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Discretized integral hydrodynamics

Vı́ctor Romero-Rochı´n* and J. Miguel Rubı´
Departament de Fı´sica Fonamental, Universitat de Barcelona, Avenida Diagonal 640, E-08028 Barcelona, Spain

~Received 19 December 1997!

Using an interpolant form for the gradient of a function of position, we write an integral version of the
conservation equations for a fluid. In the appropriate limit, these become the usual conservation laws of mass,
momentum, and energy. We also discuss the special cases of the Navier-Stokes equations for viscous flow and
the Fourier law for thermal conduction in the presence of hydrodynamic fluctuations. By means of a discreti-
zation procedure, we show how the integral equations can give rise to the so-called ‘‘particle dynamics’’ of
smoothed particle hydrodynamics and dissipative particle dynamics.@S1063-651X~98!04808-9#

PACS number~s!: 03.40.Gc, 82.70.2y, 02.70.2c
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I. INTRODUCTION

The inherent difficulties of the equations of hydrodyna
ics have given rise, over the years, to a variety of sche
that numerically simulate fluid flows. These methods ran
from the very fast but highly idealized lattice-automata flo
@1# to the slow but microscopically rigorous molecular d
namics simulations@2#, passing through schemes that de
with hydrodynamic fluctuations based on variations of
Boltzmann equation@3#. These simulation techniques hav
proved to be very useful in some particular cases, and h
yielded not only a better understanding of fluid dynamics
have also shown the value and potentiality of their cor
sponding approaches. An aspect common to all those m
ods is thedirect interpretation, and implementation, of flow
in terms of the dynamics of the actualparticlesthat conform
the fluid at a microscopic or mesoscopic scale. Of renew
interest, and the subject of the present paper, there have
peared novel simulation schemes based on the idea of
stituting themacroscopicfluid by ‘‘particles’’ that represent
the flow at a coarse-grained spatial scale. These part
move under the influence of effective forces and their eq
tions of motion reduce, in the appropriate coarse-grai
limit, to some approximate form of the hydrodynam
Navier-Stokes equations. Those methods are ca
smoothed particle hydrodynamics~SPH! @4,5# ~also known
as smoothed particle applied mechanics@6#! and dissipative
particle dynamics~DPD! @7#. Although numerical implemen
tations of these techniques are somewhat different, the la
including a random force, we shall argue here that their
gin is essentially the same. The use of these particle
simulations has been reported to be successful in diffe
applications of fluid dynamics@6,8–12#. An attractive feature
of these simulations is that one can use the enormous e
rience gained from techniques of simulations of stand
molecular dynamics; in particular, they appear to be pot
tially useful in dealing with rheological fluids.

In this paper, we present an integral representation of
hydrodynamic conservation laws based on the concept o
interpolant of a function@4,5#; the interpolant is an integra
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representation of a function in terms of a weight functio
This function, in the appropriate limit, becomes ad function,
and the interpolant yields an identity. For calculational p
poses one does not take such a limit and, therefore, one
up with an approximate form of the corresponding functio
The SPH simulations are based on certain forms of the in
polant of the hydrodynamicfunctions, such as density, ve
locity, etc. Here we base our scheme not on the interpola
of the functions, but rather on the interpolants of thegradient
of the functions. This minor change proves to be very use
in writing integral equations that reduce, exactly, to cons
vation laws in the limit. Moreover, we shall see that t
conservation of mass, momentum, and energy is exactly
served at the level of the integral forms. At an approxim
level, we shall show that the integral forms of the conserv
currents are correct up to second order terms in the gradi
of the corresponding fields. Since the integral expressi
can be written down following the forms of the true law
phenomenological variables, such as viscosities and the
conductivity, can be naturally included. In the same fashi
the extension to fluctuating hydrodynamics can be rea
performed.

The resulting integral conservation laws may then be u
as an alternative to the exact differential laws. Further, th
can be utilized as the starting point for approximate so
tions. In this context, we show that by an appropriate d
cretization of the integrals one can render the equation
look like the equations, not for the hydrodynamic fiel
evaluated at space-time points, but rather for quantities
taining to particles. For instance, the field velocityv(r ,t)
becomes the velocityvi(t) of a particle at positionr i(t); a
law of motion for the latter must then be supplied. Within t
present theory one readily finds equations of motion for
particles that are fully consistent with the hydrodynam
equations. We shall show how the SPH and DPD equati
may then be found. As we shall see, in general, one can h
additional terms arising from the convective nonlinear ter
of the hydrodynamic time derivative.

We organize the paper as follows. In Sec. II, we introdu
the interpolant of the gradient of a function. With such
object, we write down the conservation laws, both in gene
and for the cases of Navier-Stokes and Fourier laws. T
extension to fluctuating hydrodynamics is also shown.
Sec. III, we present a discretization procedure that yield
1843 © 1998 The American Physical Society
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particlelike simulation algorithm. We discuss the relations
with the SPH and DPD theories. We conclude and m
additional remarks in Sec. IV.

II. HYDRODYNAMICS IN INTEGRAL FORM

A. An interpolant of the gradient

The idea of formulating an integral version of the laws
hydrodynamics is based on a limiting representation of
gradient of a function of positionr . This representation we
call an interpolant, following Lucy @4# and Monaghan@5#
SPH formulations. As we mentioned in Sec. I, we use
interpolant of the gradient of a function rather than that
the function itself.

First, we show that the following identity is correct:

¹A~r !52 lim
r 0→0

E dr 8A~r 8!
~r2r 8!

ur2r 8u
W~ ur2r 8u;r 0!, ~1!

where the tensorial character ofA is left unspecified, and
W(ur2r 8u;r 0) is a distribution or weight function sharpl
peaked with widthr 0 . We demand that all its moments exis
although the function itself may not be integrable. We
sume that

E dr ur unW~ ur u;r 0!5r 0
n21Mn , ~2!

with n>1. For n51 we requireM153, but for n.1 we
leaveMn unspecified. These requirements are easily sa
fied by noticing that the integrand of Eq.~1! can be related to
the gradient of a distribution that tends to ad function,
namely,

r

ur u
W~ ur u;r 0!52“ f ~ ur u;r 0! ~3!

where f (r ;r 0) is such that the limitr 0→0 becomes

lim
r 0→0

f ~r ;r 0!5
1

4pr 2 d~r !. ~4!

Clearly, any distribution that tends tod(x) can be used. It is
important to stress thatW is a function of the magnitudeur u
and not of the corresponding vector. This dependence is
portant for the use of approximations and, as we shall
below, for the setting up of the conservation laws.

For the validity of Eq.~1! we further require thatA(r ) is
analytic everywhere inside the domain of the integral. Thi
not a stringent requirement, since we are interested in hy
dynamic fields. CallingI „A(r )… the integral in Eq.~1!, we
first make a change of variables,r 8→r1r 8, and then we
perform a Taylor expansion ofA(r1r 8) aroundr . We obtain
p
e

f
e

e
f

-

s-

-
e

s
o-

I ~A~r !!5]aA~r !E dr 8
r a8 r b8

ur 8u
W~ ur 8u;r 0!1

1

2
]a]g]hA~r !

3E dr 8
r a8 r b8 r g8r h8

ur 8u
W~ ur 8u;r 0!1¯ , ~5!

where]a5]/]r a , with r a the Cartesian components of th
vector r . Due to the spherical symmetry ofW, all the odd
powers ofr 8 ~even powers in the derivatives! vanish identi-
cally. With the use of Eq.~2! the first integral on the right-
hand side of Eq.~5! gives the Kronecker deltadab , indepen-
dently of r 0 , while the second integral yieldsr 0

2(dabdgh

1dagdbh1dahdbg)W3 /15. Clearly the higher order term
are proportional tor 0

2n times odd (2n11) derivatives ofA.
We write, generically,

I ~A~r !!5¹A~r !1O~r 0
2¹3A!. ~6!

In the limit r 0→0, the interpolant is the gradient ofA. For
approximation purposes, we note from Eq.~6! that the cor-
rection to the gradient is third order in the derivatives.

B. Conservation laws

The study of the hydrodynamics of a fluid is based on
conservation laws for mass, momentum, and energy@13#. In
the following we assume that all the fields are evaluated
spatial pointr , and that all are time dependent as well. T
conservation laws are

]r

]t
52“•~rv!, ~7!

] j

]t
52“•~ jv1P1̃2P̃!, ~8!

]e

]t
52“•@ev1~P1̃2P̃!•v1J#, ~9!

wherer is the mass density,v is the velocity of the fluid,j is
the momentum density,j5rv, P is the hydrostatic pressure

P̃ is the viscous stress tensor,e5rv2/21u is the total en-
ergy density withu the internal energy density of the fluid
andJ is the heat current. Integration over the whole volum
of the fluid shows that the total mass, momentum, and
ergy of the fluid are conserved.

With the use of the interpolant given by Eq.~1!, we can
write down analogous conservation expressions~with im-
plicit time dependence!

]r~r !

]t
5E dr 8W~ ur2r 8u;r 0!

~r2r 8!a

ur2r 8u
@r~r 8!va~r !

1r~r !va~r 8!#, ~10!

] j b~r !

]t
5E dr 8W~ ur2r 8u;r 0!

~r2r 8!a

ur2r 8u $@ j b~r 8!va~r !

1 j b~r !va~r 8!#1@P~r ;r 8!1P~r 8;r !#dab

2@Pab~r ;r 8!1Pab~r 8;r !#%, ~11!
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]e~r !

]t
5E dr 8W~ ur2r 8u;r 0!

~r2r 8!a

ur2r 8u $@e~r 8!va~r !

1e~r !va~r 8!#1@P~r ;r 8!va~r !1P~r 8;r !va~r 8!#

2@Pab~r ;r 8!vb~r !1Pab~r 8;r !vb~r 8!#

1@Ja~r ;r 8!1Ja~r 8;r !#%. ~12!

The above expressions, by the rule of the interpolant,
equal~in the limit r 0→0) to ~minus! the divergence of the
terms in square brackets evaluated atr 85r ; in particular, the

‘‘kernels’’ P(r ;r 8), P̃(r ;r 8) and J(r ;r 8) must be chosen
such that the interpolants equal the divergence of the ac
pressure, viscous stress tensor, and heat current wher 8
5r . But before we discuss how to choose these kernels
point out that all terms inside the square brackets aresym-
metric with respect to the interchange of the variablesr and
r 8. Therefore, integration with respect tor makes the right-
hand side of all the equations vanish, thus yielding the c
servation of the extensive variables, independently
whether the limitr 0→0 is taken or not.

C. Constitutive relations

The conservation laws must be provided with constitut
relations in order to have a closed set of equations. For
cussion purposes we shall choose the mass density, velo
and temperatureT(r ,t) as the independent fields. Therefor
for the pressure and the internal energy we need to know
equations of state of the fluid in terms ofr and T; in par-
ticular, we assume we know the functional depende
P(r,T). Thus the kernel for the pressure may be chosen

P~r ;r 8!5P„r~r !,T~r 8!…. ~13!

Clearly, the kernel is not symmetric in its variables, a
h
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hence we need the symmetrization in the conservation e
tions~10!–~12! above. Substitution of this form into, say, E
~11!, gives, to lowest order, the term

E dr 8@P~r ;r 8!1P~r 8;r !#
~r2r 8!

ur2r 8u
W~ ur2r 8u;r 0!

~14!

52S ]P

]r D“r2S ]P

]T D“T, ~15!

where the right-hand side is evaluated atr 85r . The right-
hand side is2“P(r ).

Regarding the viscous stress tensorP̃, we use the usua
one that gives rise to the Navier-Stokes equations, linea
the velocity gradients. The corresponding kernel may
written as

Pab~r ;r 8!52h~r !E dr 9W~ ur 82r 9u;r 0!F ~r 82r 9!a

ur 82r 9u
vb~r 9!

1
~r 82r 9!b

ur 82r 9u
va~r 9!2

2

3
dab

~r 82r 9!n

ur 82r 9u
vn~r 9!G

2z~r !E dr 9W~ ur 82r 9u;r 0!

3Fdab

~r 82r 9!n

ur 82r 9u
vn~r 9!G , ~16!

where the viscositiesh~r ! andz~r ! are either given functions
of r or they depend onr through a further dependence o
density and temperature. Substitution of this equation i
Eq. ~11! yields, to lowest order, the familiar viscosity term
of the Navier-Stokes equations:
2E dr 8@Pab~r ;r 8!1Pab~r 8;r !#•
~r2r 8!b

ur2r 8u
W~ ur2r 8u;r 0!

5]bFh~r !S ]avb~r !1]bva~r !2
2

3
dab]nvn~r ! D1z~r !dab]nvn~r !G . ~17!
-

an
at,
e

dily
int
For the form of heat currentJ we consider Fourier law in
which the current is linear in the temperature gradient. T
kernel can be written as

J~r ;r 8!5k~r !E dr 9W~ ur 82r 9u;r 0!
~r 82r 9!

ur 82r 9u
T~r 9!.

~18!

Again, substitution into Eq.~12! yields, to lowest order,
e E dr 8@Jq~r ;r 8!1Jq~r 8;r !# •
~r2r 8!

ur2r 8u
W~ ur2r 8u;r 0!

5“•@k~r !¹T~r !#, ~19!

where ther dependence ofk may be given through its de
pendence on temperature and density.

Thus we have shown a consistent way of presenting
integral form of the equations of hydrodynamics, such th
in the appropriate limit, they yield the true equations; w
note that all the phenomenological coefficients are rea
and unambiguously identified. This is an important po
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since, as we shall show in Sec. II D, the choice of the fu
tional forms of the stress tensor and the heat current is b
means unique; that is, we can prescribe different functio
forms that in the limit also give similar expressions to t
usual hydrodynamic laws. We shall defer further discuss
of this point to Sec. III.

D. Hydrodynamic fluctuations

We now turn our attention to the formulation of the stu
of hydrodynamic fluctuations. Following Landau and L
shitz @14,15# we limit ourselves to small fluctuations aroun
a given flow, solution to Eqs.~7!–~9!, so that a linearization
in the fluctuations is possible. In keeping with our assum
tion that the independent variables are the mass density
locity and temperature of the fluid, we define the fluctuatio
as linear deviations from the flow, that is,

r~r ,t !5r0~r ,t !1dr~r ,t !, ~20!

and analogous expressions forv(r ,t) andT(r ,t). The func-
tions r0(r ,t), v0(r ,t) and T0(r ,t) constitute a given flow,
solution to the full nonlinear integral equations~10!–~12!,
with the expressions~15! and ~18!. Now, using expression
such as Eq.~20!, we can linearize the integral equations
the fluctuations; for instance, the continuity equation for
fluctuations@cf. Eq. ~10!# becomes
uc

n

tte
th
-
o

al

n

-
e-
s

e

]dr~r !

]t
52E dr 8W~ ur2r 8u;r 0!

~r2r 8!

ur2r 8u
@r0~r 8!dv~r !

1dr~r 8!v0~r !1r0~r !dv~r 8!1dr~r !v0~r 8!#

~21!

and similar linear equations for the~partial! time derivatives
of momentum density and energy,dj andde. Next one iden-
tifies the source of the fluctuations as arising from sponta
ous fluctuations of the stress tensor and the heat current.
is implemented in the usual way@14#, by adding, to thelin-
earizedequations for the fluctuations of the momentum a
energy densities, terms proportional to the divergence o
random stress tensor and to the divergence of a random
current, respectively.

To be precise, we add to the equation for the fluctuat
of the momentum density,

E dr 8W~ ur2r 8u;r 0!
~r2r 8!

ur2r 8u
•P̃R~r ,r 8,t !, ~22!

where the tensorP̃R(r ,r 8,t) is a Gaussian random stochas
function, symmetric under interchange ofr andr 8, with zero
mean and with its second moment obeying the us
fluctuation-dissipation relations,
^Pab
R ~r1 ,r2 ,t !Pgn

R ~r3 ,r4 ,t8!&52k$@T0~r1!h0~r2!1T0~r2!h0~r1!#~dagdbn1dandbg!

1k@T0~r1!„z0~r2!2 2
3 h0~r2!…1T0~r2!„z0~r1!2 2

3 h0~r1!…#dabdgn%d

3~ t2t8!$d~r12r3!d~r22r4!1d~r12r4!d~r22r3!%. ~23!
de
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In the same fashion, we add to the equation for the fl
tuation of the energy density,

E dr 8W~ ur2r 8u;r 0!
~r2r 8!

ur2r 8u
•JR~r ,r 8,t !, ~24!

whereJR(r ,r 8,t) is a Gaussian random stochastic functio
symmetric under interchange ofr and r 8, with zero mean
and with second moment

^Ja
R~r1 ,r2 ,t !Jb

R~r3 ,r4 ,t8!&

52k„T0
2~r1!k0~r2!1T0

2~r2!k0~r1!…dabd~ t2t8!

3@d~r12r3!d~r22r4!1d~r12r4!d~r22r3!#.

~25!

We recall that the quantitiesdr(r ,t), d j (r ,t), etc., depend
on those of the underlying flow,r0(r ,t), j0(r ,t), etc., but not
the other way around. That is, one first solves for the la
and then one finds the fluctuations. It is understood that
flow is stable; that is, one should always havedr/r0!1, etc.
-

,

r
e

In Sec. III we shall also comment upon how one can inclu
the fluctuations within a particlelike simulation.

III. A DISCRETIZED INTEGRAL HYDRODYNAMICS

The integral formulation presented in Sec. II is simply
approximate representation of the usual hydrodynamic la
Its usefulness resides on whether its solution may be easi
find than that of the actual equations or on its amenability
approximations. In this regard, we recall the approxim
SPH and DPD schemes, where a particlelike simulati
similar to a molecular dynamics simulation, represents
flow of a continuum fluid. In this section we present a pa
ticular discretization of the integral equations of Sec. II th
may be used as the basis for a simulation in terms of ‘‘flu
particles.’’

A. A particlelike scheme

The basic idea is first to divide space in cells of finite s
DV and, then, to define the field variables for each cell. W
call r i the position vector of thei th cell, and the following
list summarizes the variables for such a cell:
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r~r ,t !DV→mi~ t ! mass,

j ~r ,t !DV→pi~ t ! momentum,
~26!

e~r ,t !DV→e i~ t ! energy,

v~r ,t !DV→vi~ t ! velocity.

Now the kernels of pressure and viscous stress bec
‘‘potentials’’ of force between thei th andj th cells, while the
heat density current is now a ‘‘current’’ of energy betwe
such cells:

P~r ;r 8;t !DV→Pi j ~ t ! pressure potential,

Pab~r ;r 8;t !DV→p i j
ab~ t ! stress potential,

~27!

Jq
a~r ;r 8;t !DV→J i j

a~ t ! heat current.

The integrals are then discretized by summing over c
directly and not over labels that localize the cell in a Car
sian grid; that is,

E dr→(
i

N

DV, ~28!

where we have assumed there areN cells in the total volume.
This discretization implies a careful choice of the discretiz
version of the weight functionW(ur2r 8u). That is, we can-
not simply changer by r i andr 8 by r j in the functional form
of W, since the equations for the moments@Eq. ~2!# would
not be correct. This is due to the fact that those results m
use of the spherical symmetry ofW. Instead, we propose th
following discretization that gives rise to the correct m
ments:

W~ ur2r 8u!DV→W~r i j ![4pr i j
2 ~DV!1/3W~r i j !. ~29!

where we have definedr i j 5ur i2r j u. This form also takes
into account thatW is always part of an integrand. As
particular example, using as a representation of ad function,

d~r !5 limr 0→0

1

r 0
e2r /r 0, ~30!

yields, forW(r ),

W~r !5
1

4pr 0
4 F2S r 0

r D 3

1S r 0

r D 2Ge2r /r 0 ~31!

and, correspondingly, forW(r i j ),

W~r i j !5
~DV!1/3

r 0
2 F2S r 0

r i j
D11Ge2r i j /r 0, ~32!

which shows that, in discretized form, all the moments
the zeroth are well defined.

With the above reformulation, and defining

êi j 5
~r i2r j !

ur i2r j u
, ~33!
e

ls
-

d

ke

t

the conservation equations look as follows. The conserva
of mass is

]mi

]t
5(

j
W~r i j !êi j •@mivj1mjvi #. ~34!

The conservation of momentum is

]pi
a

]t
5(

j
W~r i j !ei j

b$~pi
av j

b1pj
av i

b!1dab~Pi j 1Pj i !

2~p i j
ab1p j i

ab!%. ~35!

The conservation of energy is

]e i

]t
5(

j
W~r i j !êi j $~e ivj1e jvi !1~Pi j vi1Pj i vj !

2~p̃ i j •vi1p̃ j i •vj !1~Ji j 1Jj i !%. ~36!

By construction, the total mass, total momentum, and
tal energy are conserved. This can be seen by summing
above expressions overi 51,2,. . . ,N.

So far, the equations are quite general, and one ne
constitutive relations for the kernels of pressure, visco
stress, and heat current. For instance, the viscous stress
sor linear in the velocity gradients may be found by d
cretizing Eq.~16!,

p i j
ab52h i(

k
W~r jk!@ejk

a vk
b1ejk

b vk
a2 2

3 dabejk
n vk

n#

2z id
ab(

k
W~r jk!ejk

n vk
n ~37!

while the heat current may be found from Eq.~18!

Ji j 5k i(
k
W~r jk!êjkTk . ~38!

One should keep in mind that in order to close the equati
one still needs the equations of state for the pressurePi j
5P(mi ,Tj ) and the internal energy per particleui j
5u(mi ,Tj ).

Up to here there has been simply a discretization of
equations. The interesting addition now@4,5,7# is to assume
that the positionsr i of the cells become the positions o
particles that are allowedto move. This is certainly a bold
assumption, since making the fluid particles move should
done in a Lagrangian formulation of the fluid dynami
rather than in an Eulerian one. The present is a different t
of particle, however, since, as we can see from the ab
equations, the particles not only change their momenta
also have variable mass and carry with them their inter
energy in addition to their kinetic one. Nevertheless, o
may justify this by arguing that one is actually looking
every instant of time to a state of the fluid not on a grid b
rather on a ‘‘fluidized grid’’; the motion law ofr i is used as
an updating of the state of the fluid on such a grid. In a
case one can assess the validity of such an assumptia
posteriori; as we mentioned in Sec. I, successful simulatio
of actual flows with schemes like the present one have b
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reported; see Refs.@6, 8–12#. Although the choice of the law
of motion is arbitrary, it seems ‘‘natural’’ to consider the ra
of change of the position of the cell as the velocity of t
fluid at that point:

dr i~ t !

dt
5vi~ t !. ~39!

We point out that this choice is not unique; see Ref.@5# for
other forms used in SPH simulations.

In principle the above scheme is complete and clos
However, for an actual implementation of a simulation bas
on it there are further questions to resolve, such as boun
conditions in terms of the particles and the discretization
time. Since in the literature there is already a host of pro
dures@9,19# both for dealing with boundary conditions be
tween particles and solid frontiers and for the time discr
zation, we shall only discuss the latter because of
relevance in the inclusion of hydrodynamic fluctuations.

A simple algorithm to simulate the dynamics consists o
two-step propagation in time@7#. First, there is a ‘‘collision’’
step in which one finds the values ofmi , pi andei at time
t1Dt from the knowledge of all the variables at timet, using
Eqs.~34!–~36!, with

]Ai~ t !

]t
'

Ai~ t1Dt !2Ai~ t !

Dt
. ~40!

This is then followed by a ‘‘propagation’’ step in which th
positionsr i(t1Dt) are computed using

r i~ t1Dt !'r i~ t !1Dtvi~ t1Dt !. ~41!

This combination is more accurate than if both steps w
done with Eq.~40! @16#. This algorithm, however, is also
useful to include the fluctuations as part of the evolution a
not as ana posteriori calculation, thus being helpful in de
termining the stability of the flow. This is an important poi
since the purpose of the simulations is to solve the equat
by an actual propagation in time of the flow.~An analytical
solution need not be done in this way; for instance, if t
equations are linearized one may solve them using an i
gral transform technique.! Thus one can include in the equ
tions for the momentum and the energy@Eqs.~35! and~36!#,
discretized versions of the random viscous tensorp̃ i j

R , and
random heat currentJ i j

R , both symmetric ini j . Since their
second moments must obey discretized versions of
fluctuation-dissipation expressions~23! and ~25!, these ten-
sors may be added as

p i j
Rab~ t !5„2kTi~ t !h j~ t !12kTj~ t !h i~ t !…1/2DXi j

ab~ t !

1„kTi~ t !z j~ t !1kTj~ t !z i~ t !…1/2DYi j
ab~ t !,

~42!

J i j
Ra~ t !5„kTi~ t !k j~ t !1kTj~ t !k i~ t !…1/2DZi j

a~ t !
~43!
d.
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whereDXi j
ab(t), DYi j

ab(t) andDZi j
a (t), symmetric ini j , rep-

resent independent random increments~Wienner processes
@17#! with zero mean and correlations

^DXi j
ab~ t !DXlm

gn~ t8!&5~dagdbn1dandbg2 2
3 dabdgn!

3~d i l d jm1d imd j l !d tt8 ,

^DYi j
ab~ t !DYlm

gn~ t8!&5dabdgn~d i l d jm1d imd j l !d tt8 ,
~44!

^DZi j
a~ t !DZlm

b ~ t !&5dab~d i l d jm1d imd j l !d tt8 ,

From a practical point of view, any good commercial pse
dorandom number generator suffices for these increme
The important aspect we want to stress is that, in contras
the continuum version@Eqs. ~23! and ~25!#, here the tem-
perature, viscosities, and thermal conductivity that appea
Eqs.~42! and ~43! are evaluated at the current values of t
full fluctuating quantities and not at the values of the va
ables of the underlying flow. Since it is assumed that
fluctuations are always small and do not make the flow
stable, this is a minor approximation. Moreover, as me
tioned above, if the flow does become unstable by adding
random viscous tensor and heat current, that may imply,
ring numerical inaccuracies, that either the flow is inde
unstable or that the method itself does not faithfully descr
the flow.

It should be clearly understood that the particlelike rep
sentation of a continuum fluid flow depends on two differe
approximations; first, one approximates the true differen
laws by integral expressions with a finite widthr 0 of the
weight function; and second, the integrals are discretiz
These approximations pose constraints on the length sc
of the fluid. On the one hand, the density of point partic
must be such that the mean particle separation (DV)1/3 is
smaller thanr 0 in order to have a good approximation of th
integrals. On the other hand, a typical hydrodynami
length, call itl, must be larger thanr 0 itself in order to have
a good representation of the gradients in terms of the in
grals@i.e., an independence of the parameterr 0 ; see Eq.~6!#.
That is, one should always have

~DV!1/3,r 0,l. ~45!

This way, the limitr 0→0 implies not only the equality of the
integral and differential forms of the conservation laws, b
also the continuum limit itself.

B. SPH and DPD as special cases

The purpose of this section is not to make a revision
SPH and DPD schemes, nor compare them with the pre
one, but rather, to show that they may be viewed as spe
cases of a more general scheme that reduces to the m
scopic conservation laws of fluids. As we have seen,
discretized conservation equations~34!–~36! are very gen-
eral. One still needs to provide constitutive relations for t
pressure, viscous tensor, and heat current and, as lon
i j -symmetrized forms are provided, the conservation la
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are guaranteed. The particular expressions given in
III A, such as Eqs.~37! and ~38! are just examples. But be
fore we present other forms used, such as those of DPD
SPH, we want to mention some aspects of the time der
tives used.

In the schemes used in SPH and DPD, the time der
tives of the properties of the particles have been interpre
as already including the convective contribution. In the d
cretized version, this is equivalent to identifying

dmi

dt
5

]mi

]t
2(

j
W~r i j !êi j •vimj , ~46!

dpi
a

dt
5

]pi
a

]t
2(

j
W~r i j !êi j •vi pj

a , ~47!

de i

dt
5

]e i

]t
2(

j
W~r i j !êi j •vie j . ~48!

This is a subtle point: One the one hand, one could argue
the total derivative follows the motion of the fluid particle, a
in a Lagrangian formulation. However, the right-hand side
the corresponding conservation laws~34!–~36! should be ac-
cordingly transformed. Since the transformation to a L
grangian formulation is not done in SPH and DPD, one m
still say that those formulations correspond to not too la
Reynolds numbers where the convective contributions
Eqs. ~46!–~48! may be neglected. It may be interesting
include those terms explicitly in a simulation.

With the above identification of the time derivatives, w
can now see a closer resemblance to the equations of
and DPD. For the purpose of exemplifying the relations
between the present treatment and those of SPH and S
we shall only discuss the equation for the momentum. Us
the mass conservation equation and the fact thatpi

a

5miv i
a , the equation for the momentum can be written a

mi

dv i
a

dt
5(

j
W~r i j !ei j

b$dab~Pi j 1Pj i !2~p i j
ab1p j i

ab!%.

~49!

In Refs. @4,5,8#, SPH is formulated with forms for the
pressure such as

Pi j 1Pj i 5
Pi

mi
amj

b 1
Pj

mj
ami

b , ~50!

with a andb constants and with a given equation of state
Pi in terms ofmi @18#.

The viscous stress tensor of SPH and DPD may be g
erally written

p i j
ab1p j i

ab5A~r i j !ei j
a~v i

b2v j
b!1B~r i j !ei j

b~v i
a2v j

a!
~51!

with appropriate choices ofA andB @7,9–12#. It is interest-
ing to note that this form can give rise, in the continuu
limit r 0→0, to terms proportional to“2v and “(“•v);
c.
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however, one cannot independently identify the correspo
ing viscosity coefficients. This is to be contrasted with t
expression of the tensor given by Eq.~37!, where there is an
independenta priori identification of the viscosities.

In the DPD simulations there is an additional ingredie
That is, the pressure term is taken to be stochastic. Wi
the present scheme this may be interpreted as including
drodynamic fluctuations with white noise, with particul
temperature and viscosity as given by Eq.~42!. In this regard
we differ from the interpretation of DPD equations given
Refs. @11# and @12#. In that interpretation, the equations o
DPD are taken as the ‘‘microscopic’’ dynamics of the pa
ticles of a fluid, from which the macroscopic laws are to
extracted, much in the spirit of Langevin and Boltzma
equations. Within that interpretation they argued that the r
dom part should be modified in order to account for t
correct fluctuation-dissipation relation of Langevin-lik
equations. According to the present theory we can say
DPD is only a particular choice of the viscous terms, and t
the random contributions already refer to hydrodynamic fl
tuations. Moreover, if one wishes to find the correspond
Fokker-Planck equations to the discretized hydrodyna
equations~34!–~36! one can follow the theory of Ref.@15# of
nonlinear hydrodynamic fluctuations.

IV. FINAL REMARKS

In this paper we have presented an integral form of
conservation laws of a macroscopic classical fluid in terms
an interpolant for the gradient of a given function of spa
This form is amenable to a discretization of space, and m
be interpreted in terms of the dynamics of ‘‘fluid particles
To complete this discretized dynamics one must provide
law of motion of the position of the particles; one may pr
scribe that the field velocity equals the rate of change of
position of the particle. Within this scheme one can eas
find the corresponding Navier-Stokes equations of visc
flow and the Fourier law of heat conduction. Moreover, h
drodynamic fluctuations can also be readily taken into
count.

We have argued that numerical simulations curren
used, known as smoothed particle hydrodynamics~SPH!
@4,5# or smoothed particle applied dynamics@6#, and dissipa-
tive particle dynamics~DPD! @7#, and which are based on
particlelike simulation of a continuum fluid, may be seen
special cases of the general formalism presented here. In
way, on the one hand, one guarantees that the simulat
have a correct continuum limit, and, on the other hand, t
there appears a clear route of how to represent, in the par
dynamics, known effects of macroscopic fluids. For instan
with the present theory one can see how to include ther
effects, absent in DPD simulations.

Finally, we want to stress the potential uses of this type
scheme. It does seem that a complication in any simula
of fluids is the discretization of space with its concomita
difficulties of boundary conditions; this is more important
one is interested in rheological fluids, such as suspensi
That is, in order to simulate a simple flow a discretizeddif-
ferential scheme~e.g., finite differences! may appear to be
better than a discretized integral version; this is because
latter makes use of the weight function, which in turn mu
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resemble ad function, and therefore it appears that one ne
more ‘‘particles’’ than points in a grid@6#; cf. Eq.~45!. How-
ever, having paid this price, there is a host of ‘‘tricks’’ an
techniques, borrowed from standard molecular dynam
that can be used to simulate moving boundaries and s
objects, e.g., Lee and Edwards shear boundaries@19#,
‘‘freezing’’ a certain number of particles to simulate a rig
body @7#, and so on.
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