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Abstract

This manuscript introduces a software tool that allows for the design of synthetic experiments in machine olfaction. The proposed
software package includes both, a virtual sensor array that reproduces the diversity and response of a polymer array and tools for
data generation. The synthetic array of sensors allows for the generation of chemosensor data with a variety of characteristics:
unlimited number of sensors, support of multicomponent gas mixtures and full parametric control of the noise in the system. The
artificial sensor array is inspired from a reference database of seventeen polymeric sensors with concentration profiles for three
analytes. The main features in the sensor data, like sensitivity, diversity, drift and sensor noise, are captured by a set of models
under simplified assumptions. The generator of sensor signals can be used in applications related to educational tools, neuromorphic
simulations in machine olfaction, and test and benchmarking of signal processing methods. The tool is implemented in R language
and can be freely accessed.

Key words: Gas Sensor Array, Conducting Polymers, Electronic Nose, Sensor Simulation, Synthetic Dataset, Benchmark,
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1. Introduction

Instrumentation for machine olfaction traditionally com-
prises an array of broadly-tuned chemical sensors targeted to
quantify or recognize complex odour gas mixtures [24, 26, 30].
Measurements of sensor data require an elaborate design set up,
development of specific hardware and software, and weeks or
months for data collection. A virtual sensor array, as a data gen-
eration tool, might help on several aspects on machine olfaction
research: experimental design, prototyping of signal process-
ing prototyping, prototyping and research of neuromorphic and
neuroinspired processing, algorithm benchmarking or simply
serve as an educational tool.

Unfortunately, simulations are not widely used in gas sen-
sor data processing, although few examples can be found in
the literature. Time response of virtual semiconductor gas sen-
sors were modeled with a second-order system by Ishida et al.,
and simulation results suggested an optimized design of sen-
sor array for odour source localization in a wind tunnel envi-
ronment [16]. To validate methods on dynamic feature extrac-
tion, artificial signals containing exponential decays were used
by Gutierrez-Osuna et al. in simulation of sensor transient re-
sponses [15]. Short-time measurements were completed by
linearly simulated long-term drift data, in order to test the ro-
bustness of self-organizing maps for gas identification proposed
by Marco et al. [19]. Most recent works produced more so-
phisticated simulated data for validation of signal processing
methods. Montoliu et al. simulated eleven thermally modulated
metal-oxide sensors following a dynamic Clifford-Tuma model,

which allowed preliminary tests on quantification of a simu-
lated ternary mixture, prior to the experiment with real gas mix-
tures [7, 8, 21]. Geng et al. validated multivariate calibration
methods entirely on simulated data obtained from the model
of Lei et al. for conducting polymer sensors, which permitted
to explore the developed methods under linear and non-linear
sensor arrays [12, 17].

Contrary to application-specific simulations with particular
datasets, some machine olfaction problems such as drift com-
pensation require standard datasets or benchmarks to evaluate
and score different algorithms. This demand for benchmark-
ing has been already mentioned by Gutierrez-Osuna [14], but
a public machine olfaction dataset repository, similar to UCI
Machine Learning Repository [2], is still missing to the best
knowledge of the authors.

Modeling of a virtual sensor array for synthetic data genera-
tion implies a simulation of an individual sensor device and its
response characteristics to some extent of detail. The transduc-
tion phenomena on polymer sensors is based on several conduc-
tive and thermodynamic properties of the polymers [6, 32, 33],
and the underlying process unlikely can be explained by only
one major mechanism. Hence, the sensor models published
in the literature can be divided into groups according to the
transduction mechanism involved. The governing phenomenon
in signal transduction for the carbon-black polymer composite
sensors is assumed to be polymer swelling in the presence of
the analyte [9, 12, 17]. The polymer sensors targeted to de-
tect volatile organic chemicals have been modeled based on
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volatility driven partition of the analyte molecules into the poly-
mer composite [27]. For polymeric sensors with the adsorption
driven comportment, the analytes are not reactive with conduct-
ing polymers under normal conditions, instead, the analytes
molecules are adsorbed on the polymer surface. Topart and
Josowicz hinted analyte sorption as the driving force of analyte-
polymer interaction for the polypyrrole sensors in exposure to
methanol vapor [33]. The adsorption-based models supplement
the Langmuir equation of sorption kinetics with the diffusion
equation of mass-charge transport in the polymer [10, 18, 31].

The models for conducting polymer sensors mentioned
above are not truly targeted towards simulation experiments
with a chemical sensor array. Instead, the main use of these
models is the characterization of the polymer material and sen-
sor geometry in terms of their sensitivity to target analytes.
Most of the models are limited to single analyte experiments
without support of mixtures, which in turn, essentially restricts
their use on synthetic experiments. Few works have proposed
the modeling of a sensor array for simulations. Gardner et al. in-
troduced a PSPICE model that emulates resistive gas sensors,
where the strategy of modeling is based on behavioral descrip-
tion, rather than analytical solutions [11]. The effects of multi-
component gas mixtures and operating temperature can be em-
ulated in these synthetic simulations. Recently, the model by
Lei et al. was used to produce simulated data for validation of
multivariate calibration of sensor arrays under noise-free con-
ditions [12, 17].

To approach the simulation of a virtual array of sensors, sen-
sor calibration is not a sufficient procedure to gain realistic sen-
sor signals. Sensor measurements inevitably contain noise ar-
tifacts originated from instability in particular sensor devices,
variation of the ambient conditions and the sampling system
and other physical and chemical processes involved. The long-
term part of noise variation common to all the sensors is re-
garded as the drift phenomena, and represents one of the most
strong noise sources in the sensor array data. A multivari-
ate approach to estimate sensor array drift was first introduced
by Artursson. Based on the observation that sensors tend to
drift in similar manner Artursson and colleagues hypothesized
that drift has one preferred direction in sensor space, as clearly
shown in the score plot of a principal component analysis [1].
Existing multivariate methods on modeling of the drift subspace
include principal component analysis of the reference gas [1],
component deflation [13], component orthogonalization [22]
and common principal component analysis [36]. These meth-
ods share the common technique of component correction for
drift compensation introduced by Artursson, which in turn will
be used inversely in this paper for drift injection in the sensor ar-
ray data. Such multivariate approach differs from the published
drift models, where the drift was induced individually for each
sensor [19].

In this paper, we present a software tool for emulation of a
virtual sensor array that features an arbitrary number of sen-
sors, supports an arbitrary gas mixture of up to three analytes,
and grants full parametric control on the noise in the sensors, in-
cluding modeling of a non-trivial drift behavior. The virtual ar-
ray is inspired from a real array of seventeen polymeric sensors,
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Figure 1: Example of sensor signals from UNIMAN database. Plot (a) shows
waveforms of seventeen sensors from a single measurement of analyte C (n-
buthanol 1 vol.%). Plots (b-d) represent seventeen sensors in the affinity space
of three analytes A, B and C. The steady-state response to one analyte is plotted
versus the response to another analyte. Ellipses depict sensor signals averaged
over short-term UNIMAN dataset of two hundred samples in response to the
three analytes at maximum concentrations.

and substantially captures its main characteristics by a group of
heuristic models developed within this paper.

The rest of the manuscript is organized as follows. Section 2
describes the reference sensor array database and the developed
methods to simulate the virtual sensor array. Section 3 presents
some examples of synthetic experiments, and Section 4 reports
with concluding remarks.

2. Models and Methods

2.1. Reference Dataset

Label Gas Concentration Samples
1 A0.01 ammonia 0.01 vol.% 489
2 A0.02 ammonia 0.02 vol.% 487
3 A0.05 ammonia 0.05 vol.% 476
4 B0.01 propanoic acid 0.01 vol.% 488
5 B0.02 propanoic acid 0.02 vol.% 490
6 B0.05 propanoic acid 0.05 vol.% 487
7 C0.1 n-buthanol 0.1 vol.% 505
8 C1 n-buthanol 1 vol.% 503

Table 1: Gas classes in UNIMAN database.

The reference dataset has been measured at The Univer-
sity of Manchester (UNIMAN, UK). Three analytes ammo-
nia, propanoic acid and n-buthanol, at different concentration
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levels, were measured for 10 months with an array of sev-
enteen conducting polymer sensors. The sensors were made
of polypyrrole-based films, and each element in the array had
different chemical selectivity characteristics. The collected
records counted for 3925 samples evenly distributed over 8 an-
alyte classes, as summarized in Table 1. The single waveform
from an individual sensor has a length of 329s, acquired at 1Hz,
and represents the response to a rectangular gas pulse where an
analyte is introduced in the sensor chamber from 0s to 180s.
Air is introduced next in a cleaning phase following 180 sec-
onds of quasi-stabilization time. Figure 1 (XXX) (a) shows an
example of the transient waveforms of seventeen sensors from
a single measurement of n-buthanol at 1 vol. %. The complete
data matrix from the UNIMAN sensor array has dimensionality
3925 × 329 × 17.

In application to sensor array data modeling, the UNIMAN
database experimental design included long-term concentration
profiles of three pure analytes, which allowed to track changes
of the sensitivity and selectivity performance in the presence of
noise at different time-scale and analyte-dependent levels. The
data had co-linearity typical for gas sensors, revealed multi-
modality underlying the class information, and contained a
large amount of noise-related spread even for day-to-day mea-
surements. Figure 1 (b-d)XXXX shows the performance of
UNIMAN sensor array in terms of selectivity by representing
the sensors in the affinity space of the three analytes [25]. The
plots underline the co-linearity nature of the sensor array and
indicate some difficulties in separability of analytes A and C, in
comparison with the other analyte pairs. For further details, the
reader can address to a number of works applied to the dataset
for different machine olfaction problems, for example, fault di-
agnosis [23] and drift compensation [22, 36]. In this work, the
UNIMAN database is used to estimate parameters of the mod-
els designed to simulate a virtual sensor array.

In process of modeling of the array we make the distinction
between short-term (STD) and long-term reference data (LTD).
Two hundred samples from the first 6 days are used to charac-
terize the array assuming the absence of drift. The long-term
reference data counts for the complete number of samples cov-
ering a 10 month time-span. A pre-processing procedure on
outliers removal was applied to the long-term reference data.
The standard method based on the squared Mahalanobis dis-
tance was used with quantile equal to 0.975%.

2.2. Simulation models
Figure 1 XXXX presents a block scheme of the virtual sen-

sor array. The input concentration matrix C0 of three columns
(three analytes, corresponding to analyte A, B and C) encodes
the profile of gas mixture exposed to the array over time. Two
basic blocks, Sorption Model and Calibration Model, emulate
the response of sensors in the array over time. The output raw
data matrix X has a number of columns equal to the number of
sensors and a number of rows equal to the length of the simu-
lation. Three blocks at the bottom line of the scheme introduce
the noise affecting the array at different levels of its workflow.

The Sorption and Calibration Models have different roles in
the simulation flow. The Sorption Model controls the amount
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Figure 2: The block scheme shows the basic simulation models and underlines
the workflow on data synthesis, from the concentration matrix C0 to the sensor
array data X.

of gas absorbed by the sensor following the Langmuir relation,
which also emulates the intrinsic non-linearity nature of the
polymeric sensors. The Calibration Model regulates the rela-
tionship between this amount of the absorbed gas and the out-
put sensor signal. Both Sorption and Calibration Models utilize
STD reference data.

2.2.1. Sorption Model
The Sorption Model is based on the extended Langmuir

isotherm for a multi-component gas mixture [20] given in Equa-
tion 1.

ci =
qi ki c0i

1 +
∑N

j=1 k j c0 j
, i, j = 1, 2, ...,N (1)

where c0i is the concentration in air of analyte i in the mixture,
and ci is its concentration in the adsorbed form. The isotherm
has two parameters per analyte, qi denotes the sorption capacity
and ki stands for the sorption affinity of the analyte i. Indeed,
the isotherm extends the Langmuir isotherm for a single gas
under a simplified assumption that molecules of the analytes in
mixture do not interact with each other. Such property allows
us to describe the adsorption process in the gas mixture explic-
itly by computing a single-adsorption Langmuir isotherm per
analyte.

Hence, three pairs of parameters qi and ki for the seventeen
UNIMAN sensors are estimated independently for three ana-
lytes A, B and C by rewriting the equation 1 for one component
(N = 1). Given that x is the sensor signal and c0 is the ana-
lyte concentration, we estimate the parameters of the Langmuir
isotherm by fitting a linear model 1/x ∼ 1/c0. The resulting
coefficients of determination R2 of the models are not below
than 0.973 for analyte C, and slightly worse for analytes A and
B giving a minimum value 0.779. Comparison of the obtained
affinity terms for the seventeen UNIMAN sensors gives an in-
sight into the sensor responses to a mixture of analytes, in terms
of the Langmuir isotherm abstraction. The affinity numbers in-
dicate that both analytes A and C dominates over the analyte
B in mixture for all the sensors, and most of the sensors show
substantially greater affinity to the analyte C than A. This ob-
servation along the UNIMAN sensors will be also observed for
simulated arrays described in the next Section 3.

In practice, the assumption posed by the extended Langmuir
isotherm about the component independence in mixture is valid
at low concentrations. However, the deviation from the Lang-
muir proportion is critical for a detailed physical sensor model,
which can be accepted in our modeling aimed to emulate the
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complexity and non-linearity in the sensor behavior. One of the
benefits of using the Langmuir relation is its flexibility to exten-
sion, widely studied in the gas separation discipline [3–5, 35].

2.2.2. Calibration Model
The Calibration Model is composed of two consecutive parts.

First, a static model derives the steady-state signal from the con-
centration of the adsorbed analyte. Second, a dynamic model
proceeds to the transient signal from the value of the steady-
state. Equations 2 and 3 define the static model.

xss =

N∑
i=1

xss,i =

N∑
i=1

fi(ci) (2)

where xss is the steady-state sensor signal in response to a N-
component mixture with analyte concentrations ci. The model
explicitly assumes that the response xss to a mixture of analytes
is a sum of responses to the individual analyte components xss,i.

A function f (·) specifies the law of sensor sensitivity to the
analytes.

fi(ci) =

M∑
k=1

βi,k Bk(ci), i = 1, 2, ...,N (3)

where the concentration range can be divided into M regions,
and coefficients βi,k stands for the sensitivity coefficients to an-
alyte i at the concentration level k. Such implementation rep-
resents a broken stick regression at M concentration intervals
with base functions B(·).

The simplest case of linear relationship between sensor sig-
nal and analyte concentration is achieved if M is equal to 1 and
B(·) is the identity function. The non-linear implementation of
the function f (·) is based on spline base functions B(·). The
use of the non-linear calibration model is reasonable when the
sorption model is disabled. In this case, the function f (·) is an
abstraction that can fit an arbitrary non-linear law of sensor sen-
sitivity. Such approach of pure modeling includes a number of
benefits. Monotonicity of the sensitivity curve can be guaran-
teed by use of the integrated version of B-splines (I-splines),
due to the monotonic nature of these base functions. To sim-
ulate the saturation behavior of the sensor at high concentra-
tions of analyte i, it is sufficient to set up the last coefficient
βi,M to zero. On the other side, fixing the first coefficient βi,1 to
zero makes the sensor not responding to analyte i at very low
concentration levels. Both implementations of the calibration
model, ordinary linear regression and spline-based regression,
are available in the released software tool.

The monotone spline regression [29] is formulated as a least-
squares optimization problem as pointed in Equation 4.

min
f
{ [xss,i − fi(ci)]2 + λ

∫
[ f ′′(ci)]2dci] } (4)

where the second term in the sum is a smoothing penalty ex-
pression for the second derivative f ′′(ci), and parameter λ con-
trols the level of smoothing. The quadratic programming ap-
proach is used to control the non-negativity of the coefficients
βi,k to assure the curve monotonicity.

Finally, the dynamic part of the Calibration Model to emulate
the transient behavior of sensor is given in Equation 5.

x(t) = AR(P , τi,p| xss), p = 1, 2, ..., P (5)

where AR stands for a auto-regressive filter of the order P. This
simulates the transient sensor response x(t) based on the steady-
state value xss, previously derived from the equations 1 and 2.
Such approach allows to produce an arbitrary signal waveform,
not only a response to the rectangular gas pulse, parametrized
with P time constants τi,p per analyte.

Overall, the group of the Equations 1, 2 and 5 define the de-
sign of noise-free sensor array data, where the set of parameters
controls the creation of a synthetic sensor instance. We espe-
cially treat the parameters ki to code an abstract sensor type
expressing such sensor properties, as selectivity to analytes and
sorption affinity in mixtures, that are mostly related to char-
acteristics of the polymer composite. The other parameters,
sensitivity coefficients βi,k and time constants τi,p, are assumed
to contain more variability along sensor instances, caused by
many factors in the sensor design, for example, the geometry of
the device. The sorption capacity qi is set to 1 for all the sensor
instances, because the coefficients βi,k play the same role.

When the user creates an array of arbitrary number of sen-
sors, a new sensor instance is derived by varying the model
parameters pre-computed for the seventeen UNIMAN sensors.
Parameters βi,k and τi,p are generated from an univariate uni-
form distribution with control for non-negative values and the
level of spread, while parameters ki are copied from the seven-
teen UNIMAN sorption profiles, this preserving the number of
sensor types.

2.3. Noise models

Three noise models introduced in the Figure 1 XXX repre-
sent three types of noise injected into the sensor array data.
We referred these types of noise as additive, multiplicative
and common, which correspond to Concentration Noise Model,
Sensor Noise Model and Drift Model, respectively. The imple-
mentation details will be given later on, but, jointly for all the
models these noise parameters are generated with multivariate
normal distribution of independent variables with diagonal co-
variance Σ-matrices and zero mean.

2.3.1. Concentration Noise Model
The Concentration Noise Models emulate perturbations in

the analyte delivery system. Equation 6 defines the noise term
∆C0 induced into the input matrix C0 of analyte concentrations
in air.

∆C0 = NΣc log(1 + C0) (6)

whereNΣc is the normally distributed noise with zero-mean and
diagonal covariance matrix Σc for three analytes. The diagonal
structure of the covariance matrix implies that the concentra-
tion noises of analytes do not affect each other. The logarithm
term expresses an additional scaling of the amplitude applied to
simulate more noise on high levels of concentration.
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2.3.2. Sensor Noise Model
The Sensor Noise Model simulates a degradation in the per-

formance of an individual sensor by injecting noise in the sen-
sitivity coefficients βi,k from the Equation 4. Equation 7 defines
a noise term ∆βi,k induced into the coefficient βi,k for analyte i
at the concentration interval k.

∆βi,k = Rn, σi,k (7)

where Rn,σi,k is an one-dimensional random walk of n steps
based on the normal distribution with zero-mean and standard
deviation σi,k. The length of the output noise vector is equal to
n, and its root mean square is proportional to

√
n. The other

parameter of random walk σi,k controls the noise amplitude in-
dividually for each coefficient βi,k. The LTD set is used to com-
pute the standard deviation statistics for the sensitivity coeffi-
cients derived from the Equation 4, which gives an estimation
of the parameters σi,k.

2.3.3. Drift Model
The Drift Model generates the drift noise in two steps. A pre-

liminary step involves quantification of drift-related data pre-
sented in the LTD set. In the next step the noise is injected into
the sensor array signals by means of the component correction
technique. The primary question arising in drift modeling is
related to the way of one defines the drift phenomena for gas
sensor arrays. In this work we rely on our previous study of
a drift compensation method, where the multivariate represen-
tation of the UNIMAN dataset suggests that the data contain a
drift-related subspace P [36]. The subspace was evaluated via
common principal component analysis.

The hypothesis of common principal component analysis Hc

states that exists an orthogonal matrix V such that the covari-
ance matrices of K groups have the diagonal form simultane-
ously, as formulated in Equation 9.

Hc : Li = VT Σi V, i = 1, 2, ...,K (8)

where Σi is covariance matrix of group i, and Li is its diag-
onalized form when the linear transformation with matrix V
is applied. The resulting eigenvectors (columns of the matrix
V) define the subspace common for the groups, and the eigen-
values (different for each class) assist to evaluate the statistical
significance of the estimator. In practice, the common hypoth-
esis Hc is not feasible, because the exact solution exists only in
the case the covariance matrices commute. To find an approx-
imate solution, we employ a new algorithm recently published
by Trendafilov [34]. The algorithm imitates standard princi-
pal component analysis iteratively via the well-known power
method. The advantage of the new method is its computational
efficiency and the availability of score-values for the common
eigenvectors in terms of the captured variance. As a result of
common principal component analysis, the drift subspace P
contains the few columns of the matrix V .

The Drift Model generates the noise just in the multivariate
subspace defined by P, as pointed in Equation 9.

∆XP = Rn,Σd (9)

where Rn,Σd is a multi-dimensional random walk of n steps
based on the multivariate normal distribution with zero-mean
and diagonal covariance matrix Σd. The relative proportion
along the diagonal elements in Σd is specified by the impor-
tance of drift components in terms of projected variance. For
the LTD set first three components captures the data variance in
percentage as 86.23% 7.25% and 3.26%.

Finally, equation 10 shows the component correction opera-
tion that allows to induce the generated noise ∆XP back into the
complete multivariate space of the sensor array data.

∆X = (∆XP P) PT (10)

where ∆X represents the final drift noise matrix that will be
added to the output data matrix X. The control on the number
of drift components (the number of columns in P) indicates the
level of non-linearity for the drift noise and can be parametrized
in the simulation.

2.4. Summary
The user creates a virtual sensor array given two groups of

parameters. The first group of parameters ki, βi,k and τi,p en-
codes the type of sensor instances the array will be composed
of. The number of sensor types is equivalent to number of the
UNIMAN sensors instantiated. In practice, it is sufficient to
pass a number from 1 to 17 to encode the sensor instance. The
second group of parameters controls the volume of noise that
will be induced into the sensor array data. The dimensionless
parameters σc, σβ and σd scale the magnitude of the concentra-
tion noise, sensor noise and drift noise, respectively. The three
parameters lie in the range from 0 to 1, where zero values al-
low the noise-free mode, and one corresponds to the maximum
level of noise, equal to the noise presented over the LTD set.
In addition, the structure of the drift noise can be parametrized
with the number of drift components (modeling the dimension
of the drift subspace) used in the multivariate data space.

All software is coded in open source R language for statis-
tical computing [28] and packed in the library chemosensors
soon to be available on the R public repository CRAN. The
released package makes use of an object-oriented program-
ming paradigm, supports parallel computing and contains the
datasets depicted in the manuscript. Figure 3 outlines a typical
example of R code to emulate a virtual sensor array and then
generate the raw data from a predefined concentration matrix.

sa <- new("SensorArray", nsensors=10,

num=1:5, csd=0.1, ssd=0.1, dsd=0.1, ndcomp=1)

sdata <- sdataModel(sa, conc, nclusters=2)

Figure 3: An example of R code to generate parametrized synthetic sensor
array data from a predefined concentration matrix conc.

The first command creates a virtual array as an object sa of
class SensorArray. The first two parameters nsensors and num
indicate 10 sensor elements in the array derived from 5 sensor
types. The next three parameters csd, ssd and dsd (parameters
σc, σβ andσd mentioned above) set up the level of noise at 10%
for all noise sources. The last parameter ndcomp fixes the only
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one drift component for the drift noise. The second command
calls the class method sdataModel, which produces the sensor
array data from predefined concentration matrix conc. The pa-
rameter nclusters points out to run calculations in parallel with
2 CPU cores, if available.

Figure 3 XXX visualizes the results of execution of the R
code given above on a particular concentration matrix. This
concentration matrix of three columns encodes the concentra-
tion of analytes in the form of rectangular pulses of 60s. Three
lines on the plot (a) encode the change in concentration over
time for three analytes A (solid), B (dashed) and C (dotted),
that results in a total of seven different pulses of the three pure
analytes and their binary and ternary mixtures. The lines on
the plot (b) show the response of the array of ten sensors cre-
ated according to the example code. Visually, the sensor signals
have diverse time dynamics in response to gas pulses, reach the
steady-state at different levels along the analytes and tolerate a
certain drift effect according to the change in the base line.

(a)

0

0.5

A B C AC AB BC ABC

(b)

0 120 240 360 480 600 720 840 960

0

5

10

Figure 4: The input and output of the simulation models. The concentration
matrix of three analytes A (solid line), B (dashed) and C (dotted) encodes the
change in concentration over time on plot (a). The raw data show the response
of the sensor array on the plot (b).

3. Simulation Examples

3.1. UNIMAN Replicas

One of the main features of the proposed simulation models
lies in the fact that the virtual arrays are designed to replicate
the reference sensor array. The given simulation creates a vir-
tual array of the same number of sensors (seventeen) and then
generates the signals in response to the concentration matrix of
the gas classes from the Table IXXX. Another goal of this sim-
ulation is to test different noise parametrization in the sensor
array data.

Figure 4 XXX presents a principal component analysis score-
plot of two hundred samples and eight gas classes of the UNI-
MAN dataset on plot (a) in comparison with synthetic data from
two virtual arrays on plots (b) and (c). Both virtual arrays are
parametrized at the noise level of 50%, but the array on plot
(b) is drift-free and contains only concentration noise and sen-
sor noise, as the array on plot(c) is influenced by all three noise
sources. The figure denotes the matching multivariate structure

of class-dependent information within the similar numbers of
captured variance on principal components.

The distribution of noise in data on plot (b) is consistent with
the nature of the simulation models. The concentration noise
is oriented towards concentration direction of the analytes, and
the sensor noise adds more distortion to the data. The effect
of the sensor noise to high-concentration classes is stronger, as
the noise model affects the sensitivity coefficients directly. The
major drift direction in the multivariate space presented on plot
(c) coincides with the drift direction given in the UNIMAN data
on plot (a). Hence, the synthetic data generated with all three
noise sources is capable to reproduce well the reference dataset.

3.2. Case Study

A main advantage of the proposed virtual array under real
arrays is the flexibility for extending simulations to an arbitrary
number of sensors and support of multi-component mixtures.
We conducted a synthetic experiment with an array combined
of one hundred sensors of seventeen UNIMAN types. Three
analyte concentrations were selected from the middle of the
range given in the Table IXXX, and the gas classes included
three pure analytes A at 0.025 vol.%, B at 0.025 vol.% and C
at 0.5 vol.%, their three binary mixtures AB, BC and AC, and
one ternary mixture ABC. The typical transient response of ten
sensors to the gases is shown on the Figure 3XXX in the pre-
vious section. An instance of a long-term synthetic dataset of
3500 samples is re-generated in the presence of concentration
noise, sensor noise and drift noise parametrized at the maxi-
mum 100% level.

We formulated a classification problem for seven gas classes
under conditions of strong drift, following the experimen-
tal scheme presented in our previous work for UNIMAN
dataset [36]. Particularly, the training set was selected of the
same size of 1000 samples, and a kNN classifier (k = 3) was
used to train a classification model. The validation procedure
selected a validation set of 100 samples by means of the sliding
window operation, so that the classification metric is measuring
the validity of the training model as the validation is further in
the future. The data in both training and validation sets is pre-
processed by component correction to counteract to the drift.
The examined correction methods are the method of the refer-
ence gas by Artursson [1] and the method based on common
component analysis [36] with one and two components. Fig-
ure 5 XXX presents the experimental results. Plot (a) depicts
the principal component analysis scores of the training data af-
ter component correction, and plot (b) shows the performance
of the classifier in combination with the different drift counter-
action methods.

The sensor array data presented on Figure 5 (a)XXX shows
the distribution for gas classes expected from the parametriza-
tion of the simulation models. The simulated sensors adopt the
affinity profiles found for the seventeen UNIMAN sensors, that
particularly leads to the prevalence of analyte C and suppres-
sion of analyte B in all mixtures. However, the relation of an-
alyte forces in mixtures can be changed by selection of proper
sensors (for example, sensors with more affinity to A than C) or
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Figure 5: The UNIMAN dataset of two hundred samples (a) is compared with two synthetic data (b) and (c) from virtual arrays of seventeen sensors with different
noise parametrization. The array (b) is drift-free and contains only concentration noise and sensor noise at the 50% level. The array (c) is influenced by all three
noise sources at the 50% level. The synthetic data (c) replicates the reference data (a) matching both the class-dependent and noise-related multivariate structure.
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Figure 6: Evaluation of the case study experiment for drift compensation. Plot (a) show the principal component analysis (PCA) score plot of the training set after
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tuning of concentration volume along the components in mix-
ture.

Figure 5 (b)XXX shows the change in classification ratio
as the time difference between training and validation sets in-
creases. The comparison of performance numbers over time
for non-corrected and drift-corrected experiments clearly shows
that drift in data plays a crucial role in the degradation of the
classifier performance. The application of the reference gas
method by Artursson gas slightly improves the classification re-
sults, although the method likely captures the portion of noise
related to the sensor noise of the reference gas, that leads to con-
fusion with drift. The best classification results are achieved by
the method based on the common principal component analy-
sis that marks out the drift part of noise more accurately. The
method is not capable to reach the 100% performance, although
the method of drift injection for the virtual array is the same.
That is explained by the strong and irreversible changes induced
by the noise models emulating the effect of sensor noise for in-
dividual sensors degrading the overall performance of the array.

4. Conclusions

The main contribution of this work is a software framework
for large-scale synthetic experiments in machine olfaction, that
features sensor arrays with arbitrary number of elements, con-
centration profiles of arbitrary mixtures of three analytes and
parametric control of the level of noise in data. The framework
was implemented in the software library chemosensors in R,
under the Neurochem project, funded by the European Com-
mission. The developed software package contains models to
emulate virtual sensor arrays inspired from a reference array of
seventeen conducting polymer sensors, including the extension
model based on the Langmuir isotherm to simulate mixtures of
analytes and realistic models of long-term drift.

The authors believe that public synthetic dataset generators
are especially interesting for applications regarding optimiza-
tion problems, like benchmarking of machine olfaction algo-
rithms or searching for an optimal design of sensor arrays. The
package is also able to generate large (over 1k sensor) sensor
arrays suitable for the prototyping of neuromorphic signal pro-
cessing.
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