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Dynamical properties of model communication networks
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We study the dynamical properties of a collection of models for communication processes, characterized by
a single parameterj representing the relation between information load of the nodes and its ability to deliver
this information. The critical transition to congestion reported so far occurs only forj51. This case is well
analyzed for different network topologies. We focus on the properties of the order parameter, the susceptibility,
and the time correlations when approaching the critical point. Forj,1, no transition to congestion is observed
but it remains a crossover from a low-density to a high-density state. Forj.1, the transition to congestion is
discontinuous and congestion nuclei arise.
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I. INTRODUCTION

The interaction between theelementsof social, techno-
logical, biological, chemical, and physical systems usua
defines complex networks. The study of topological prop
ties in such networks has recently generated a lot of inte
among the scientific community@1–5#. Part of this interest
comes from the attempt to understand the behavior of te
nology based communication networks such as the Inte
@6#, the World Wide Web@7,8#, e-mail networks@9#, or phone
call networks@10#. The study of communication processes
also of interest in other fields, notably in the design of org
nizations@11,12#. It is estimated that more than one-half
the US work force is dedicated to information processi
rather than to make or sell things in the narrow sense@11#.

Tools taken from statistical mechanics are used to un
stand not only the topological properties of these commu
cation networks, but also their dynamical properties. Part
larly interesting is the phenomenon of congestion. In h
been observed, both in real networks@13# and in model com-
munication networks@14–17# that the system only behave
efficiently when the amount of information handled is sm
enough. The network collapses above a certain threshold
some information is accumulated and remains undelive
over large time periods—or it is simply lost. This transitio
from a free to acongestedregime is indeed a phase transitio
and could be related to the appearance of the 1/f noise ob-
served in Internet flow data@18,19#.

Understanding congestion is also important from an en
neering point of view. For instance, in October of 1986, d
ing the first Internet collapse reported in the literature,
speed of the connection between the Lawrence Berk
Laboratory and the University of California at Berkeley—
separated by 200 meters—dropped by a factor of 100@13#.
Although the problem of congestion, and in particular
prevention and control@13#, has been studied because of
implications in digital communications, a deep understa
ing of the physics of congestion for general communicat
processes and beyond particular protocols is still lacking

A general collection of models that captures the essen
features of communication processes has been recently
1063-651X/2002/66~2!/026704~8!/$20.00 66 0267
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posed@16#. In these models, agents—nodes—are organi
in a hierarchical network—a Cayley tree—and interchan
informationpackets. Each agent has a certain capability th
decreases as the number of packets to deliver increa
When the capability is inversely proportional to the numb
of accumulated packets, a continuous phase transition
found between the free and the congested phases. This
sition was characterized by means of an order paramete

The aim of this paper is to study the collection of mode
mentioned above, since only hierarchical lattices and a v
particular congestion behavior—capability inversely prop
tional to the number of accumulated packets—were con
ered. An extension to consider the existence of cost to m
tain communication channels has already been done@20#.
First, the network model is extended beyond purely hier
chical Cayley trees. In particular, one-dimensional~1d! and
two-dimensional~2d! lattices are considered. It should b
noted that simple models such as Cayley trees and reg
lattices can capture the main characteristics of the dynam
of information flow in complex networks. Hierarchical tree
have been considered to model the TCP/IP protocol in
Internet@18,19#. On the other hand, computer based comm
nication networks have been described by placing rou
and servers in square lattices@14,17#.

Moreover it is shown that, independently of the topolog
the collection of models can be split into three groups
cording to how the network collapses. In the first grou
agents deliver more packets as they are more congest
although their capability, as defined in@16#, decreases, and
the network never collapses. In the second group, agents
liver always the same number of packets independently
their load—number of packets to deliver; this behavior lea
to a continuous phase transition as reported for hierarch
lattices in Ref.@16#. Finally, when agents deliver fewer pack
ets as their loads increase, the transition to the conge
phase is discontinuous and the network collapses in an in
mogeneous way giving rise to congestion nuclei. To char
terize these behaviors, the order parameter defined in
@16# is used, but also the power spectrum of the fluctuatio
and a susceptibilitylike function. Most of the current effort
focused on the quantitative study of the continuous transi
©2002 The American Physical Society04-1
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and the critical behavior associated with such a transitio
The paper is organized as follows. Section II presents

collection of models and describes some details concer
the extension beyond hierarchical lattices, including 1D a
2D lattices. In Sec. III, these models are studied numeric
and analytically. The scaling of the critical point with th
size of the system, the behavior of the order parameter,
the divergence of the characteristic time at the critical po
are studied in detail. Finally, Sec. IV includes the discuss
of the results and the conclusions.

II. THE MODEL

The model considers three basic components:~i! the
physical support for the communication process—agents
communication channels,~ii ! the discrete information pack
ets that are interchanged, and~iii ! the limited capability of
the agents to handle such packets.

The communication network is mapped onto a gra
where nodes mimic the communicating agents~for instance,
employees in a company, routers and servers in a comp
network, etc.! and the links between them represent comm
nication lines. In particular, the three different topologies d
picted in Fig. 1 are considered: 1D lattices of lengthL, 2D
square lattices of side lengthL and sizeS5L2, and hierar-
chical Cayley trees with branchingz and a number of gen
erations or levelsm, hereafter denoted (z,m).

The dynamics of the model is as follows. At each tim
step t, an information packet is created at every node w
probability p. Thereforep is the control parameter: sma
values ofp correspond to low density of packets and hi
values ofp correspond to high density of packets. When
new packet is created, a destination node, different from
origin node, is chosen randomly in the network. Thus, dur
the following time stepst11, t12, . . . ,t1T, the packet
travels towards its destination. Once the packet reaches
destination node, it is delivered and disappears from the
work.

The time that a packet remains in the network is rela
not only to the distance between the source and the ta
nodes, but also to the amount of packets in its path. In p
ticular, at each time step, all the packets move from th
current position,i, to the next node in their path,j, with a
probability qi j . This probabilityqi j is called thequality of
the channelbetweeni and j, and was defined in Ref.@16# as

qi j 5Akikj , ~1!

FIG. 1. Network topologies studied.~a! 1D lattice with L55;
~b! 2D lattice withL55 andS525; and~c! (2,3) Cayley tree with
branchingz52 andm53 levels or generations.
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where ki represents thecapability of agent i at each time
step. The quality of a channel is, thus, the geometric aver
of the capabilities of the two nodes involved, so that wh
one of the agents has capability 0, the channel is disab
High qualities (qi j '1) imply that packets move easily whil
low qualities (qi j '0) imply that it takes a long time for a
packet to jump from one node to the next. The general eq
tion proposed forki is

ki5 f ~ni !, ~2!

whereni is the total number of packets currently at nodei.
The function f (n) determines how the capability evolve
when the number of packets at a given node changes,

f ~n!5H 1 for n50,

n2j for n51,2,3, . . . ,
~3!

with j>0. Equation~3! defines a complete collection o
models with agents that behave differently depending on
exponentj.

The average number of packets delivered during one t
step by a nodei to another nodej is proportional to
ni /(ni

j/2nj
j/2). Assuming thatni}nj the former expression

readsni
12j . The proportionality is exact both in the hiera

chical lattice and in large enough 1D and 2D lattices, wh
adjacent nodes are statistically equivalent.

Therefore, forj,1 the number of delivered packets in
creases with the number of accumulated packets. Forj.1
the number of delivered packets decreases as the numb
accumulated packets increases. Finally, for the partic
casej51, the number of delivered packets is independen
the number of accumulated packets. Note that this partic
case is consistent with simple models of queues@14#.

The last point that needs to be explained to complet
define the current model is the routing algorithm or, in oth
words, the set of rules that the nodes follow to select wh
to send a certain packet. In all the topologies considered~1D,
2D, and Cayley! the packets follow paths of minimum lengt
from their origin to their destination—open boundary con
tions are set in both 1D and 2D networks. In 1D lattices a
Cayley trees it is trivial to follow a minimum path becau
there is only one minimum path between two arbitra
nodes. In 2D lattices, however, there are many minim
paths. If a node can choose between two neighbors w
sending a given packet, and both neighbors belong to a m
mum path between the origin and the destination of
packet, one of them is chosen randomly with equal proba
ity. This algorithm is indeed the simplest one and the int
pretation of the results is clearer than for more complex ro
ing algorithms. However, congested nodes will still ha
lower probability of receiving packets because of the defi
tion of the quality of a channel. Therefore packets will avo
those nodes to some extent, as would happen in more so
ticated routing algorithms.
4-2
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III. RESULTS

For certain parameters of the model~in particular,j51
@16#! and for similar models of traffic@14#, a transition from
a freeregime, where all the packets reach their destination
a congested, regime where some packets are accumulate
the network, has been found. This transition is properly
scribed by means of the following order parameterh(p)
introduced previously@16#:

h~p!5 lim
t→`

1

pS

^DN&
Dt

. ~4!

In this equationDN5N(t1Dt)2N(t) and ^•••& indicates
average over time windows of widthDt. These averages ca
be over one or many realizations, yielding the same res
Essentially, the order parameter represents the ratio betw
undelivered and generated packets calculated at long en
times such thatDN}Dt. Thus,h is only a function of the
probability of packet generation per node and time step,p.

The power spectrumS( f ) of the total number of packet
in the networkN(t)5( ini is also used here to further unde
stand the phase transition. By means of the power spec
the behavior of the time correlations of the system can
studied.

Let us study separately the critical casej51 and the non-
critical casesj,1 andj.1.

A. The critical case jÄ1

A continuous transition between the free regime and
congested regime occurs in hierarchical networks forj51,
as reported in Ref.@16#. For small values ofp, all the packets
reach their destination and the total number of packetsN(t)
fluctuates around a finite value. In this case the order par
eter ish50. However, asp increases, a critical pointpc is
reached, where the fluctuations inN(t) become very large
and the characteristic time of the system diverges~critical
slowing down!. Beyond this point, some packets remain u
delivered and̂ N(t)& grows linearly witht. The same quali-
tative behavior is observed here for 1D and 2D lattices,
though there are quantitative differences.

From an engineering point of view it is interesting
study first the behavior ofpc as the number of nodes in th
networkSchanges, because it will provide valuable inform
tion about the scalability of the network. Note thatNc
5pcS is the maximum number of packets that the netwo
can handle per time step and, thus, it is a measure of
capacity of the network.

For the hierarchical Cayley tree, a mean field calculat
of pc was obtained in@16#:

pc
CT5

Az

z~zm2121!2

zm21
11

'
z3/2

~z21!

1

S
, ~5!

where the approximation holds forzm21@1.
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It is also possible to derive a mean field expression ofpc
for the 1D lattice. Since the most congested node is, fr
symmetry arguments, the central one—the node atl 5L/2—
the network will collapse when the amount of packets
ceived by this central node is higher than the maximum nu
ber of packets that it is able to deliver. Since in a lar
enough network it is safe to assume that the central node
be congested similarly to its neighbors,nl 215nl 5nl 11,
the maximum number of delivered packets should be 1.
the other hand, the number of packets arriving at the cen
node at each time step is the number of packets that
generated at each time step at the left half of the network
have their destination at the right half and conversely, thi
pL/2. Then the critical condition is given by

15
pc

1DL

2
⇒pc

1D5
2

L
. ~6!

These mean field expressions~5! and~6! can be compared
with simulations. Nevertheless, the fluctuations ofN(t) be-
come very large nearpc and it is difficult to calculate the
value of the order parameter. Instead, a susceptibility
function x(p) can be defined by analogy with equilibrium
thermal critical phenomena, and used to estimate more a
rately the value of the critical probability of packet gener
tion, pc . The susceptibilityx is related to the fluctuations o
the order parameter by

x~p!5 lim
T→`

Tsh~T!, ~7!

whereT is the width of a time window, andsh(T) is the
standard deviation of the order parameter estimated from
analysis of many different time windows of widthT. Thus a
calculation implies a long realization ofN(t), its division
into windows of widthT, calculation of the average value o
the order parameter in each window and finally the deter
nation of the standard deviation of these values. The sus
tibility shows ~Fig. 2! a singularity atpc as T grows, as
expected.

Figure 3 shows that there is good agreement between
pressions~5! and ~6! and the values ofpc obtained numeri-
cally by means of susceptibility measures for different n
work sizes.

For the 2D lattice it is more difficult to obtain even
mean field expression forpc . However, since for 1D lattices
and Cayley trees the scaling relationpc}S21 holds—where
S is the size of the network— one may expect the sa
behavior for the 2D lattice. Using the susceptibility to n
merically determinepc from simulations, one finds that thi
turns out to be incorrect. Although it is difficult to obtain
precise value of the exponent, Fig. 4 shows that it is clos
0.6 instead of 1.0,

pc
2D}S20.6. ~8!

This result suggests that the existence of multiple paths
get from the origin to the destination has important con
quences, not only in shifting the value ofpc , but actually
changing its critical scaling behavior.
4-3
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The behavior of the order parameter is studied next. I
possible to derive an analytical expression for the simp
1D case where there are only two nodes that exchange p
ets. Since from symmetry considerationsn15n2, the average
number of packets eliminated in one time step is 2, while
number of generated packets is 2p. Thuspc51 and with the
present formulation of the model it is not possible to rea
the supercritical congested regime. However,p can be ex-
tended to be the average number of generated packets
node at each step~instead of a probability! and in this case it
can actually be as large as needed. As a result, the o
parameter for the supercritical phase ish5(p21)/p. As ob-
served in Fig. 5, the general form

h~p/pc!5
p/pc21

p/pc
~9!

fits very accurately the behavior of the order parameter
only for this simple 1D lattice withL52 or the Cayley tree
@16#, but also for any 1D lattice. Two-dimensional lattic
again deviate from this behavior, although the deviation
small.

In particular, nearpc , Eq. ~9! implies

h~p!}~p2pc!, ~10!

and thus the critical exponent for the order parameter is e
to 1 at least for the 1D lattice and the Cayley tree.

FIG. 2. Susceptibility for~a! a 1D lattice withL5100 and~b! a
~5,4! Cayley tree, for different time windowsT. The vertical dotted
line corresponds to the mean field calculation of the critical po
@Eqs.~6! and ~5!, respectively#.
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The analysis of the power spectrum shows that in
subcritical regime, i.e., in the free phase, the spectrum is w
fitted by a Lorentzian characterized by a frequency,f c , cor-
responding to exponentially decaying correlations with
characteristic timet, as depicted in Fig. 6. Asp approaches
pc , it is observed thatf c→0 and the power spectrum be
comes 1/f 2 for the whole range of frequencies. Alternativel
the characteristic time diverges ast→` ~critical slowing
down!. This qualitative behavior is common to all the topol
gies of the underlying network, as shown in Fig. 6.

It is interesting to study how the characteristic frequen
drops to 0 for each network topology. Near the critical poi
one expects the scaling behavior,

f c}~pc2p!g. ~11!

The value of the critical exponentg can be estimated by
fitting Eq. ~11! to values off c(p) close enough to the critica
point, as shown in Fig. 6. Note that we fitpc andg simulta-
neously. This procedure yields very accurate values ofpc but
the values ofg are subject to large errors. Figure 6 yield
g'0.9 for a 1D network withL5100, g'2.5 for a 2D
network withL57, andg'2 for a ~7,5! Cayley tree.

The determination ofg is interesting not only from an
academic point of view, but also from an engineering p
spective. Indeed, this exponent is related to divergence

FIG. 3. Comparison between analytical~lines! and numerical
~symbols! values ofpc obtained for the~a! 1D lattice and~b! the
Cayley trees. The error bars of the numerical points are smaller
the size of the symbols.

t

4-4
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DYNAMICAL PROPERTIES OF MODEL COMMUNICATION . . . PHYSICAL REVIEW E66, 026704 ~2002!
other relevant quantities near the critical point. Any char
teristic time t—the average time to deliver a packet, f
instance—will diverge as

t}~pc2p!2g ~12!

and similarly the total number of packets

N}~pc2p!2g ~13!

FIG. 4. ~a! Susceptibility for a 2D 636 lattice. ~b! Scaling of
the critical probability of packet generation as a function of the s
of the system for 2D square lattices.

FIG. 5. Behavior of the order parameter in the casej51. The
solid line corresponds to the analytical calculation for two nod
exchanging information packets. Symbols correspond to sim
tions performed in 1D, 2D, and Cayley lattices.
02670
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from Little’s law @21#. This law states that, in steady stat
the number of delivered packets and the number of gener
packets are equal.

The estimation ofg is particularly interesting in elec
tronic communication protocols. Indeed, Eq.~12! is used to
determine the waiting time before a packet is considered
in the network and therefore sent again@13#. In practice, the
exponentg51 predicted by classical queue theory@21# is
assumed, while our current results suggest that more c
plex settings can lead to exponents even larger than 2.

B. Noncritical casesjË1 and jÌ1

We have shown that the number of packets delivered
node i is ni

12j and thus, whenj,1, it increases with the
number of packets that this node accumulates. It is diffic
to imagine a real scenario with this characteristic. Howev
this case has been included to understand the critical be

e

s
a-

FIG. 6. Left, log-log plot of the power spectrum ofN(t) for
different topologies and different values of the control parame
e5(pc2p)/pc for the 1D case (L5100), 2D case (L56), and
Cayley (7,5). Power spectra have been obtained averaging ove
realizations ofN(t). Dotted lines represent a power law with exp
nent22. Right, characteristic frequency as a function of the con
parametere for the different topologies. As observed, the chara
teristic frequency tends to 0 asp→pc following a power law. The
straight lines correspond to fittings of Eq.~11!.
4-5
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ior when j51, i.e., to show the relationship between cri
cality and the amount of packets that can be delivered w
load increases. As a consequence of the increase of the
livering capability with the load, the transition to collaps
will never occur because, at some point in time, the num
of accumulated packets will be large enough and the num
of delivered and created packets will balance each ot
Thus, the order parameter will be zero for any value of
control parameterp, and the correlations will decay expone
tially. As shown in Fig. 7, the characteristic frequency ten
asymptotically tof c* as p increases. This asymptotic valu
depends on the size of the system.

For a 1D lattice with a high density of packets (p→1),
the number of packets that are delivered by a node isni

12j

while the number of packets that are being delivered to
node is proportional toL ~for instance, for the central node
this number is simplypL/2). Therefore,ni}L1/(12j). The
total number of packets isN5( ini;L111/(12j) and accord-
ing to Little’s law,

f c* }
pL

N
}L21/(12j). ~15!

On the other hand, forp→0 the scaling of the characte
istic frequency is given by

f c
0}L21 ~16!

since the packets succeed in jumping from one node to
next at each time step, and therefore the characteristic tim
directly the average path length between nodes.

Therefore, although there is no phase transition in t
casej,1, there is a crossover from a low-density behav
to a high-density behavior, as shown in Fig. 7. This crosso
is also observed in 2D lattices and Cayley trees.

The phase transition observed forj51 is recovered when
j.1. Above a certain threshold, some packets are accu
lated in the network and the order parameter differs from

FIG. 7. Characteristic frequencyf c as a function of the prob-
ability of packet generationp, for j50.2 and different sizes of a 1D
lattice. As observed,f c never becomes 0 as happens in the criti
j51 case. Inset, characteristic frequency atp→0, f c

0 ~squares!, and
characteristic frequency at largep, f c* ~circles!. The lines represen
the fittings provided by Eq.~16! f c

0}L21 and Eq. ~15! f c*
}L21/(12j), respectively.
02670
n
de-

r
er
r.

e

s

is

e
is

is
r
er

u-
.

However, the number of packets delivered by a nodei in this
casej.1 decreases with the number of packets accumula
at that node. Therefore, when some packets are accumul
ni grows and finally no packets are delivered at all. Th
suddenly above the transition, which is discontinuous,
order parameter becomes 1.

The change in the order of the phase transition affects
spreading of the collapse over the network. In the criti
casej51, the collapse starts at the mostcentral node and
then spreads from this point to the rest of the network. In t
casej.1, the reinforcement effect—the fact that the mo
collapsed a node is, the more collapsed it will get in t
future—leads to the formation of many congestion nuc
generated by fluctuations, that spread over the whole
work. Figure 8 illustrates the formation of these congest
nuclei for 2D lattices withj55 andp50.001, andj52 and
p50.01

l

FIG. 8. Congestion nuclei formation for large 2D lattices ofL
5200, in the noncritical casej.1. Dark regions represent region
with small congestion levels while bright regions correspond
highly congested regions.~a! j55 andp50.001.~b! j52 andp
50.01.
4-6
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IV. DISCUSSION AND CONCLUSIONS

A collection of models recently proposed for hierarchic
networks@16# has been examined in detail for several n
work topologies including 1D and 2D lattices, to character
the phase transition to collapse. Various congestion scena
have been analyzed.

First, it has been shown that the congestion behavio
governed by the ability of agents to deliver informatio
packets when their load increases. When agents deliver p
ets at a constant ratio independently of their load—num
of packets to deliver— a continuous transition as the o
reported in Ref.@16# for Cayley trees is also observed for 1
and 2D lattices, the order parameter being the fraction
accumulated packets. When the number of delivered pac
increases with the load, no phase transition is observed. C
versely, when the number of delivered packets decrea
with the load, the order parameter jumps from zero to o
and the transition becomes discontinuous. These differen
haviors are tuned by a single parameterj, which is the ex-
ponent that determines how the capability of nodes evo
with the number of accumulated packets. Whenj,1 there is
no transition to the congested regime, forj51 the transition
is continuous and forj.1 the transition is discontinuous
Note that the continuous transition~reported in Ref.@16# and
in some models of queues@15,17#! is only a particular case
between a no-congestion behavior and a discontinuous
sition behavior. Thus, the critical behavior is intimately r
lated to the independence between load and deliver cap
ity of nodes.

These different behaviors have been analyzed separa
The critical casej51 presents the most interesting behavi
To properly understand the physics of the collapse proce
is necessary to know how the system approaches the cr
point. The order parameter becomes useless in this re
due to the emergence of large fluctuations, and then we h
defined a susceptibilitylike function that is related, by an
ogy to equilibrium critical phenomena, to fluctuations of t
order parameter. This quantity shows a peak at the crit
point and allows to study the dependence on the size
topology of the system. For 1D lattices and Cayley trees
has been shown~by means of simulation and also with mea
field calculations! that pc scales as the inverse of the size
y,
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the system,pc}S21. However, for 2D lattices a differen
scaling pc}S20.6 is obtained. It is suggested that the ex
tence of multiple paths from the origin to the destination
the packets is responsible for this change in the scaling
havior. On the other hand, the study of the power spectr
of the number of the packets in the network as a function
time has provided valuable information about the variat
of temporal correlations in the system. In particular, bel
pc correlations decay exponentially, with a characteris
time t that diverges atpc . The exponent of this divergenc
is significantly larger than what is expected from que
theory. This can be relevant to accurately forecast the t
poral behavior in complex communication settings.

For j,1, no phase transition is observed. Instead
crossover from a low-density to a high-density regime o
curs. In the low-density regime, the characteristic freque
is determined by the average distance between nodes, w
in the high-density regime the characteristic frequency is
termined by the capability of agents to deliver informati
packets. In 1D lattices, the crossover changes the sca
from f c}L21 at low densities tof c}L21/(12j) at high den-
sities.

Finally, whenj.1 the transition to the congested regim
is discontinuous, since the number of delivered packets
creases with the load and for long times no packets are
livered at all. Thus the order parameter jumps from 0 to
Moreover, due to the reinforcement effect—the fact that
more collapsed a node is, the more collapsed it will get in
future—leads to the formation of many congestion nuc
generated by fluctuations, that spread over the whole
work. The existence and distribution of such congestion
clei can also be of interest from an engineering point of vie
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