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We develop a full theoretical approach to clustering in complex networks. A key concept is introduced, the
edge multiplicity, that measures the number of triangles passing through an edge. This quantity extends the
clustering coefficient in that it involves the properties of two—and not just one—vertices. The formalism is
completed with the definition of a three-vertex correlation function, which is the fundamental quantity describ-
ing the properties of clustered networks. The formalism suggests different metrics that are able to thoroughly
characterize transitive relations. A rigorous analysis of several real networks, which makes use of this formal-
ism and the metrics, is also provided. It is also found that clustered networks can be classified into two main
groups: the weak and the strong transitivity classes. In the first class, edge multiplicity is small, with triangles
being disjoint. In the second class, edge multiplicity is high and so triangles share many edges. As we shall see
in the following paper, the class a network belongs to has strong implications in its percolation properties.
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I. INTRODUCTION

The important role of transitive relations in complex in-
teraction systems has been exposed since the work of Georg
Simmel, a popular 19th century German sociologist who
pointed out the interest in triads in a pioneering work on the
concept of social structure �1�. Simmel understood society as
a web of patterned interactions and focused on the study of
the forms of these interactions as they occur and reoccur in
diverse historical periods and cultural settings. His emphasis
on quantitative aspects lead him to analyze, in particular,
dyadic versus triadic relationships, to find that when a dyad
is formed into a triad, the apparently insignificant fact that
one member has been added actually brings about a major
qualitative change, various actions and processes becoming
possible where previously they could not take place. The
triad is then seen as the simplest structure in which the group
as a whole can achieve domination over its component mem-
bers, and so becomes the scenario exhibiting the simplest
expression of the sociological drama.

In the study of complex networks, where large systems of
interactions are mapped into comprehensible graphs �2–4�,
just vertices and edges are, nevertheless, usually recognized
as the primary building blocks. Vertices represent the el-
ementary units under mutual influence, and the interactions
are modeled by edges linking them. Transitive relations, rep-
resented in this scheme by triangles, arise then as a second-
ary form of basic organization, made up of vertices con-
nected by edges. However, the empirical evidence of a big
number of triangles well above random expectations in the
vast majority of real networks has brought this figure into
attention, with a first reference to transitivity appearing in the
literature of complex networks in the form of the clustering
coefficient �5�, a scalar measure quantifying the total number
of triangles in a network through the average likelihood that
two neighbors of a vertex are neighbors themselves. Tri-
angles in complex networks are indissolubly tied to the
analysis of degree correlations and they have been recog-
nized as a fundamental element in the composition of recur-

ring subgraphs, the so-called motifs �6�, closely related to the
large-scale organization of complex networks �7�, their func-
tionality or community structure �8,9�. So, in the framework
of complex networks science, they have to be taken into
account as a basic unbridged object, whose presence and
self-organization can drastically impact network structure
and properties.

In this paper and the following one, we develop a full
theoretical approach to clustering in complex networks on
the basis of former work �10,11�. It is extended and com-
pleted with interesting results previously unreported which
lead to a substantially improved understanding of how clus-
tering can be measured and which is the reach of its effects.
In this paper, we begin by exposing in the next three sections
the ways of measuring clustering at different depth levels. In
Sec. II, we review, as a technical introduction and for com-
pleteness, the standard local and global measures related to
one-vertex clustering. In Sec. III, we ask for the properties of
not just one but two of the vertices involved in the triangles
and to this end we review the concept of dyadic clustering
from the definitions of edge multiplicity and edge clustering.
Section IV treats the case of triadic clustering. In particular,
we propose a different measure, the average nearest neigh-
bors multiplicity m̄nn�k�, to compute triadic clustering in a
practical way. In Sec. V, we explore the effects of degree-
degree correlations on clustering. We find analytically that
degree-degree correlations constrain the functional form of
clustering and its maximum level. We also examine some
empirical networks, finding a good agreement with our pre-
dictions. Section VI explores the condition for the simulta-
neous absence of degree correlation at the level of triangles
and edges, which makes necessary the discrimination be-
tween weak and strong clustering. Finally, conclusions are
drawn in Sec. VII. In this way, this first paper lays the gen-
eral formalism. The following one will focus on percolation
properties.

II. ONE-VERTEX CLUSTERING

In the context of complex networks, the concept of clus-
tering was introduced as a way to quantify the transitivity of
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the connections. Several alternative definitions have been
proposed, from global scalar quantities associated to the
whole network �12,13� to local measures describing the
properties of single nodes. This is the case of the clustering
coefficient first introduced by Watts and Strogatz �5�,

ci =
2Ti

ki�ki − 1�
, �1�

where Ti is the number of triangles passing through vertex i
and ki is its degree. They also pointed out that real networks
display a level of clustering—measured as the average of ci
over the set of vertices in the network, the so-called cluster-
ing coefficient C varying in the interval �0, 1�—typically
much larger than that produced by random effects.

The local clustering ci gives highly detailed information
from a purely local perspective. One can adopt a compro-
mise between the global property defined by C and the full
local information given by ci by defining an average of ci
over the set of vertices of a given degree class �14�, that is,

c̄�k� =
1

Nk
�

i���k�
ci =

1

k�k − 1�Nk
�

i���k�
2Ti, �2�

where Nk is the number of vertices of degree k and ��k� is
the set of such vertices. The corresponding scalar measure is
called the mean clustering coefficient and can be computed
on the basis of the degree distribution P�k� as

c̄ = �
k

P�k�c̄�k� , �3�

which is related to the clustering coefficient as C= c̄ / �1
− P�0�− P�1��. In fact, we have implicitly assumed that c̄�k
=0�= c̄�k=1�=0, whereas in the definition of C we only con-
sider an average over the set of vertices with degree k�1.
This fact explains the difference between both measures.

In the case of uncorrelated networks, c̄�k� is independent
of k. Furthermore, all the measures collapse and reduce to C
�4,15,16�,

c̄�k� = C =
1

N

��k2� − �k��2

�k�3 , k � 1. �4�

Therefore a functional dependence of c̄�k� on the degree can
be attributed to the presence of correlations. Indeed, it has
been observed that many real networks exhibit a power-law
behavior c̄�k��k−�, with typically 0���1. Hence the de-
gree dependent clustering coefficient has been proposed as a
measure of hierarchical organization and modularity in com-
plex networks �17�.

III. DYADIC CLUSTERING

The degree dependent clustering coefficient described in
the previous section measures the transitivity of a vertex that
participates in a triangle and, in this sense, it is a projection
over one vertex of a structure that involves three vertices.
Then, it is natural to ask for the properties of not just one but
two of the vertices involved in the triangle or, equivalently,
to ask for the properties of edges involved in triangles.

To do so, let us define the multiplicity of an edge mij as
the number of triangles in which the edge connecting verti-
ces i and j participates. This quantity is the analog for edges
to the number of triangles attached to a vertex Ti. The two
quantities are related through the trivial identity

�
j

mijaij = 2Ti, �5�

which is valid for any network configuration. The matrix aij
is the adjacency matrix, giving the value 1 if there is an edge
between vertices i and j and 0 otherwise.

Again, mij is a local measure defined for every edge. We
can coarse-grain and define the average multiplicity of the
edges connecting the degree classes k and k�, mkk�, as

mkk� =

�
i���k�

�
j���k��

mijaij

Ekk�
, �6�

where Ekk� stands for the number of edges between those
degree classes �two times that number if k=k��. The multi-
plicity matrix mkk� is defined in the range �0,mkk�

c �, where
mkk�

c =min�k ,k��−1 and it represents a measure of dyadic
clustering that gives a more detailed description than c̄�k� on
how triangles are shared among vertices of different degrees.
Furthermore, as we shall see in the following paper, it con-
tains relevant information to analyze the percolation proper-
ties of clustered networks.

Now, it is possible to find a relation between multiplicity
and clustering. Taking into account the fact that the joint
degree distribution can be defined as , with E the total num-
ber of edges in the network, we obtain the following closure
condition at the class level

�
k�

mkk�P�k,k�� = k�k − 1�c̄�k�
P�k�
�k�

. �7�

Let us emphasize that this equation is an identity fulfilled by
any network, which ties it with the degree detailed balance
condition derived in �18�. These identities are important be-
cause, given their universal nature, they can be used to derive
properties of networks regardless their specific details. As an
example, in Ref. �19� the detailed balance condition was
used to prove the absence of epidemic threshold in scale-free
networks.

A global scalar measure can also be defined for dyadic
clustering. It is the average multiplicity of the network, ob-
tained by averaging mkk� over all degree classes,

m̄ = �
k

�
k�

mkk�P�k,k�� =
�k�k − 1�c̄�k��

�k�
. �8�

Values of m̄ close to zero mean that there are no triangles.
When m̄�1, triangles are mostly disjoint and their number
can be approximated as T�k��k /2. Otherwise, when m̄�1,
triangles jam into edges, with many triangles sharing the
same edge. Table I shows empirical values for the average
multiplicity m̄, the maximum multiplicity mmax, and the clus-
tering coefficient C for different real networks. These are the
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Internet at the autonomous system level �AS� �20�, the pro-
tein interaction network of the yeast S. Cerevisiae �PIN� �21�,
an intra-university email network �22�, the web of trust of the
pretty-good-privacy algorithm �PGP� for encrypted commu-
nications �23�, the network of co-authorship among academ-
ics �24,25�, and the world trade web �WTW� of trade rela-
tionships among countries �26�. In all cases, except for the
PIN network, the value of m̄ indicates a noticeable jamming
of triangles into edges.

An alternative way to quantify dyadic clustering is by
means of the edge clustering coefficient, defined in �8� as

c̄�k,k�� =
mkk�

mkk�
c . �9�

The advantage of using the normalized version c̄�k ,k�� in-
stead of mkk� is that the edge clustering coefficient admits a
probabilistic interpretation. Indeed, the one-vertex clustering
coefficient c̄�k� can be viewed as the probability that two
neighbors of a vertex of degree k are connected. c̄�k ,k�� can
in its place be interpreted as the probability that an edge
connecting two vertices of degrees k and k� share a common
neighbor.

IV. TRIADIC CLUSTERING

Clustering is a measure of three point correlations, al-
though it is not evident from the definitions of one-vertex
clustering and dyadic clustering, respectively calculated as
c̄�k� and mkk�. To clarify this point, we use a similar approach
to the one followed when analyzing two-point correlations.
In that case, we made use of the matrix Ekk�, which counts
the number of edges among different degree classes, to de-
fine the joint degree distribution P�k ,k�� giving information
on the probability that a randomly chosen edge of the net-
work is connecting two vertices of degrees k and k�. In the
case of triadic clustering, the fundamental object is not any
more the edge but the triangle itself. Thus let us define a
completely symmetric tensor Tkk�k�, which measures the
number of triangles connecting vertices of the degree classes
k, k� and k� when k�k��k�, two times the number of tri-
angles when two of the indices are equal, and six times the
number of triangles when the three indices are equal. This
tensor satisfies the following identity:

�
k�

�
k�

Tkk�k� = �
i���k�

2Ti = k�k − 1�c̄�k�P�k�N . �10�

Then, we can define a joint distribution

Q�k,k�,k�� 	
Tkk�k�

�k�m̄N
�11�

which measures the probability that a randomly chosen tri-
angle connects three vertices of degrees k, k�, and k�. The
one point marginal distribution is in this case

Q�k� = �
k�

�
k�

Q�k,k�,k�� =
k�k − 1�c̄�k�P�k�

�k�m̄
. �12�

The two-point marginal distribution Q�k ,k��
=�k�Q�k ,k� ,k�� has an interesting interpretation. Indeed, it
measures properties of the degrees of connected vertices and,
in this sense, it is similar to P�k ,k��. The main difference
between both distributions is the way in which edges are
selected. In the case of P�k ,k��, an edge is randomly chosen
and then one asks for the degrees at the ends of such edge.
This selection mechanism implies that all edges in the net-
work have the same probability to be chosen. In the case of
Q�k ,k��, one first selects a triangle with uniform probability
among all the triangles present in the network and, once the
triangle has been selected, one of its edges is randomly cho-

FIG. 1. �Color online� This figure illustrates the different infor-
mation encoded in the functions P�k ,k�� and Q�k ,k��. In this simple
graph, there are two kind of vertices, two of them with degree k
=2 and the other two of degree k=3. Each edge is labeled with its
multiplicity. The function �2−�k,k��P�k ,k�� tells us which is the
probability that a randomly chosen edge connects two vertices of
degrees k and k�, respectively. Then, the probability that a randomly
chosen edge connects two vertices of degrees k=2 and k=3 is 4 /5
and the probability of connecting two vertices of degree k=3 is 1 /5.
In the case of Q�k ,k��, we first have to chose randomly a triangle—
either triangle labeled 1 or 2 in this example—and from this triangle
one of its edges is randomly chosen. Using this procedure, the prob-
ability that an edge connects two vertices of degrees k=2 and k
=3 is 2 /3 that corresponds to first chose one triangle—with prob-
ability 1 /2 each in this particular graph—and then one edge—with
probability 1 /3. Analogously, the probability of connecting two ver-
tices of degree k=3 is 1 /3. Then we can write that P�2,3�
= P�3,2�=2/5, P�3,3�=1/5 and Q�2,3�=Q�3,2�=2/6, Q�3,3�
=2/6.

TABLE I. Empirical values of the average multiplicity m̄, the
maximum multiplicity mmax, and the clustering coefficient C for
different real networks.

Network m̄ mmax C

PIN 0.30 10 0.12

AS 2.55 537 0.45

PGP 3.31 94 0.50

Email 3.90 28 0.27

Co-authors 4.22 74 0.74

WTW 27.13 163 0.66
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sen. Then, the degrees of the vertices attached to this edge
are measured. If one edge is shared by more than one tri-
angle, this edge will be selected more often than edges that
do not participate in triangles or in just one triangle. This
implies that, in this case, edges are chosen with a nonuni-
form probability which is proportional to their multiplicity
�Fig. 1 sketches this selection mechanism�. This allows us to
write

Q�k,k�� =
mkk�P�k,k��

m̄
. �13�

Equations �12� and �13� eventually complete the fundamental
functions which describes transitivity properties in complex
networks. Indeed, being clustering a property that involves
three distinct vertices, the most complete description is given
by the function Q�k ,k� ,k�� which refers to triadic clustering.
Nevertheless, when no that much information is required, we

can work with the two-vertices marginal distribution
Q�k ,k��. However, by doing so, a new quantity encoding the
kernel of dyadic clustering, the multiplicity mkk�, naturally
appears accounting for the fact that edges can participate in
more than one triangle. If we are interested in single vertices
only, we are lead to the one-vertex marginal distribution Q�k�
which, again, introduces in a natural way the concept of clus-
tering coefficient c�k�. All this means that, in fact, the func-
tions c�k� and mkk� are just projections of the same funda-
mental object, described by Q�k ,k� ,k��.

Dealing in practice with the three-variables function
Q�k ,k� ,k�� when studying triadic clustering is a rather com-
plex task. A practical way to quantify triadic clustering re-
quires the introduction of a different measure. To this end we
propose to quantify the average multiplicity of edges among
nearest neighbors in triangles attached to a vertex of degree
k, which we call average nearest neighbors multiplicity
m̄nn�k� by analogy with the average nearest neighbors de-

FIG. 2. �Color online� Empirical measures of the average nearest neighbors multiplicity as a function of k compared with the average
nearest neighbors degree.
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gree, the function k̄nn�k� �27�. To compute m̄nn�k� in a formal
way, we first define the transition probability

Q�k�,k�
k� =
�k�m̄Q�k,k�,k��
k�k − 1�c̄�k�P�k�

, �14�

from where we can write

m̄nn�k� = �
k�,k�

mk�k�Q�k�,k�
k� . �15�

As in the case of k̄nn�k�, in absence of correlations among the
degrees of vertices forming triangles, the function
Q�k� ,k� 
k� is independent of k, and so will be the case for
the average nearest neighbors multiplicity. Therefore any
nontrivial dependence of m̄nn�k� on k will signal the presence
of correlations between the three degrees of the nodes that
form triangles.

In Fig. 2, we show measures of this function for the dif-
ferent real networks analyzed through the paper. As one can
see, the patterns follow closely those for the average nearest
neighbors degree, that is, networks with assortative degree
mixing also show an increasing m̄nn�k�, whereas disassorta-
tive ones show decreasing dependencies as a function of k.
This can be intuitively understood if we consider that the

function k̄nn�k� appears to be an upper bound of m̄nn�k�. De-
spite this similarity, we also find differences in the behavior

of m̄nn�k� as compared to k̄nn�k�. In the case of the Internet at
the autonomous system level, we find that both functions
follow a power law decay as a function of k but clearly with
different exponents. In the case of the protein interaction

network, m̄nn�k� is approximately constant whereas k̄nn�k� is
a decreasing function of k.

V. EFFECTS OF DEGREE-DEGREE CORRELATIONS ON
CLUSTERING

Degree-degree correlations constrain the maximum level
of clustering a network can reach. A naive explanation for
this is that, if the neighbors of a given node all have a small
degree, the number of connected neighbors �and hence the
clustering of such a node� will be bounded. This is the main
idea behind the new measure of clustering introduced in
�28�. However, we can make a step forward and analytically
quantify this effect. The key point is to realize that the mul-
tiplicity matrix satisfies the inequality

mkk� � min�k,k�� − 1, �16�

which comes from the fact that the degrees of the nodes at
the ends of an edge determine the maximum number of tri-
angles this edge can hold �see top plot in Fig. 3�. Multiplying
this inequality by P�k ,k�� and summing over k� we get

k�k − 1�c̄�k�
P�k�
�k�

� �
k�

min�k,k��P�k,k�� −
kP�k�

�k�
,

�17�

where we have used the closure condition Eq. �7�. This in-
equality, in turn, can be rewritten as

c̄�k� � 1 −
1

k − 1 �
k�=1

k

�k − k��P�k�
k� 	 	�k� . �18�

Notice that 	�k� is always in the interval �0,1� and therefore
c̄�k� is always bounded by a function smaller �or equal� than
1. In the limit of very large values of k, Eq. �18� reads

c̄�k� � 	�k� �
k̄nn

r �k� − 1

k − 1
, �19�

where k̄nn
r �k� is the average nearest neighbors degree of a

vertex with degree k. The superscript r �of reduced� refers to
the fact that it is evaluated only up to k and therefore

k̄nn
r �k��k. For strongly assortative networks k̄nn

r �k��k, so
that 	�k��O�1� and there is no restriction in the decay of
c̄�k�. In the opposite case of disassortative networks, the sum
term on the right hand side of Eq. �18� may be fairly large
and then the clustering coefficient will have to decay accord-
ingly.

It is important to mention that, although 	�k� is an upper
bound of c̄�k�, it is not the lowest upper bound. In fact, in the
inequality Eq. �16� we are not considering that the neighbors
of the two vertices of degrees k and k� might have not
enough free connections. An obvious case corresponds to
vertices of degree 1. If the vertex of degree k has N�1 
k�
neighbors of degree 1 �others than the one of degree k�� and
the one of degree k� has N�1 
k�� neighbors of degree 1, then,
the corrected inequality would be

mkk� � min�k − N�1
k�,k� − N�1
k��� − 1. �20�

This is sketched in Fig. 3. The problem is that, now, N�1 
k�
is a stochastic quantity with expected value �N�1 
k��= �k
−1�P�1 
k� which, again, depends on the mixing properties of
the network. This contribution is important in networks with
a large number of vertices of degree 1.

FIG. 3. �Color online� Sketch of the maximum possible value of
the edge multiplicity in a case where the two vertices do not have
neighbors of degree 1 �top� and where one of them has one of these
neighbors �bottom�. In the top plot, the blue vertices �large circles�
have degrees k=3 and k=5 respectively and no neighbors of degree
1. Then, the maximum value of m for the edge connecting these two
vertices is m3,5

c =min�3−1,5−1�=2. In the bottom plot, the vertex
of degree k=3 has a neighbor of degree 1. In this case, the maxi-
mum multiplicity for that edge is m3,5

c =min�3−1−1,5−1�=1.
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The interplay between degree correlations and clustering
can also be observed in real networks. We have measured the
functions 	�k� and c̄�k� for several empirical data sets, find-
ing that the inequality Eq. �18� is always satisfied. In Fig. 4,
we plot the clustering coefficient c̄�k� as a function of 	�k�.
Each dot in these figures corresponds to a different degree
class. As clearly seen, in all cases the empirical measures lie
below the diagonal line, which indicates that the inequality
Eq. �18� is always preserved. In Fig. 5, we show the ratio
c̄�k� /	�k�. The rate of variation of this fraction is small and
thus the degree dependent clustering coefficient can be com-
puted as c̄�k�=	�k�f�k�, where f�k� is a slowly varying func-
tion of k that, in many cases, can be fitted by a logarithmic
function. This result implies that, to a large extent, the func-
tional dependence of c̄�k� is given by the particular shape of
the degree-degree correlations. On the other hand, this also
suggests that the edge clustering coefficient, given by Eq.
�9�, is also a weakly dependent—if not independent—

FIG. 4. �Color online� Clustering c̄�k� vs the maximum value 	�k� for several real networks. In all cases, empirical measures fall below
the diagonal line, validating the inequality Eq. �18�.

FIG. 5. �Color online� Empirical measures of the ratio between
the clustering coefficient c̄�k� and the maximum value 	�k� for dif-
ferent real networks.
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function of the degrees k and k�. Indeed, empirical measures
of c̄�k ,k�� in the studied real networks support this conjec-
ture. Figure 6 shows contour plots of c̄�k ,k�� using a loga-
rithmic binning of the axes. In all cases, there is a dominant
intensity, which indicates that the edge clustering is approxi-
mately constant. As expected from the information shown in
Fig. 5, the AS network and the co-author network are the less
constant, although the variation of c̄�k ,k�� across different
�k ,k�� domains is not very pronounced. This result is particu-
larly important because, unlike what happens for the degree
dependent clustering coefficient c�k�, it allows to approxi-
mate dyadic clustering in many cases by a constant value.

Scale-free networks

Scale-free networks with degree distributions of the form
P�k��k−
 belong to a special class of networks which de-
serve a separate discussion. Indeed, it has been shown that,
when the exponent of the degree distribution lies in the in-
terval 
� �2,3� and its domain extends beyond values that
scale as N1/2, disassortative correlations are unavoidable for
high degrees �29–32�. Almost all real scale-free networks
fulfill these conditions and hence it is important to analyze
how these negative correlations constrain the behavior of the
clustering coefficient. Let us assume a power law decay of

the average nearest neighbors degree of the form k̄nn�k�

FIG. 6. Gray-scale contour plots of the edge clustering coefficient c̄�k ,k�� as a function of k and k� for the different real networks
analyzed.
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��k−�. One can prove that this function diverges in the limit

of very large networks as k̄nn�k���k2��kc
3−
, where kc is the

maximum degree of the network �19�. Then, the prefactor �
must scale in the same way which, in turn, implies that the
reduced average nearest neighbors degree behaves as

k̄nn
r �k� � k3−
−�. �21�

Then, from Eq. �19� the exponent of the degree dependent
clustering coefficient � must verify the following inequality

� � 
 + � − 2. �22�

Just as an example, in the case of the Internet at the autono-
mous system level �14�, the reported values for these three
exponents ��=0.75, 
=2.1, and �=0.5� satisfy this inequal-
ity close to the limit ��=0.75�
+�−2=0.6�.

VI. UNCORRELATED NETWORKS AND THE
DISTINCTION BETWEEN WEAK AND STRONG

CLUSTERING

When analyzing two-point correlations, the notion of un-
correlated network corresponds to a network in which the
joint distribution P�k ,k�� factorizes as

P�k,k�� =
kk�P�k�P�k��

�k�2 . �23�

In the context of triangles, a network is uncorrelated when

Q�k,k�,k�� = Q�k�Q�k��Q�k�� , �24�

where Q�k� was given in Eq. �12�. The question is whether
functions P�k ,k�� and Q�k ,k� ,k�� can factorize simulta-
neously. First, we restrict to the study of the factorization of
Q�k ,k�� instead of Q�k ,k� ,k�� since, due to the symmetric
attribute as a tensor of the last function, the factorization of
Q�k ,k�� is a sufficient condition for the factorization of
Q�k ,k� ,k��. Indeed, the function Q�k ,k�� measures correla-
tions between connected vertices when edges are weighted
by their multiplicity, whereas P�k ,k�� measures these corre-
lations when edges are chosen with uniform probability.
Given this difference in the selection mechanism of edges,
Q�k ,k�� and P�k ,k�� cannot factorize simultaneously when
the sample of edges is highly heterogeneous in their multi-
plicity values. In contrast, when mij is either 0 or 1, the
sample of edges corresponding to triangles will become ho-
mogeneous and whenever Q�k ,k�� factorizes, P�k ,k�� factor-
izes too �for degrees larger than 1�. In this case, we can write

mkk�  �k − 1��k� − 1�c̄�k�c̄�k�� . �25�

Since in this approach mkk��1 for ∀k ,k�, we have that

c̄�k� �
1

k − 1
�26�

for any uncorrelated network at the two-vertex level. In other
situations, one can construct uncorrelated networks at the
level of triangles but, at the same time, there will appear
some correlations at the level of edges and vice versa.

This suggests to partition the space of clustered networks
into two main categories: weak transitivity—for networks
with c̄�k�� �k−1�−1, ∀k—and strong transitivity in the oppo-
site case. As we will show in Paper II �33�, the percolation
properties of clustered networks are totally different depend-
ing on which one of these categories the network belongs to.
This is related to the fact that, in the strong transitivity re-
gime, the overlap of triangles is important, favoring thus the
emergence of subgraphs which are tightly interconnected, the
so-called k cores �34�. In contrast, in the weak transitivity
class, triangles are mostly disjoint and the topological prop-
erties of such networks are close to that of unclustered ones.

VII. CONCLUSIONS

In this paper, we have provided a powerful formalism to
understand transitive relations in complex networks. We
have defined a fundamental quantity Q�k ,k� ,k��, which mea-
sures the probability that a randomly chosen triangle con-
nects three vertices of degrees k, k�, and k�. The summation
over one variable of this fundamental distribution gives in-
formation about two of the vertices participating in the tri-
angle and, in a natural way, introduces the multiplicity of
edges among two classes of degrees k and k�, mkk�. The
summation of Q�k ,k� ,k�� over two of its variables gives in-
formation about the properties of vertices that participate in
triangles and, as in the previous case, naturally defines the
degree-dependent clustering coefficient c̄�k�. To quantify the
extent of the correlations encoded in Q�k ,k� ,k��, we have
proposed a different metric, the average nearest neighbors
multiplicity m̄nn�k�, finding interesting patterns when mea-
sured in real networks. We have also found that, in real net-
works, the edge clustering coefficient, defined as the ratio
between mkk� and min�k−1,k�−1�, is a weakly dependent
function of the degrees k and k�. This could serve as a basis
for modeling of clustered networks. This result also suggest
that the functional form of the degree-dependent clustering
coefficient is mainly determined by the two-vertex correla-
tion structure of the network. Last but not least, we have
found the conditions for the simultaneous factorization of
Q�k ,k� ,k�� and P�k ,k��. This is only possible if c̄�k�� �k
−1�−1. This partitions the space of clustered networks into
two main categories, networks with weak transitivity—those
that satisfy c̄�k�� �k−1�−1—and networks with strong
transitivity—those that do not. In the first class, the multi-
plicity of edges is either 0 or 1 and triangles are disjoint. In
the second class, edges are forced to share many triangles,
giving rise to highly interconnected subgraphs. We shall see
in Paper II how the class a network belongs to changes its
percolation properties.
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