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Estimating incidence of rare cancers is challenging for exceptionally rare entities and in small populations. In
a previous study, investigators in the Information Network on Rare Cancers (RARECARENet) provided Bayesian
estimates of expected numbers of rare cancers and 95% credible intervals for 27 European countries, using data
collected by population-based cancer registries. In that study, slightly different results were found by implementing
a Poisson model in integrated nested Laplace approximation/WinBUGS platforms. In this study, we assessed
the performance of a Poisson modeling approach for estimating rare cancer incidence rates, oscillating around
an overall European average and using small-count data in different scenarios/computational platforms. First,
we compared the performance of frequentist, empirical Bayes, and Bayesian approaches for providing 95%
confidence/credible intervals for the expected rates in each country. Second, we carried out an empirical study
using 190 rare cancers to assess different lower/upper bounds of a uniform prior distribution for the standard
deviation of the random effects. For obtaining a reliable measure of variability for country-specific incidence
rates, our results suggest the suitability of using 1 as the lower bound for that prior distribution and selecting
the random-effects model through an averaged indicator derived from 2 Bayesian model selection criteria: the
deviance information criterion and the Watanabe-Akaike information criterion.

credible interval; Poisson regression; random effects; rare events; uniform prior

Abbreviations: DIC, deviance information criterion; INLA, integrated nested Laplace approximation; IR, incidence rate; LB, lower
bound; MCMC, Markov chain Monte Carlo; RARECARENet, Information Network on Rare Cancers; RC, rare cancers; RMSE,
root mean squared error; UB, upper bound; WAIC, Watanabe-Akaike information criterion.

Editor’s note: An invited commentary on this article ap-
pears on page 499, and the authors’ response appears on
page 503.

Estimation of epidemiologic indicators of incidence, sur-
vival, and prevalence for rare cancers (RCs) is challenging,
particularly for exceptionally rare entities and in countries
with small populations. Because of the small–case-count
data, the pros and cons of directly providing estimates based
on very unstable empirical data or derived from modeling

approaches are unclear, inherently less intuitive, more com-
plex, and to some extent dependent on subjective choices.

Investigators in the Information Network on Rare Cancers
(RARECARENet) (1–3) calculated incidence, prevalence,
and survival estimates for an operative list of 190 RC
entities, defined as cancers with incidence rates (IRs) less
than 6 cases per 100,000 person-years, for the period 2000–
2007 (3). Since many countries could only provide data for
cancer cases in some regional areas, not at a national level,
RARECARENet investigators estimated country-specific
IRs (number of cases per 100,000 person-years) for RCs
on the basis of cases recorded by 83 population-based
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cancer registries across 27 European countries (3). More
recently, in the context of the Joint Action on Rare Cancers,
which is generating policy recommendations on RC that
can be implemented by European Union member states
(1–3), the burden of RC incidence counts in Europe was
compared with another burden derived by a model-based
approach that used a simple Poisson random-effects model
under the Bayesian framework (4), through integrated nested
Laplace approximations (INLAs) implemented in the INLA
platform (5). Evidence suggests that INLA is appropriate
for estimating the distribution of fixed-effect parameters,
but it could fail to yield good estimates in a random-effects
model (6). This last shortcoming could be related to the
numerical method used in INLA to estimate the posterior
distribution: Laplace approximation (4, 6). This approxima-
tion is good for models close to a Gaussian distribution, but
this may underestimate the variance of the random effects
when modeling Poisson or binary data (4, 6). In that situa-
tion, reasonable approximations to the posterior are achieved
when modeling high counts (4) or by altering INLA’s default
settings (6).

A previous study showed very small differences in the
precision of certain indicators when implementing a simple
Poisson random-effects model with different platforms and
approaches (4); the authors called for a simulation study
to properly analyze the differences in the context of RCs.
These 190 entities represent different specific cancers, and
their distribution may vary across countries; however, it is
not feasible to use a different statistical model for each. We
therefore aim to propose an approach that: 1) provides an
overall better model fit for all of the entities; 2) shows the
implication of using the Bayesian approach for deriving the
corresponding 95% credible intervals; and 3) proposes prior
distributions for the precision of random effects in specific
situations related to small case counts.

METHODS

We performed 2 studies. We designed study 1 as a simula-
tion, comparing 4 RC scenarios to assess the performance of
the frequentist, empirical Bayes, and Bayesian approaches
in the presence of overdispersion. Study 2 assessed the
choice of appropriate lower and upper bounds for a uni-
form prior distribution on the standard deviation, σ, of the
random-effects model, depending on the IRs from 2000–
2007. The accompanying Web material (available at https://
doi.org/10.1093/aje/kwab262) provides technical details,
R (version 3.5.1; R Foundation for Statistical Computing,
Vienna, Austria) (7) and WinBUGS (MRC Biostatistics
Unit, Cambridge, United Kingdom, and Imperial College
School of Medicine, London, United Kingdom) (8) software
code, and additional results.

The Poisson random-effects model

In the 1980s, a relative risk regression model was pro-
posed, assuming that the observed cases Ci in the ith area (in
our study country) were distributed according to a Poisson

distribution (9), such that

Ci ∼ Poisson (RiEi) , i = 1, . . . , I = 27, (1)

where Ri is a relative risk or standardized incidence ratio and
Ri = E(Ci)/Ei, where E(Ci) = λi and Ei are, respectively,
the expected rate for Ci and the expected number of cases
calculated from internal standardization or from an external
source of age- and sex-specific rates. For each RC consid-
ered, the observed number of cases for the ith area/country
covered by the cancer registries was modeled as in equa-
tion 1, but accounting for extra Poisson variability through
a Poisson random-effects model presenting a hierarchical
structure (9–15):

θi = log (Ri) = μ + νi, i = 1, . . . , I = 27,

νi ∼ N (0, τ) , (2)

where the parameter μ is the unknown intercept and νi are
the random effects representing the unstructured residual for
each country, assuming a Gaussian distribution with mean 0
and precision τ, whereas θi is the log relative risk, that is,
Ri = eθi . In this approach, also known as the exchangeable
random intercept approach, the distribution of the random
effects allows for extra-Poisson variability in the marginal
distribution of the Ci’s.

Once the model parameters were estimated, the expecta-
tion of the predicted number of incident cases for the kth
country was calculated through λ̂k = R̂kEk, where R̂k is an
estimate of Rk.

Study 1: simulation study

To evaluate the performance of the different approaches,
we simulated data to establish a realistic ground truth for
disease risk variation based on the validated and published
data used in the RARECARENet project (1–4). Four cancer
entities were selected from the RARECARENet database,
and for each cancer entity, we simulated J = 1,000 data sets,
those derived from fitting the original data set to model 2
(equation 2) through WinBUGS. Each simulated data set
included I = 27 predicted values (one for each country) Cj

i,
where j = 1, . . . , J and i = 1, . . . , I. We considered it
realistic to include the 27 European Union member states in
the study, since the aggregation of observed cases provided
by the cancer registries within each country was previously
validated to derive the most recent indicators: the country-
specific number of RCs and their corresponding rates (1–4).
In addition, in the context of RCs, an outcome of interest is
to estimate the variability of the country-specific counts (4).

Table 1 shows the distribution of the original numbers
of cases for the selected cancers: 2 with relatively large
case counts (tumors of the central nervous system and ade-
nocarcinoma with variants of ovary) and 2 with smaller
counts (adenocarcinoma with variants of middle ear and
adenocarcinoma with variants of trachea).

In order to simulate data sets similar to the original data,
the estimates of the model 2 (equation 2) parameters were
used as the true values. Specifically, for each entity, if μ0
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Table 1. Numbers of Observed Cases of 4 Selected Cancers
Obtained From the RARECARENet Databasea During 2000–2007

No. of Observed Cases

Cancer Entity
Range Median IRb

Tumors of the CNSc 174–28,732 2,758.0 73.800

AC with variants of
ovaryc

96–23,957 3,446.0 59.700

AC with variants of
middle ear

0–17 1.8 0.003

AC with variants of
trachea

0–39 6.0 0.011

Abbreviations: AC, adenocarcinoma; CNS, central nervous sys-
tem; IR, incidence rate; RARECARENet, Information Network on
Rare Cancers.

a Numbers of cases were provided by 83 population-based
cancer registries from 27 European countries (3).

b Number of cases per 100,000 person-years, age-standardized
to the European standard population (see Botta et al. (4)).

c This cancer site was not considered a rare entity (large number
of cases).

and τ0 were the posterior estimates for μ and τ given the
original data used in the RARECARENet project (obtained
using the WinBUGS code of Web Appendix 1), where
σ ∼ Uniform(LB, UB) with lower bound (LB) = 0 and
upper bound (UB) = 500 and τ0 = 1

(σ2)
), then for j =

1, . . . , J = 1, 000, and for i = 1, . . . , I = 27, we simulated
ν

j
i ∼ N(0, τ0), we computed Rj

i = exp(μ0 + ν
j
i), and we

generated the “new” observed cases Cj
i ∼ Poisson(Rj

iEi).
The simulated distribution of the “new” observed cases for
each country is graphically depicted in Web Appendix 2 and
Web Figures 1–4.

We compared the performance of 13 computational ap-
proaches (see Web Appendices 3–5) for estimating the
mean number of cases and their confidence/credible inter-
vals by using maximum likelihood approaches, empirical
Bayes approaches, and modeling (12–22). The Bayesian
models were fitted using WinBUGS and INLA (see Web
Appendices 1, 4, and 5 for implementation and Web
Appendices 3, 6, and 7 for details and computational
issues (23–27)). There were 7 WinBUGS models fitted by
assuming that σ follows a uniform prior with different LBs
and UBs (see their code implementation in Web Appendix
1): In model 1, LB = 0 and UB = 500; in model 2, LB = 0.1
and UB = 500; in model 3, LB = 0.2 and UB = 500; in
model 4, LB = 0.3 and UB = 500; in model 5, LB = 0.5
and UB = 500; in model 6, LB = 1 and UB = 500; and in
model 7, there was sampling from LB and UB (see Web
Appendix 5) such that LB ∼ Uniform(0, 5) and UB ∼
Uniform(LB, 500). INLA models were fitted by assuming
2 priors on the precision and standard deviation of the
random effects: model 8, in which τ followed a γ prior
with α = β = 0.000001 (the INLA model used by Botta et

al. (4)) and model 9 (see Web Appendix 4), where σ had a
uniform prior distribution between 0 and ∞.

These 9 models were also compared with another 4 ap-
proaches: model 10—an empirical Bayes approach assum-
ing a gamma distribution (14–16) for Rj

i; model 11—a
generalized linear mixed model estimated by maximum
likelihood and 2 standard approaches not requiring mod-
eling; model 12—exact Poisson distribution; and model
13—Byar’s Poisson approximation (11, 13). The last 2
approaches were used to compare the coverage and width of
their 95% confidence intervals with the intervals obtained
using modeling.

For each cancer entity and simulated data set, we calcu-
lated the 95% confidence interval or credible interval for
the posterior number of cases in each country, λ̂

j
i = R̂j

iEi,
measuring 3 indicators: 1) width, 2) coverage, and 3) the
root mean squared error (RMSE) between λi and λ̂

j
i = R̂j

iEi
(assuming that Ri was the “real” value for the relative risk in
the ith country, whereas R̂j

i was its estimate).
Bayesian and non-Bayesian approaches were assessed in

terms of confidence and credible intervals by comparing the
performance of these intervals through the percentage of
their respective coverage of the true λi parameter across the
1,000 simulated data sets for each of the 4 cancer entities
considered. However, one has to distinguish the interpre-
tation of confidence and credible intervals, since they are
conceptually different. The 95% confidence intervals refer
to how often these intervals, computed from repetitions of
the experiment under study, would contain the true parame-
ter—considered as fixed—if model assumptions were valid
(28). On the other hand, if one is interested in computing
an interval with a 95% probability of containing a model
parameter, considered as random, where each numerical
value contained within this interval has its own probability
mass, then the resulting interval is the Bayesian credible
interval (18). For credible intervals, the achievement of the
frequentist coverage when replicating a study is a desirable
property for the prior’s assessment, in order to yield reliable
posterior inference (29). It also guarantees a frequentist
validity of these intervals when compared with confidence
intervals (29). An adequate confidence/credible interval is
expected to have coverage values of at least its nominal
value, and if we calculate the average width of these intervals
for all data sets, the one producing the narrowest width is
preferred (29).

In addition to these 3 indicators, the effective number of
model parameters (pD), the mean deviance, and the deviance
information criterion (DIC) were also calculated (23) and
compared between Bayesian models (see Web Appendices
6 and 7).

Study 2: applied study

In study 2, we compared the performance of models 1–
7 across the 190 cancer entities by assessing the bounds
of the uniform prior distribution in WinBUGS. For each
cancer entity, we calculated 1) the average width of the
95% credible intervals of the 27 posterior estimates of λi,
2) the expected value of the posterior σ, and 3 common
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measures used by data analysts for assessing model fit under
the Bayesian framework: 3) the DIC and 2 versions of the
Watanabe-Akaike information criterion (WAIC) (30–32),
designated 4) WAIC1 and 5) WAIC2 (see Web Appendices
8–10).

We compared these indicators between models in each
cancer entity as follows. First, we determined the minimum
value of the average width, the posterior σ, WAIC1,WAIC2,
and DIC across models. Second, for each model, we cal-
culated the difference between these 5 indicators and their
corresponding minimum. We stored these 5 indicators in a
matrix of 190 rows, one for each cancer site selected from the
RARECARENet database, and 40 columns (5 indicators ×
8 models considered). We summarized the results (median
and 2.5th and 97.5th percentiles of each difference) for a
specific selection of cancer entities in order to assess model
performance.

The selection was based on the magnitude of the IRs
(number of cases per 100,000 person-years), since these
showed a minimum of 0.0004 and a maximum of 5.9692,
with a median of 0.1100. We chose 4 scenarios: scenario A,
where the IR was less than 0.03 (quartile 1 of the IRs (47/190
cancer entities)); scenario B, where the IR was less than 0.12
(up to quartile 2 of the IRs (97/190 entities)); scenario C,
where the IR was less than 0.5 (up to quartile 3 of the IRs
(143/190 entities)); and scenario D, where the IR was greater
than or equal to 0.5 (quartile 4 of the IRs).

Furthermore, to suggest a strategy for different scenarios,
we established a ranking for each model and cancer entity
by calculating the indicators and then averaging the rankings
of indicators for each model in the corresponding scenario
(see Web Appendix 11, where Web Figure 5 depicts this
procedure).

Finally, we made a graphical comparison between the best
model derived from study 2 and model 8.

RESULTS

Study 1

Table 2 presents modeling indicators for cancer sites with
large case counts. For tumors of the central nervous system,
we noted that 1) the mean coverage for the generalized
linear mixed model and the empirical Bayes strategies barely
reached 95% and 2) the 2 nonmodeling strategies, exact
and Byar’s Poisson approximation, yielded wide confidence
intervals. This phenomenon was also detected for an entity
with large variability and relatively large counts: adenocar-
cinoma with variants of ovary. The Bayesian models showed
an average of almost 95% coverage, with similar widths and
RMSEs.

The indicators for cancer entities with very small counts
and a large number of zeros are presented in Table 3. The
exact Poisson and Byar’s Poisson strategies produced large
confidence intervals. WinBUGS and INLA strategies using
a uniform prior on σ showed good performance compared
with the aforementioned strategies, with narrower inter-
vals and RMSEs, and coverage above 96%. Among Win-
BUGS models, we noted that model 6 showed the largest

width (3.61 cases) and RMSE (RMSE = 0.62) and model
1 the smallest values. On the other hand, model 8 (INLA)
presented low mean coverage (79.56%), well below the
expected 95%, indicating that this model would not be
appropriate for adenocarcinoma with variants of middle ear.
These conclusions related to coverage can also be applied to
the generalized linear mixed and empirical Bayes models.

Similarly, for adenocarcinoma with variants of trachea, a
cancer entity with a median of 6 cases per country during
the study period and just 3 countries with 0 counts, the
coverage was below 95% in all modeling strategies except
for models 4–7 (WinBUGS). Among these models, model
6 again showed the largest width (7.60 cases) and RMSE
(RMSE = 1.55), model 7 the smallest width, and models 4
and 5 the smallest RMSEs. Therefore, changes in the lower
bound on the uniform prior assumed for σ might improve
model performance. Differences between WinBUGS and
INLA models were only detected for pD values (see Web
Figure 6).

Study 2

Since the results derived from the simulation study sug-
gested that using a uniform prior distribution on σ might be
a useful strategy, we assessed the performance of models
with different LBs on the uniform prior distribution for
models 1–7. Figures 1–4 depict the distribution of these
indicators across all scenarios. Model 6 showed the smallest
differences on average, but it presented the largest variability
for this last indicator. Model 6 ranked first among RC sites
that had an IR of less than 0.5 cases per 100,000 person-years
during the study period (Figure 1F, 2F, and 3F), whereas
model 6 was surpassed by models 3 and 4 when the IR
exceeded 0.5 (Figure 4F). Notably, model 6 performed best
when DIC and WAIC rankings were averaged into one
“overall indicator” (see Web Figure 7).

Finally, we also assessed the impact of using model 6
versus model 8 when comparing the 95% credible inter-
vals for λi. For adenocarcinoma with variants of middle
ear, the coverage of λi using model 6 was clearly better
than that with model 8, since the credible interval derived
from model 8 did not cover the observed rate provided by
RARECARENet in 5 countries (Web Figure 8). However,
we noted that differences between model 6 and other models
could also be minimal even for entities with very small case
counts, such as adenocarcinoma with variants of trachea
(Web Figure 9).

DISCUSSION

In the Bayesian modeling of the burden of RC between
countries, our study showed that using a uniform prior for
the standard deviation of the random effects, σ, with a
lower bound of 1, improves the performance of a simple
Poisson random-effects model. However, when dealing with
very large counts, the influence of the choice of the prior
distribution or the non-Bayesian modeling might have a very
small influence on the final results, as shown in study 1. In
addition, model selection could be improved by selecting
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Table 2. Mean Values (and Standard Deviations) of Indicators Considered for Assessing the Performance of Models Used to Estimate
Incidence of 2 Types of Cancer With Large Case Counts, RARECARENet Database, 2000–2007a

Cancer Type and Model Used CI/CrI Coverage, % CI/CrI Width, no. of cases RMSE

Tumors of the central nervous system

WinBUGS modelsb

Model 1 95.16 (21.88) 223.62 (128.03) 46.38 (48.69)

Model 2 94.16 (22.18) 223.56 (127.57) 46.36 (48.76)

Model 3 95.33 (21.10) 224.08 (127.33) 46.43 (48.90)

Model 4 95.26 (21.26) 224.67 (127.30) 46.51 (46.51)

Model 5 95.26 (21.26) 224.67 (127.30) 46.51 (49.04)

Model 6 95.11 (21.57) 224.99 (127.35) 46.64 (49.11)

Model 7 94.89 (22.03) 223.66 (127.85) 46.44 (48.92)

INLA modelsc

Model 8 95.18 (22.18) 223.81 (127.93) 46.44 (48.83)

Model 9 95.18 (22.18) 223.79 (127.90) 46.44 (48.84)

Empirical Bayes approach 94.96 (21.88) 222.33 (128.90) 46.38 (48.68)

Generalized linear mixed model 94.67 (22.48) 223.51 (128.35) 46.39 (48.75)

Poisson approximation

Exact 95.04 (21.73) 226.20 (127.26) 46.64 (49.08)

Byar’s 95.11 (21.57) 225.22 (127.35) 46.64 (49.08)

Adenocarcinoma with variants of ovary

WinBUGS models

Model 1 95.04 (21.73) 204.59 (119.07) 40.98 (44.08)

Model 2 95.19 (21.42) 204.55 (118.76) 40.99 (43.85)

Model 3 95.04 (21.73) 204.56 (118.77) 40.92 (43.97)

Model 4 95.11 (21.57) 204.91 (118.57) 40.91 (43.94)

Model 5 95.11 (21.57) 204.91 (118.57) 40.91 (43.94)

Model 6 95.56 (20.62) 205.59 (118.47) 40.99 (43.88)

Model 7 95.11 (21.75) 204.55 (118.81) 40.98 (43.82)

INLA models

Model 8 95.03 (22.03) 204.70 (118.71) 40.94 (43.88)

Model 9 95.03 (22.03) 204.77 (118.76) 40.93 (43.86)

Empirical Bayes approach 94.67 (22.33) 203.45 (118.84) 40.99 (43.87)

Generalized linear mixed model 94.83 (22.03) 204.32 (118.79) 40.93 (43.82)

Poisson approximation

Exact 95.26 (21.26) 206.43 (118.08) 40.98 (43.88)

Byar’s 95.48 (20.78) 205.50 (118.20) 40.98 (43.87)

Abbreviations: CI, confidence interval; CrI, credible interval; INLA, integrated nested Laplace approximation; RARECARENet, Information
Network on Rare Cancers; RMSE, root mean squared error.

a Coverage and width of the 95% CI or CrI and RMSE between the observed and predicted numbers of cases across 1,000 simulated data
sets for 2 cancer sites with large case counts in all areas.

b WinBUGS models: model 1, σ ∼ Uniform(0, 500); model 2, σ ∼ Uniform(0.1, 500); model 3, σ ∼ Uniform(0.2, 500); model 4,
σ ∼ Uniform(0.3, 500); model 5, σ ∼ Uniform(0.5, 500); model 6, σ ∼ Uniform(1, 500); model 7, σ ∼ Uniform(a, b).

c INLA models: model 8, τ ∼ γ(0.00001, 0.00001); model 9, σ ∼ Uniform(0, ∞).

the model with the smallest ranking indicator derived from
an average of the models’ rankings using DIC and WAIC.
These 2 strategies are effective for modeling and obtaining a
reliable measure of variability for country-specific RC IRs.

In the first study, we compared the coverage of the true
λi between Bayesian and non-Bayesian approaches. A com-
mon means of evaluating an objective prior distribution
is through the frequentist-matching approach: If posterior
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Table 3. Mean Values (and Standard Deviations) of Indicators Considered for Assessing the Performance of Models Used to Estimate
Incidence of 2 Types of Cancer With Small Case Counts, RARECARENet Database, 2000–2007a

Cancer Type and Model Used CI/CrI Coverage, % CI/CrI Width, no. of cases RMSE

Adenocarcinoma with variants of middle ear

WinBUGS modelsb

Model 1 96.04 (16.96) 2.54 (2.54) 0.43 (0.69)

Model 2 96.56 (15.45) 2.63 (2.57) 0.43 (0.69)

Model 3 96.22 (13.22) 2.74 (2.61) 0.43 (0.69)

Model 4 96.59 (11.78) 2.86 (2.67) 0.44 (0.70)

Model 5 96.59 (11.78) 2.86 (2.67) 0.44 (0.70)

Model 6 96.37 (12.67) 3.61 (2.94) 0.62 (0.84)

Model 7 96.37 (12.67) 2.84 (2.65) 0.44 (0.70)

INLA modelsc

Model 8 79.56 (40.34) 1.78 (2.23) 0.46 (0.76)

Model 9 95.59 (18.15) 2.57 (2.56) 0.44 (0.70)

Empirical Bayes approach 51.33 (50.00) 1.23 (2.12) 0.45 (0.70)

Generalized linear mixed model 76.44 (42.45) 1.84 (2.33) 0.45 (0.71)

Poisson approximation

Exact 96.74 (17.76) 6.11 (2.87) 0.91 (0.99)

Byar’s 98.44 (12.38) 5.05 (2.94) 0.91 (0.99)

Adenocarcinoma with variants of trachea

WinBUGS models

Model 1 92.44 (26.44) 6.28 (5.40) 1.39 (1.85)

Model 2 92.81 (25.83) 6.34 (5.40) 1.38 (1.83)

Model 3 94.00 (23.76) 6.42 (5.39) 1.37 (1.82)

Model 4 95.48 (20.78) 6.57 (5.43) 1.36 (1.82)

Model 5 95.48 (20.78) 6.57 (5.43) 1.36 (1.82)

Model 6 96.22 (19.07) 7.60 (5.61) 1.55 (1.90)

Model 7 95.30 (23.20) 6.49 (5.42) 1.38 (1.83)

INLA models

Model 8 87.04 (33.60) 5.92 (5.37) 1.44 (1.91)

Model 9 92.44 (26.44) 6.36 (5.41) 1.39 (1.83)

Empirical Bayes approach 84.15 (36.54) 5.58 (5.18) 1.39 (1.87)

Generalized linear mixed model 85.70 (35.02) 6.01 (5.38) 1.39 (1.84)

Poisson approximation

Exact 95.19 (21.42) 9.68 (5.48) 1.78 (1.94)

Byar’s 97.70 (14.98) 8.67 (5.51) 1.78 (1.94)

Abbreviations: CI, confidence interval; CrI, credible interval; INLA, integrated nested Laplace approximation; RARECARENet, Information
Network on Rare Cancers; RMSE, root mean squared error.

a Coverage and width of the 95% CI or CrI and RMSE between the observed and predicted numbers of cases across the 1,000 simulated
data sets for 2 cancer sites with small case counts in all areas.

b WinBUGS models: model 1, σ ∼ Uniform(0, 500); model 2, σ ∼ Uniform(0.1, 500); model 3, σ ∼ Uniform(0.2, 500); model 4,
σ ∼ Uniform(0.3, 500); model 5, σ ∼ Uniform(0.5, 500); model 6, σ ∼ Uniform(1, 500); model 7, σ ∼ Uniform(a, b).

c INLA models: model 8, τ ∼ γ(0.00001, 0.00001); model 9, σ ∼ Uniform(0, ∞).

credible intervals have good coverage properties, posterior
inference is reliable in the absence of past data or sources
of information (29). On the other hand, the bounds of the
confidence interval and those of the credible interval for a
parameter θ might numerically coincide when using a flat

prior, P(θ) ∝ 1, since P(θ|X) ∝ P(θ)L(X|θ)—the posterior
probability for θ, P(θ|X)—coincides with the likelihood (33),
L(X|θ). However, use of the Bayesian approach allows the
researcher to calculate probabilities for assessing whether
certain parameter values are more probable than others.
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Figure 1. Assessment of models’ indicators (differences) and model (M) ranking in scenario A, where the incidence rate (IR) (number of
cases per 100,000 person-years) was less than 0.03 (quartile 1 of the IRs (47/190 cancer entities)), RARECARENet database, 2000–2007. The
graphs show median values (dots) and 95% credible intervals (lines) for the difference between the estimate of the corresponding indicator
according to the specific model and its minimum across all models. A) Difference between the first version of the Watanabe-Akaike information
criterion (WAIC1) for the corresponding model and the minimum WAIC1 across all models; B) difference between the second version of the
Watanabe-Akaike information criterion (WAIC2) for the corresponding model and the minimum WAIC2 across all models; C) difference between
the width of the 95% credible interval for λi derived from the corresponding model and the minimum width of that interval across all models;
D) difference between σ estimated using the corresponding model and the minimum σ estimated across all models; E) difference between the
deviance information criterion (DIC) for the corresponding model and the minimum DIC across all models; F) ranking of the models according
to the average of the rankings derived from the aforementioned indicators. See text for detailed descriptions of models 1–7. RARECARENet,
Information Network on Rare Cancers.

Despite this fact, the Bayesian approach also has costs:
1) It adds dependency to the results due to the choice of prior
distributions, and 2) it incurs a computational burden when
using Markov chain Monte Carlo (MCMC) methods (6, 24,
34). The INLA platform performs approximate Bayesian
inference based on the multiple use of Laplace approx-
imations combined with numerical integration, providing
faster computation than MCMC methods (6, 24, 25, 34–
38), making its use appropriate for simple models. However,
a limitation of INLA is related to the use of a bounded
uniform prior distribution, since the end user cannot modify
the bounds of a uniform prior (24, 25) as in WinBUGS (6,
24, 25, 34).

In the applied study, we used several indicators to assess
the performance of the WinBUGS model for different LBs
on the uniform prior distribution of σ. We gave the same
weight to each of these indicators, and we ranked the models
accordingly. However, we believe that the use of all of these
indicators might be complex for applied data analysts. Since
the most commonly used indicators for Bayesian model
choice in epidemiologic studies are DIC and WAIC (30–32),
our results suggest that averaging the models’ rankings using
these indicators could be a good strategy. The DIC can easily
be obtained from WinBUGS and INLA, whereas one can use
the R code in Web Appendix 10 to carry out this calculation
for WAIC indicators. In our study, we reached the same
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Figure 2. Assessment of models’ indicators (differences) and model (M) ranking in scenario B, where the incidence rate (IR) (number of cases
per 100,000 person-years) was less than 0.12 (up to quartile 2 of the IRs (97/190 cancer entities)), RARECARENet database, 2000–2007. The
graphs show median values (dots) and 95% credible intervals (lines) for the difference between the estimate of the corresponding indicator
according to the specific model and its minimum across all models. A) Difference between the first version of the Watanabe-Akaike information
criterion (WAIC1) for the corresponding model and the minimum WAIC1 across all models; B) difference between the second version of the
Watanabe-Akaike information criterion (WAIC2) for the corresponding model and the minimum WAIC2 across all models; C) difference between
the width of the 95% credible interval for λi derived from the corresponding model and the minimum width of that interval across all models;
D) difference between σ estimated using the corresponding model and the minimum σ estimated across all models; E) difference between the
deviance information criterion (DIC) for the corresponding model and the minimum DIC across all models; F) ranking of the models according
to the average of the rankings derived from the aforementioned indicators. See text for detailed descriptions of models 1–7. RARECARENet,
Information Network on Rare Cancers.

conclusions using these indicators as we did when using all
indicators, except in the situation of relatively “large” IRs
(IR > 0.5). We found that the best-performing model was
that using σ ∼ Uniform(1, 500), so we suggest model 6
as a model to start with. However, there might be models
that could perform better than model 6 for particular cancer
entities (see Web Figure 10).

The relevance of choosing the prior distribution from an
empirical Bayes perspective has been also reported (35)
and mostly noted as a key factor from the full Bayesian
perspective, where the comparative use of different priors is
usually considered (19, 21, 22, 25, 34, 36). When estimating
the rate of the RC counts through modeling the ratio between

the observed and expected numbers of cases in each country,
our results are a compelling argument for using a uniform
prior distribution for σ on the random effects. The end
users can also assess the impact in the estimation and the
variability of the model parameters by changing the LB of
the uniform prior when using their own data.

Computational burden and differences in estimates could
be an issue when comparing Bayesian platforms for mod-
eling. INLA is much faster than platforms using MCMC
methods, and this could be a key determinant of its use,
since shorter computational time is a major advantage when
analyzing large data sets. If computational time is not an
issue, the flexibility in modeling priors through WinBUGS/
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Figure 3. Assessment of models’ indicators (differences) and model (M) ranking in scenario C, where the incidence rate (IR) (number of cases
per 100,000 person-years) was less than 0.5 (up to quartile 3 of the IRs (143/190 cancer entities)), RARECARENet database, 2000–2007. The
graphs show median values (dots) and 95% credible intervals (lines) for the difference between the estimate of the corresponding indicator
according to the specific model and its minimum across all models. A) Difference between the first version of the Watanabe-Akaike information
criterion (WAIC1) for the corresponding model and the minimum WAIC1 across all models; B) difference between the second version of the
Watanabe-Akaike information criterion (WAIC2) for the corresponding model and the minimum WAIC2 across all models; C) difference between
the width of the 95% credible interval for λi derived from the corresponding model and the minimum width of that interval across all models;
D) difference between σ estimated using the corresponding model and the minimum σ estimated across all models; E) difference between the
deviance information criterion (DIC) for the corresponding model and the minimum DIC across all models; F) ranking of the models according
to the average of the rankings derived from the aforementioned indicators. See text for detailed descriptions of models 1–7. RARECARENet,
Information Network on Rare Cancers.

MCMC is worth considering and can yield more accurate
estimates of predictive probabilities than INLA. If computa-
tional time is an issue, we suggest using INLA and assessing
a sensitivity analysis on the prior of τ by using γ-based priors
(6, 14, 24, 25, 39–42). The use of INLA and combinations of
MCMC and INLA have been suggested in situations dealing
with hard-to-estimate conditional model parameters (6, 42,
43), such as in the case of geostatistical or spatiotemporal
models (42). Here, using a simple random-effects model
and n = 27 observations, all computations were carried
out on a 4.8-GHz Intel Core i7 desktop personal computer
(Intel Corporation, Santa Clara, California) with 16 GB of
random access memory. The median computational time

using model 6, fitted across the 190 cancer sites, was 227
minutes, whereas model 8 took 98 minutes.

Further work

An overall European average for IRs was considered here,
but spatial correlation between countries was not. In a sce-
nario where yearly counts are available assuming between-
area correlation, a model with identifiability constraints can
help capture true spatial effects, and a Bayesian space-
time model could also be used for modeling space × time
interaction terms (42–44).
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Figure 4. Assessment of models’ indicators (differences) and model (M) ranking in scenario D, where the incidence rate (IR) (number of cases
per 100,000 person-years) was greater than or equal to 0.5 (quartile 4 of the IRs), RARECARENet database, 2000–2007. The graphs show
median values (dots) and 95% credible intervals (lines) for the difference between the estimate of the corresponding indicator according to the
specific model and its minimum across all models. A) Difference between the first version of the Watanabe-Akaike information criterion (WAIC1)
for the corresponding model and the minimum WAIC1 across all models; B) difference between the second version of the Watanabe-Akaike
information criterion (WAIC2) for the corresponding model and the minimum WAIC2 across all models; C) difference between the width of
the 95% credible interval for λi derived from the corresponding model and the minimum width of that interval across all models; D) difference
between σ estimated using the corresponding model and the minimum σ estimated across all models; E) difference between the DIC of the
corresponding model and the minimum DIC across all models; F) ranking of the models according to the average of the rankings derived from
the aforementioned indicators. See text for detailed descriptions of models 1–7. RARECARENet, Information Network on Rare Cancers.

In this line, within-region variability is an important issue,
especially for population-based cancer registry data. How-
ever, when dealing with RCs, the small counts often do not
allow an in-depth study of the variability within a region
from a statistical point of view, unless data are collected over
a very long period of time (4). In addition, it is quite plausible
that the within-region variability, if any, cannot be estimated
with precision from a statistical viewpoint because of small
counts. If our data were available disaggregated by local
cancer registries within each country, model 2 (equation
2) could be easily modified to account for within-country
variability by θir = log Rir = μ + νi + αir. Here νi and
αir are random effects representing the between-country and
within-country variability, respectively, where νi ∼ N(0, τ),

αir ∼ N(0, τα), i refers to country, and r refers to a within-
country unit (local cancer registries). Although the disag-
gregation of data was not available at this level in the
RARECARENet search tool (1–4) and that model cannot be
tested with our data set, we suggest that this additional level
of variability requires studying assumptions about the prior
distributions for τ and τα and how these can be combined
and validated.

These assumptions must also take into account hypothe-
ses—for example, that incidence is driven by an environ-
mental risk factor present in one area but not another within
the same country. In addition, population size has a sig-
nificant influence on the measure of risk used in spatial
modeling (44). These are challenges when applying a “one
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size fits all” method, and their future study in the context of
RC is warranted.

Limitations

The Joint Action on Rare Cancers strongly supported
national/international coordination of clinical management
of rare tumors, in terms of networking and physical cen-
tralization of treatments (1, 2). Therefore, provision of indi-
cators at a subnational (local/regional cancer registry) level
is of minor importance for health-care planning under the
project’s aims. However, it remains an issue for etiological
research on rare tumors with putative risk factors.

We studied the impact on the prior distributions used for
the random effects, representing the unstructured residual
for each country. The modeling and priors we used are
only as reliable and valid as the data themselves (4). How-
ever, the modeling presented here might require additional
assumptions in areas with poor cancer surveillance, where
low occurrence might reflect issues with disease registration.

The database used here (March 10, 2020) was, unfortu-
nately, the most updated one available at the time of this
writing. This is largely due to the application of the European
General Data Protection Regulation (45), which required
a separate negotiation for data transfer with each one of
the more than 100 participating cancer registries, so the
speed of the entire data collection was determined by the
slowest-reacting registry. Finally, the coronavirus disease
2019 pandemic emergency has entailed further delays over
the entire process. We hope that the new database derived
from the most recent “call for data” will become available
during 2021, since it requires time for centralized processing
and data quality checks.

Conclusion

In summary, our study shows that a simple Bayesian Pois-
son regression model using a uniform prior distribution on σ
of the random effects with a lower bound of 1 yields reliable
variability for the country-specific RC IRs when these vary
around an overall IR. Despite this recommendation, in the
context of RCs and small case counts, it is of the utmost
importance to perform a sensitivity analysis combining pre-
cision with goodness of fit when the end user analyzes
his/her own data. Along this line, we suggest selecting the
random-effects model for each cancer site according to an
averaged ranking indicator which uses DIC and WAIC.
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