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Non-manipulability by clones in bankruptcy problems

Pedro Calleja∗ and Francesc Llerena†

July 13, 2022

Abstract

In the domain of bankruptcy problems, we show that non manipulability via merging and

splitting claims by identical agents characterizes the proportional rule provided claims are posi-

tive rational numbers. By adding either claim monotonicity or claims continuity we obtain new

characterizations to the whole class of bankruptcy problems.

1 Introduction

Bankruptcy problems (O’Neill, 1982; Aumann and Maschler, 1985) deal with situations where an

amount of a perfectly divisible resource should be distributed among a group of agents presenting

conflicting claims, that is, the total amount to divide is not enough to accomplish all demands. These

problems are solved by rules proposing an allocation vector taking into consideration the specific

characteristics of the agents.

An important topic in economics is the study of rules that are immune to the strategic behavior

of agents by misrepresenting their features. In the bankruptcy problem, O’Neill (1982) introduces

non manipulability (or strategy-proofness1) as the combination of non-manipulability via merging and

splitting. A rule is non-manipulable via merging if no group of agents can benefit from consolidating

claims and it is non-manipulable via splitting if no agent can benefit from dividing its claim into claims

of a group of agents. A rule is non-manipulable if it is unaffected by both types of manipulation.

On the full domain of bankruptcy problems, Moreno-Ternero (2006) shows that non-manipulability

is equivalent to additivity by claims as introduced by Curiel et al. (1987), requiring that merging or

splitting the agents’ claims do not affect the amounts received by each other agent involved in the

problem.

The proportional rule makes agents’ payments proportional to their demands and it is one of the

most commonly used rule in real-life situations when a firm goes bankruptcy. Due to its importance

in practice, it has been extensively analyzed from an axiomatic viewpoint. Concerning the merging-

splitting proofness requirement, O’Neill (1982) axiomatizes the proportional rule making use of non-

manipulability, together with other axioms. Later on, Chun (1988) shows that the O’Neill’s result is

not tight and finally de Frutos (1999) concludes that only non-manipulability is needed to characterize

the proportional rule. In a more general class of allocations problems, Ju et al. (2007) investigate the

relation between non-manipulability and proportionality.

∗Departament de Matemàtica Econòmica, Financera i Actuarial, Universitat de Barcelona-BEAT,

Av. Diagonal, 690, 08034 Barcelona. calleja@ub.edu
†Departament de Gestió d’Empreses, Universitat Rovira i Virgili-ECO-SOS, Av. de la Universitat, 1, 43204 Reus.

francesc.llerena@urv.cat
1O’Neill (1982) introduced this axiom for the class of simple bankruptcy problems where no agent has a claim

exceeding the estate.
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As originally formulated, non-manipulability does not impose conditions on the group of agents that

merge or split. Ju (2003) introduces restrictions on the coalition formation by means of weaker forms of

non-manipulability just permitting mergers or spin-offs by pairs, and characterizes the set of parametric

rules (Young, 1987) that are either non-manipulable via (pairwise) merging or splitting. In this note,

we focus on rules that are immune to manipulations involving symmetric agents, that is, agents with

the same claim. We call this axiom non manipulability by clones. It is quite usual in practice that

only agents with some common attributes are allowed to merge or split, while these practices involving

very different agents are censured. A natural and simple way to formally accommodate this ideas is

to restrict the possibility to manipulate to identical agents or clones. Interestingly, we show that this

substantially weaker form of non manipulability is enough to characterize the proportional rule for the

realistic case in which all claims are zero o positive rational numbers. Finally, we extend this result to

the general domain of bankruptcy problems by adding either claim monotonicity or claims continuity.

While claims continuity enforces that small changes in the claims of the agents do not lead to large

changes in the awards recommendation, claim monotonicity requires that if only one agent’s claim

increases, he should not be worse-off.

The rest of the paper is organized as follows. In Section 2 we introduce some notation and defini-

tions. Section 3 contains the characterization results.

2 Preliminaries

Let N = {1, 2, . . .} (the set of natural numbers) represent the set of all potential agents (claimants)

and let N be the collection of all non-empty finite subsets of N. By Q+ = {a/b | a, b ∈ N} we denote

the set of positive rational numbers. An element N ∈ N describes a finite set of agents where |N | = n.

For a given N ∈ N , ∅ ≠ S ⊂ N , and a vector x ∈ RN , xS = (xi)i∈S ∈ RS .

A bankruptcy problem is a triple (N,E, c) such that N ∈ N , c ∈ RN
+ , E ≥ 0, and

∑
i∈N ci ≥ E.

By B we denote the set of all bankruptcy problems. If (N,E, c) ∈ B, then each agent in the set

of creditors N has a claim ci to the net worth or estate E ≥ 0 of a bankrupt firm. A bankruptcy

rule is a function β : B −→
⋃

N∈N RN
+ that associates with every (N,E, c) ∈ B a unique vector

β(N,E, c) ∈ RN
+ satisfying

∑
i∈N

βi(N,E, c) = E (budget balance (BB)) and βi(N,E, c) ≤ ci for all i ∈ N

(claim boundedness (CB)). BB requires that the sum of the payments should be equal to the net worth

and CB means that no creditor receives more than her claim.

Instances of well studied bankruptcy rules are the proportional rule (PR), the constrained equal

awards rule (CEA), and the constrained equal losses rule (CEL). The PR rule makes awards propor-

tional to the claims. Formally, for all (N,E, c) ∈ B and all i ∈ N , PRi(N,E, c) = λ ci where λ ∈ R+ is

such that
∑

j∈N λ cj = E. The CEA rule rewards equally to all claimants subject to no one receiving

more than her claim. Formally, for all (N,E, c) ∈ B and all i ∈ N , CEAi(N,E, c) = min{ci, λ}
where λ ∈ R+ is such that

∑
j∈N min{cj , λ} = E. In contrast, the CEL rule equalizes the losses of

claimants subject to no one receiving a negative amount. That is, for all (N,E, c) ∈ B and all i ∈ N ,

CELi(N,E, c) = max{ci − λ, 0} where λ ∈ R+ is such that
∑

j∈N max{cj − λ, 0} = E. For a detailed

analysis of bankruptcy rules we refer to Thomson (2015).

3 Axiomatizations of the proportional rule

In this part, we provide new axiomatic characterizations of the proportional rule. We first introduce

non-manipulability, using its equivalent formulation in the full domain of bankruptcy problems,2 and

2See Moreno-Ternero (2006), that names the property as strong non-manipulability.
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a mild form of this axiom which we call non-manipulability by clones. Formally, a bankruptcy rule β

satisfies

• non-manipulability (NM) if for all (N,E, c), (N ′, E, c′) ∈ B, if N ′ ⊂ N and there is m ∈ N ′ such

that c′m = cm +
∑

k∈N\N ′ ck and c′i = ci for all i ∈ N ′ \ {m}, then βi(N
′, E, c′) = βi(N,E, c) for

all i ∈ N ′ \ {m}.

• non-manipulability by clones (NMC) if for all (N,E, c), (N ′, E, c′) ∈ B, if N ′ ⊂ N and there is

m ∈ N ′ such that ci =
c′m

|N\N ′|+1 for all i ∈ N \N ′ ∪ {m} and c′i = ci for all i ∈ N ′ \ {m}, then
βi(N

′, E, c′) = βi(N,E, c) for all i ∈ N ′ \ {m}.

NMC restricts NM to identical agents, that is, agents who have the same claim. It imposes that if

an agent splits his claim and appears as a group of symmetric agents, or a group of symmetric agents

merge their claims and form a single agent, then the amount received by each other agent in the problem

does not change and, as a consequence, neither the payoffs of the agents merging or splitting. In more

general settings, such as financial networks or multi-issue problems, the idea to restrict manipulations

to agents with some common traits also play a role in characterizing the extension of the proportional

rule to these contexts (see, for instance, Csóka and Herings, 2021; Acosta-Vega et all., 2022).

A well established axiom is equal treatment of equals, requiring that symmetric agents should receive

the same amount. Formally, a bankruptcy rule β satisfies

• equal treatment of equals (ETE) if for all (N,E, c) ∈ B and all i, j ∈ N , if ci = cj then

βi(N,E, c) = βj(N,E, c).

De Frutos (1999) shows that NM implies ETE. This result is strengthened in the next lemma

establishing that ETE is a consequence of the milder axiom of NMC.

Lemma 1. NMC implies ETE.

Proof. Let β be a bankruptcy rule satisfying IM, ε0 = (N0, E, c0) ∈ B, and i, j ∈ N such that

c0i = c0j = c̄. Suppose, w.l.o.g., that

βi(ε0) > βj(ε0). (1)

We will show that this assumption leads to a contradiction. To do it, we distinguish two cases:

Case 1: |N0| ≥ 3. The proof of this case is done in six steps.

Step 1: FromN0 player i splits into players i and i′ defining the bankruptcy problem ε1 = (N1, E, c1),

being N1 = N0 ∪ {i′}, c1k = c0k for all k ∈ N1 \ {i, i′}, and c1i = c1i′ = c̄/2. By NMC, for all

k ∈ N1 \ {i, i′},
βk(ε0) = βk(ε1), (2)

which implies, by BB,

βi(ε0) = βi(ε1) + βi′(ε1). (3)

Step 2: From N1 player j splits into players j and j′ defining the bankruptcy problem ε2 =

(N2, E, c2), being N2 = N1 ∪{j′}, c2k = c1k for all k ∈ N2 \ {j, j′}, and c2j = c2j′ = c̄/2. Note

that c2j = c2i = c2j′ = c2i′ = c̄/2. By NMC, for all k ∈ N2 \ {j, j′},

βk(ε1) = βk(ε2), (4)

which implies, by BB,

βj(ε1) = βj(ε2) + βj′(ε2). (5)
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Hence,

βi(ε2) + βi′(ε2) =
(4)

βi(ε1) + βi′(ε1) =
(3)

βi(ε0) >
(1)

βj(ε0) =
(2)

βj(ε1) =
(5)

βj(ε2) + βj′(ε2). (6)

That is,

βi(ε2) + βi′(ε2) > βj(ε2) + βj′(ε2). (7)

Assume, w.l.o.g., that

βi(ε2) > βj(ε2). (8)

Step 3: From N2 players i, i′ and j′ merge under the name of i′ defining the bankruptcy problem

ε3 = (N3, E, c3) being N3 = N2\{i, j′}, c3k = c2k for all k ∈ N3\{i′}, and c3i′ = c2i+c2i′+c2j′ =

3 c̄/2. Note that c3j = c2j = c̄/2. By NMC, for all k ∈ N3 \ {i′},

βk(ε3) = βk(ε2), (9)

which implies, by BB,

βi′(ε3) = βi(ε2) + βi′(ε2) + βj′(ε2) = E − βj(ε2)−
∑

k∈N2\{i,j,i′,j′}

βk(ε2). (10)

Step 4: From N2 players i′, j and j′ merge under the name of i′ defining the bankruptcy problem

ε4 = (N4, E, c4) being N4 = N2\{j, j′}, c4k = c2k for all k ∈ N4\{i′}, and c4i′ = c2i′+c2j+c2j′ =

3 c̄/2. By NMC, for all k ∈ N4 \ {i′},

βk(ε4) = βk(ε2), (11)

which implies, by BB,

βi′(ε4) = βi′(ε2) + βj(ε2) + βj′(ε2) = E − βi(ε2)−
∑

k∈N2\{i,j,i′,j′}

βk(ε2). (12)

Hence,

βi′(ε4) <
(8)

E − βj(ε2)−
∑

k∈N2\{i,j,i′,j′}

βk(ε2) =
(10)

βi′(ε3). (13)

Moreover, by BB,

E = βi(ε4) + βi′(ε4) +
∑

k∈N4\{i,i′}

βk(ε4) =
(11)

βi(ε4) + βi′(ε4) +
∑

k∈N4\{i,i′}

βk(ε2), (14)

and

E = βi′(ε3) + βj(ε3) +
∑

k∈N3\{i′,j} βk(ε3)

=
(9)

βi′(ε3) + βj(ε3) +
∑

k∈N3\{i′,j} βk(ε2)

=
N3\{i′,j}=N4\{i,i′}

βi′(ε3) + βj(ε3) +
∑

k∈N4\{i,i′} βk(ε2).

(15)

From (14) and (15),

βi(ε4) + βi′(ε4) = βi′(ε3) + βj(ε3)

and from (13) we can conclude that

βi(ε4) > βj(ε3). (16)

Step 5: FromN4 player i splits into players i and j defining the bankruptcy problem ε5 = (N5, E, c5),

beingN5 = N4∪{j}, c5k = c4k for all k ∈ N5\{i, j}, and c5i = c5j = c4i /2 = c2i /2 = c1i /2 = c̄/4.

Note that, c5i′ = c4i′ = 3c̄/2. By NMC, for all k ∈ N5 \ {i, j}, βk(ε5) = βk(ε4) which implies,

by BB,

βi(ε4) = βi(ε5) + βj(ε5). (17)
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Step 6: FromN3 player j splits into players i and j defining the bankruptcy problem ε6 = (N6, E, c6),

being N6 = N3∪{i}, c6k = c3k for all k ∈ N6 \{i, j}, and c6i = c6j = c3j/2 = c2j/2 = c̄/4. Note

that, c6i′ = c3i′ = 3c̄/2. Since ε6 = ε5, we have that

βj(ε3) <
(16)

βi(ε4)

=
(17)

βi(ε5) + βj(ε5)

=
ε5=ε6

βi(ε6) + βj(ε6),

(18)

in contradiction with NMC. Thus, we conclude that

βi(ε0) = βj(ε0).

Hence, β satisfies ETE for |N0| ≥ 3.

Case 2: |N0| = 2. The proof of this case is done in two steps.

Step 1: From N0 player i splits into players i and i′ defining the bankruptcy problem ε1 = (N1, E, c1),

being N1 = {i, i′, j}, c1i = c1i′ = c̄/2, and c1j = c0j = c̄. Since |N1| = 3, by Case 1 we know hat β

satisfy ETE. Hence, βi(ε1) = βi′(ε1) and, by NMC,

βj(ε0) = βj(ε1). (19)

By BB,

βi(ε0) = βi(ε1) + βi′(ε1) =
ETE

2βi(ε1). (20)

Step 2: From N1 player j splits into players j and j′ defining the bankruptcy problem ε2 = (N2, E, c2),

being N2 = {i, i′, j, j′}, c2j = c2j′ = c1j/2 = c̄/2, c2i = c1i = c̄/2, and c2i′ = c1i′ = c̄/2. Since

|N1| ≥ 3, by Case 1 we know hat β satisfy ETE. Hence, βi(ε2) = βj(ε2) = βi′(ε2) = βj′(ε2). By

NMC,

βi(ε2) = βi(ε1), βi′(ε2) = βi′(ε1), (21)

and, by BB,

βj(ε1) = βj(ε2) + βj′(ε2) =
ETE

2βj(ε2). (22)

Finally, βj(ε0) =
(19)

βj(ε1) =
(22)

2βj(ε2) and βi(ε0) =
(20)

2βi(ε1) =
(21)

2βi(ε2) =
ETE

2βj(ε2), which

concludes the proof.

Under NMC, the following lemma states that if two agents have rational claims, then the ratio

between what they receive and what they claim remains constant.

Lemma 2. Let β be a bankruptcy rule satisfying NMC. If (N,E, c) ∈ B and i, j ∈ N are such that

ci, cj ∈ Q+, then
βi(N,E, c)

ci
=

βj(N,E, c)

cj
. (23)

Proof. Let (N,E, c) ∈ B and i, j ∈ such that ci, cj ∈ Q+, that is, ci = pi/qi and cj = pj/qj for some

pi, qi, pj , qj ∈ N. Then, b ci = a cj being a = piqj and b = qipj . Note that (23) is equivalent to

b βi(N,E, c) = a βj(N,E, c). We distinguish two cases:
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Case 1: b = 1. That is, ci = a cj . Let ε1 = (N1, E, c1) ∈ B where agent i ∈ N splits into a identical

agents i, k1, . . . , ka−1, being N1 = N ∪{k1, . . . , ka−1}, c1i = c1k1
= . . . = c1ka−1

= ci/a, and c1l = cl

for all l ∈ N \ {i}. In particular, c1j = cj = ci/a = c1i . By NMC, which implies ETE (Lemma 1),

we obtain

βi(N
1, E, c1) =

ETE
βj(N

1, E, c1) =
NMC

βj(N,E, c)

and

βi(N,E, c) =
NMC

βi(N
1, E, c1) + βk1

(N1, E, c1) + . . .+ βka−1
(N1, E, c1)

=
ETE

a βi(N
1, E, c1)

=
ETE

a βj(N
1, E, c1)

=
NMC

a βj(N,E, c).

Case 2: b > 1. Assume, w.l.o.g., that a < b. Define ε1 = (N1, E, c1) where agent j ∈ N splits into b

identical agents j, k1, . . . , kb−1, being N1 = N ∪ {k1, . . . , kb−1}, c1j = c1k1
= . . . = c1kb−1

= cj/b,

and c1l = cl for all l ∈ N \ {j}. In particular, c1i = ci =
a
b cj = a c1j . Hence, by Case 1,

βi(N
1, E, c1) = a βj(N

1, E, c1). (24)

By NMC and ETE,

βl(N,E, c) =
NMC

a βl(N
1, E, c1) for all l ∈ N \ {j}, (25)

and

βj(N,E, c) =
NMC

βj(N
1, E, c1)+βk1(N

1, E, c1)+ . . .+βkb−1
(N1, E, c1) =

ETE
b βj(N

1, E, c1). (26)

Combining (24), (25), and (26) we conclude that b βi(N,E, c) = a βj(N,E, c).

Now, we have all the tools to characterize the proportional rule in case all claims are zero or positive

rational numbers.

Theorem 1. Let β be a bankruptcy rule satisfying NMC. If (N,E, c) ∈ B is such that, for all i ∈ N ,

ci is either zero or a positive rational number, then β(N,E, c) = PR(N,E, c).

Proof. Let (N,E, c) ∈ B such that all claims are either zero or positive rational numbers. If |{i ∈
N | ci = 0}| ∈ {n − 1, n} then, by CB and BB, β(N,E, c) = PR(N,E, c). Otherwise, let i, j ∈
N such that ci, cj ∈ Q+. In this case, by Lemma 2 we have that βi(N,E, c)/ci = βj(N,E, c)/cj .

Consequently, there exists a constant r ≥ 0 such that, for all k ∈ N , βk(N,E, c)/ck = r. Finally, by

BB r = E/
∑

k∈N ck, and thus βi(N,E, c) = ci∑
k∈N ck

E = PRi(N,E, c) for all i ∈ N .

A way to extend the above characterization including non rational claims is adding one of the

following two widely accepted axioms. A bankruptcy rule β satisfies

• claim monotonicity (CM) if for all (N,E, c), (N,E, c′) ∈ B such that c′i > ci for some i ∈ N and

c′j = cj for all j ∈ N \ {i}, then βi(N,E, c′) ≥ βi(N,E, c);

• claims continuity (CC) if for all sequences of bankruptcy problems
{
(N,E, cn)

}
n∈N converging

to (N,E, c), the sequence
{
β(N,E, cn)

}
n∈N converges to β(N,E, c).
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CM says that if an agent’s claim increases, while the claims of the other agents remain equal, his

award should not decreases. CC imposes that small variations in the claims imply small variations in

the resulting allocation vector. CM and CC are not related to each other, for a discussion see Thomson

(2019).

It is well known that the proportional rule satisfies both axioms. So, it remains to show that CM

or CC in combination with NMC characterize it.

Theorem 2. A bankruptcy rule satisfies NMC and CM if and only if it is the proportional rule.

Proof. To show uniqueness, let β be a bankruptcy rule satisfying NMC and CM, and (N,E, c) ∈ B. If
ci equals either zero or a rational number for all i ∈ N , by Theorem 1 β(N,E, c) = PR(N,E, c).

Otherwise, we use and induction argument on the number of agents with a non-rational and non-

zero claim. Let us denote this set by NC
¬Q+ . For |NC

¬Q+ | = 1, let i∗ ∈ NC
¬Q+ be the unique agent with

ci∗ ̸∈ Q+. Let
{
lki∗

}
k∈N and

{
rki∗

}
k∈N be two sequences of rational numbers converging to ci∗ such that

lki∗ ≤ lk+1
i∗ ≤ rk+1

i∗ ≤ rki∗ and lki∗ < ci∗ < rki∗ for all k ∈ N. Let
{
(N,E, ck)

}
k∈N and

{
(N,E, c̄k)

}
k∈N be

two associated sequences of bankruptcy problems where, for all k ∈ N, cki = c̄ki = ci for all i ∈ N \{i∗},
cki∗ = lki∗ , and c̄ki∗ = rki∗ . By Theorem 1 and CM, for all k ∈ N,

PRi∗(N,E, ck) = βi∗(N,E, ck) ≤ βi∗(N,E, c) ≤ βi∗(N,E, c̄k) = PRi∗(N,E, c̄k).

By CC of the PR rule,

lim
k→∞

PRi∗(N,E, ck) = PRi∗(N,E, c) ≤ βi∗(N,E, c) ≤ PRi∗(N,E, c) = lim
k→∞

PRi∗(N,E, c̄k),

which leads to βi∗(N,E, c) = PRi∗(N,E, c).

It remains to see that βj(N,E, c) = PRj(N,E, c) for all j ∈ N \NC
¬Q+ .

If |{j ∈ N \ NC
¬Q+ | cj ̸= 0}| ≤ 1, by CB and BB, β(N,E, c) = PR(N,E, c). Otherwise, there are

at least two players in N \ NC
¬Q+ with a positive rational claim. Thus, by Lemma 2, there exists a

constant r > 0 such that, for all j ∈ N \NC
¬Q+ , βj(N,E, c) = r cj , which also holds for players with a

zero claim. By BB,

E =
∑

j∈N\NC
¬Q+

βj(N,E, c) + PRi∗(N,E, c) = r
∑

j∈N\NC
¬Q+

cj +
ci∗∑
j∈N cj

E,

which implies r = E/
∑

j∈N cj , and hence β(N,E, c) = PR(N,E, c).

Induction hypothesis: if |NC
¬Q+ | < k, for all 1 ≤ k ≤ n− 1 then β(N,E, c) = PR(N,E, c).

If |NC
¬Q+ | = k + 1, select an arbitrary agent i∗ ∈ NC

¬Q+ and, following the same arguments as in

case |NC
¬Q+ | = 1, construct two sequences of bankruptcy problems converging to (N,E, c). Then, by

induction hypothesis, following identical reasoning we may conclude that βi∗(N,E, c) = PRi∗(N,E, c).

To see that βj(N,E, c) = PRj(N,E, c) for all j ∈ N \NC
¬Q+ , apply the same arguments as for the case

|NC
¬Q+ | = 1.

To conclude, replacing CM by CC we obtain a new characterization.

Theorem 3. A bankruptcy rule satisfies NMC and CC if and only if it is the proportional rule.

Proof. Let β be a bankruptcy rule satisfying NMC and CC, and (N,E, c) ∈ B. If, for all i ∈ N ,

ci ∈ Q+ then, by Theorem 1, β(N,E, c) = PR(N,E, c). Otherwise, let {(N,E, cn)}n∈N be a sequence

of bankruptcy problems with cni ∈ Q+ for all i ∈ N and all n ∈ N converging to (N,E, c). Then,

any subsequence of {(N,E, cn)}n∈N converges to (N,E, c). Hence, w.l.o.g., by CC we have that

PR(N,E, c) = limn→∞ PR(N,E, cn) = limn→∞ β(N,E, cn) = β(N,E, c).
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In the following remark we show the axioms in Theorems 3 and 2 are logically independent.

Remark 1. The CEA rule satisfies CM, and thus CC, but not NMC. Now we define a bankruptcy

rule β∗ meeting NMC but not CC, and thus neither CM. Let (N,E, c) ∈ B. If E = 0, β∗
i (N,E, c) = 0

for all i ∈ N . Otherwise, if ci ∈ Q+ for all i ∈ N , β∗(N,E, c) = PR(N,E, c). If N∗ = {i ∈ N | ci ∈
R \ Q+} ̸= ∅ we distinguish two cases. Case (a):

∑
k∈N\N∗ ck ≥ E, then β∗

i (N,E, c) = ci∑
k∈N\N∗ ck

E

for all i ∈ N \N∗, and β∗
i (N,E, c) = 0 for all i ∈ N∗. Case (b):

∑
k∈N\N∗ ck < E, then β∗(N,E, c) =

PR(N,E, c).
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