4# if the dynamics of the nine-
dimensional system given by Eqs.~1!–~9! collapses to a
manifold that verifiesyi(t)5zi(t), i 51,2,3; then, there is
GS of the drive to the response in the sense that there
transformation,y(t)5f@x(t)#, that gives the dynamic of the
response from the dynamics of the drive, withf@•# a locally
continuous, point to point, non-time-dependent transform
tion. This test for GS, which is partly shown in Fig. 2, di
plays different outputs depending on the initial conditio
used for the response@ya

(0) or yb
(0)] and for the auxiliary

system@za
(0)5(0,8,0) orzb

(0)5(6,8,0)]. Forya
(0) , one obtains

that for za
(0) there is IS, which is a trivial case of GS, whil

for zb
(0) ASA fails to detect synchronization. The correspon

ing plots are identical to Figs. 2~a! and 2~b!, and, therefore,
not displayed. The test foryb

(0) , @Figs. 2~c! and 2~d!#, pro-
vides an indication that is reversed respect toya

(0) : no syn-
chronization is detected forza

(0) , and a proper case of GS fo
zb

(0) . In this last case the ranges of variation ofy3 andz3 are
different and disjoint from those observed for IS. Moreov
Fig. 2 suggests thatf@•# is a complicated function. Som
insight on the nature off@•# can be obtained from a look to
the plot of the trajectory of the response given in Fig. 3~a! for
yb

(0) . While a plot forya
(0) will be identical to that given in

Fig. 1 for the drive, the plot foryb
(0) in Fig. 3~a! shows a

response trajectory that is roughly an amplified version of
drive with a broader band structure. These results sug
that, in the six-dimensional space of initial conditions forx
and y, there are two basins of attraction one leading to
and other to GS. When both the response and the auxil
systems are started at the same basin of attraction, ASA
tects synchronization, which may be IS or GS. When
initial conditions of these two systems are in different basi
the ASA test fails to detect the synchronized states@4#.

Another test for GS, given by Kocarev and Parlitz@5#, has
been done computing the conditional Lyapunov expone
for the response. The average values of the conditio
Lyapunov exponents have been obtained over trajecto
initiated at,xD

(0) , for the drive, andya
(0) or yb

(0) for the re-
sponse. According to Ref.@5#, GS occurs if and only if all the
exponents are negative. The conditional Lyapunov spe
obtained are (20.42,20.58,21.00) for ya

(0) and (20.25,
20.76,21.00) foryb

(0) . Therefore, in the two cases we hav
2-2



a
fo

o
n
F

ha
m

su

a
hi
e
ll

ct

nto
ts
as
hat
have
o-
,

nly
ou-
he

e
en
ordi-

rive
ce
c-
this
e

for

s a

t
he

re-

re-

-
the

o-
ical
e
the

nd
se

und
di-
eci-

ns

BRIEF REPORTS PHYSICAL REVIEW E 65 047202
asymptotically stable synchronized trajectories, being the
solute value of the largest conditional Lyapunov exponent
GS smaller than for IS.

The six-dimensional system given by Eqs.~1!–~6! has
one fixed point at the origin,X(0)

^ Y(0)5(0,0,0)̂ (0,0,0)
and an infinite set of couples of fixed points given byX(1,2)

^ Y(1,2)(y3)5(6AR,0,R) ^ (6Ay3,0,y3). Because of the
unidirectional nature of the coupling, the stability analyses
these points, can be factorized into two three-dimensio
problems, one for the drive and another for the response.
the drive one obtains, as it must be, the same global be
ior, within its own subspace, as for the uncoupled syste
For the response, it results thatY(0)5(0,0,0) has exactly the
same eigenvalues and eigenvector as that ofX(0), and then
has the same effect on the dynamics in the response
space. The relevant points here areY(1,2)(y3) that have ei-
genvalues21 and 0 for any positive value ofy3, being the
former eigenvalue degenerate. Therefore,X(1,2)

^ Y(1,2)(y3)
are still repellors in the full drive-response phase space, h
ing a spiral-out saddle structure in the drive subspace, w
in the response subspace there are two manifolds: on
stable and two dimensional, and the other is margina
stable, one dimensional, and tangent to the eigenve
(1,0,62Ay3) of l3

(1,2) at each point (6Ay3,0,y3). The tra-

FIG. 3. Dynamic behavior of the response for initial conditio
~a! yb

(0) , and~b! yc
(0)5(15,8,100). The drive was started atxD

(0) . The
set of points given by the parabolay35y1

2 that is discussed in the
text is also displayed. All quantities plotted are dimensionless.
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jectories in the response subspace tend to drop o
the points of the attracting curve of stationary poin
y156Ay3, but the driving act prevents them to do so, and
a result they evolve around that curve. This is indeed w
has been observed as mentioned previously, where we
obtained two separated attractors following this kind of m
tion ~one for IS and other for GS!, and response evolutions
as shown in Fig. 3~b!, that spiral outwards following a curve
aroundX(1,2)

^ Y(1,2)(y3) that mimics the trajectory of the
drive at ever increasing values ofy3.

The synchronization behavior cannot be inferred o
from local stability arguments because a drive-response c
pling does not warrants synchronization. According to t
literature on synchronization of identical systems@3,8# there
is a basin of initial conditions leading to IS only when th
largest conditional Lyapunov exponent is negative. Wh
this happens, the response phase space points having co
nate values close to coordinate values of points of the d
attractor will follow trajectories that lead them to reprodu
the dynamics of the drive. In other words, the drive traje
tory is an attractor for the response. In the present case
exponent isL1520.42; therefore, the response will evolv
around its stationary pointsY(1,2)(y35R), i.e., the points
(6AR,0,R) of the response subspace, in IS to the drive,
some initial conditions. However, fory3 sufficiently greater
than R ~let us sayy3.y3

(m) for certainy3
(m).R), there is a

competition between two attractions: for one side there i
continuous segment of stationary pointsY(1,2)(y3) with
y3

(m),y3,y3
(M ) ~being y3

(M ) to be determined in the nex
paragraph!, and for the other there is the drive trajectory. T
balance these two attractions results in the GS attractor.

We have that for motions in the response subspace
gions, the dynamics of the distance squareds25y1

21y2
2

1y3
2 will be given by

ds2/dt5y1
2y31B~x3!y1y22~y2

21y3
2!1y1A sin~Vy2!.

Despite this expression being quite complicated, if we
strict x3;R ~motion of the drive in its stable attractor!,
which allows uB(x3)u5u11R2x3u;1, we obtain that, if
uy1u, uy2u, andy3 are all very large (uy1u,uy2u,y3@R,A), be-
cause of the cubic term, which is positive for ally3.0, it is
ds2/dt.0 and the distances is an overall increasing func
tion of time. In particular, for phase space trajectories of
kind depicted in Fig. 3~a! following the drive attractor
around X(1,2)

^ Y(1,2)(y3), but with y3 very large one has
ds2/dt.0 in wide regions of phase space and no stable m
tion is expected. This has been observed in the numer
simulation@Fig. 3~b!#. The GS attractor then results from th
wandering of the response phase space points, following
drive, around two segments of stationary pointsX(1,2)

^ Y(1,2)(y3), with y3
(m),y3,y3

(M ) , beingy3
(m) large enough

as to prevent them from dropping onto the IS attractor, a
y3

(M ) small enough as to avoid motions in regions of pha
space where the response is unstable.

The dynamic behaviors described above have been fo
to be reproducible using other values for the initial con
tions and different system parameters. However, to appr
2-3
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BRIEF REPORTS PHYSICAL REVIEW E 65 047202
ate the extent of the occurrence of GS, it is interesting
have a view of the basins of attraction to the two types
synchronization available. For this aim four of the six co
dinates that define a complete set of initial conditions w
fixed, and values for the other two were taken in a rectan
lar grid chosen in a region around the stable attractor. Th
Eqs. ~1!–~6! were evolved for each initial condition in th
grid, and the output reached was tested by means of
criteria: from the ASA test it follows that if 9,max(y3)
,11 we have IS, and if 100,max(y3),120 we have GS;
otherwise, from the Lyapunov spectrum test, if20.45,L1
,20.40 we have IS, and if20.22,L1,20.27 we have
GS. The basins of attraction obtained are exactly the sam
matter which of these two criteria is used. A thorough stu
showed that, for fixedx(0), the relevant structures appear
the y1

(0)-y2
(0) plane, the particular shapes of these bas

change whenx(0) changes, displaying, however, the sam
overall behavior: regions leading to IS, close to the orig
and regions leading to GS, around them. Moreover, there
regions of unstable motion far from the origin, where t
response trajectories do spiral outwards to infinity. Exam
images of such basins are given in Fig. 4 for grids of
399 points. All this is in accordance with the stability arg
ments given above.

Finally, I would like to mention that Maistrenkoet al. @9#
have observed that mutually coupled identical logistic m
have attractors, which are curves, different from the dia
nal, x5y. Although they did not discuss their results fro
the point of view of synchronization, this suggest GS in ide
tical systems in a case very different from the one stud
here.

In conclusion, an example of a chaotic flow has be
r-

s.
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given that displays a nontrivial form of GS in directional
coupled chaotic systems with identical individual dynam
that allow IS. This GS occurs for initial conditions in wid
regions of the initial conditions six-dimensional space.
origin has been associated with the appearance of new se
stationary points, caused by the coupling, which happen
be attractive in the response subspace and compete with
attraction to the drive trajectory. This supports the asser
that nonidentity between drive and response is not a ne
sary condition for GS. Moreover, this system provides
illustration of how the auxiliary system approach has to
used with care to detect GS when there are two or m
basins of attraction.

This research has been supported by DGI through Pro
No. BFM2000-0606.

FIG. 4. Two-dimensional sections of the basins of attraction
xD

(0) , and the initial conditions of the response in the planes:~a!
y1

(0)59, and~b! y3
(0)50. The color code is: white for IS, black fo

GS, and gray for unstable motions of the response. All quanti
plotted are dimensionless.
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