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A general scheme for devising efficient cluster dynamics proposed in a previous paper@Phys. Rev. Lett.72,
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is applied to a number of frustrated spin models and the results discussed.@S1063-651X~96!08406-1#
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I. INTRODUCTION

The cluster formalism introduced by Kasteleyn and For-
tuin ~KF! @1# and later developed by Coniglio and Klein
~CK! @2# for the ferromagnetic Ising model has greatly en-
hanced the understanding of critical phenomena in terms of
geometrical concept. Moreover, based on such a formalism
Swendsen and Wang~SW! @3# have introduced a cluster dy-
namics which drastically reduces the critical slowing down
in Monte Carlo~MC! simulation of ferromagnetic spin mod-
els. In the SW dynamics spins belonging to the same cluster
are flipped in one step as opposed to the single spin dynam-
ics, where spins are flipped one at time. The efficiency of the
SW dynamics stems from the fact that in the KF-CK formal-
ism the clusters represent correlated spins; therefore if one
spin in a cluster is flipped all the other spins in that cluster
will successively tend to flip coherently. Consequently by
flipping in one move all the spins in the same cluster results
in a much faster dynamics. The SW algorithm has been ex-
tended and applied efficiently to several unfrustrated spin
models@4–8#.

Unfortunately, the SW dynamics based on the direct ex-
tension of the KF-CK cluster formalism to frustrated spin
systems does not show any reduction of the relaxation times
@9–11#. The reason for that is due to the fact that now the
KF-CK clusters no longer represent correlated spins@12,13#.
Recently Kandel, Ben-Av, and Domany have introduced a
type of MC cluster algorithm for the particular case of the
fully frustrated Ising model@14# which is able to reduce the
critical slowing down. Attempts to use their algorithm to
other frustrated models has been satisfactory in few cases
@15,16# and discouraging in others@17,18#. A different ap-
proach based on the definition of quasifrozen clusters in spin
glasses looks very promising, but the implementation of a
related cluster dynamics has not been explored yet@19#.
More recently, based on the approach of Kandelet al., we
have proposed a general criterion and a systematic procedure
to define clusters and related efficient cluster dynamics for
frustrated spin models@20#. In particular, we have applied
our general criterion to a class of fully frustrated Ising spin
models on square lattices where the relative strength between
the interactions can be varied. For any value of the relative
strength, without invokingad hocalgorithms for each case,
the same general criterion generate a Monte Carlo dynamics

which dramatically reduce the critical slowing down.
The aim of this paper is to illustrate in more details the

criterion proposed in Ref.@20# and apply our method to a
number of frustrated spin models. In Secs. II and III we
discuss the extension of the cluster formalism to frustrated
spin models. We stress that for the unfrustrated spin model
the clusters percolate at a temperatureTp that coincides with
the critical temperatureTc , while for the frustrated models
Tp is larger thanTc . In Sec. IV following the approach of
Kandel et al. @14# we introduce a large variety of cluster
definitions which contains as a particular case the KF-CK
clusters. We then illustrate a procedure to approach system-
atically, in successive order of approximations, a cluster defi-
nition for which the percolation temperatureTp becomes
closer and closer to the critical temperatureTc . In Secs.
V–VII we check our procedure by comparing percolation
quantities@21,22# and thermodynamic quantities on a variety
of frustrated models using MC simulations. For a number of
frustrated models without disorder we find to second order
that the clusters percolate at a temperatureTp numerically
indistinguishable from the critical temperatureTc . For dis-
ordered frustrated models like spin glass~SG! the conver-
gence ofTp towards the SG critical temperatureTSG is very
slow. In Sec. VIII we implement a cluster MC dynamics
based on the novel cluster definition. We show that the dy-
namics is very efficient with drastic reduction of the relax-
ation time for those frustrated systems, introduced in Secs.
V–VII, for which the cluster definition leads toTp.Tc . In
the Appendix we show that the cluster dynamics fulfills de-
tailed balance and briefly discuss the ergodicity problem.

II. CLUSTER APPROACH IN FRUSTRATED SYSTEMS

It is well known that the partition function of a ferromag-
netic Ising model can be written in terms of the clusters of an
equivalent percolation model@1,2#. A similar result can be
also obtained for Ising systems where frustration is present
@12#. The aim of this section is to recall and discuss those
results which will be useful in the following.

Let us consider the Ising Hamiltonian

H~$Si%!52(
^ i , j &

J~e i j SiSj21!, ~1!
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wheree i j561 is the sign of the quenched interaction and
J>0 the interaction modulus. The interaction configuration
$e i j % can be a deterministic periodic structure or a disordered
one. Hamiltonian~1! is said to contain frustration if at least
one closed pathL exists such thatP^ i , j &PLe i j521.

Within the CK approach@2,12,13# we introduce ‘‘bonds’’
between nearest neighbor~NN! spins satisfying the interac-
tion probability p512e22bJ. The weight for each given
configuration of spin$Si% and bondC is given by

WCK~$Si%,C!5puCu~12p! uAu )
^ i , j &PCF

dSiSj

3 )
^ i , j &PCA

~12dSiSj !, ~2!

whereCF (CA) is the subset ofC which covers ferromag-
netic ~antiferromagnetic! bonds, i.e., bonds withe i j51
(e i j521), and p512e22bJ. The product takes into ac-
count the fact that bonds can link only spins which satisfy
the interaction. The clusters are defined as maximal sets of
spins connected by bonds. It can be shown@13# that in this
case the partition function becomes

Z5(
C

* puCu~12p! uAu2N~C!, ~3!

where(C* means that the sum is over the bond configurations
which do not contain frustration. Furthermore, the presence
of positive and negative interaction implies that the follow-
ing relations can be proved

^Si&5^g i↑
` &CK2^g i↓

` &CK ~4!

and

^SiSj&5^g i j
i &CK2^g i j

i” &CK , ~5!

whereg i↑
` (g i↓

` ) is 1 if the spini is up~down! and belongs to
an infinite cluster, otherwise it is 0, andg i j

i (g i j
i” ) is 1 if the

spins i and j belong to the same cluster and are parallel
~antiparallel!, otherwise it is 0, and wherê•••& is the usual
thermodynamic average for a fixed configuration of interac-
tion $Je i j % and ^•••&CK is the average over spin and bond
configurations weighted with~2!. The percolation quantities
are instead given by

Pi[^g i
`&CK5^g i↑

` &CK1^g i↓
` &CK , ~6!

Pi j[^g i j &CK5^g i j
i &CK1^g i j

i” &CK , ~7!

whereg i
`5g i↑

` 1g i↓
` andg i j5g i j

i
1g i j

i” , andPi is the prob-
ability that the spin at sitei belongs to thè cluster andPi j
is the probability that the spins at sitei and j are in the same
cluster.

It is clear that without frustration the relations valid in the
ferromagnetic case are recovered with only trivial differ-
ences; in fact, in this case, Eqs.~4! and ~5! become

u^Si&u5^g i
`&CK ~8!

and

u^SiSj&u5^g i j &CK . ~9!

Examples of models without frustration for which Eqs.
~8! and~9! are satisfied are the antiferromagnetic Ising model
on a square lattice and an Ising model with interaction
Ji , j5Js is j , where s i561 are quenched variables. It is
easy to realize that for any fixed configuration ofs i , al-
though the interactions may be positive and negative, all the
loops are unfrustrated.

From~4! and~7! it follows that unlikely the ferromagnetic
case the critical temperature does not coincide with the per-
colation temperature. In fact, defining the critical tempera-
ture Tc as the temperature at which the Edwards-Anderson
@24# order parameterqEA51/N(^Si&

2 vanishes and the per-
colation temperatureTp as the temperature at which the per-
colation probabilityr`51/N( iPi vanishes, from Eq.~4! fol-
lows thatTc,Tp @12#. ~In the definition ofqEA the bar stands
of the average over the configurations of interaction$Je i j %
and N is the number of spins@25#.! This result has been
verified numerically for a number of different systems as
two-dimensional~2D! and 3D spin glass@9,10#, fully frus-
trated model@10#, and frustratedXY model @11#.

Similarly from Eq.~5! correlation and connectivity do not
coincide any more. In fact, two spins instead of being in the
same cluster may be parallel in one configuration and anti-
parallel in another~see Fig. 1!. Although these two configu-
rations will both contribute to the connectivity they will in-
terfere and strongly reduce correlations. Therefore forT.Tc
defininggi j5^SiSj& it follows from ~5! and ~7! ugi j u<Pi j .

III. GENERALIZATION OF THE CLUSTER APPROACH

The main result of the preceding section is that when
frustration is present the KF-CK clusters do not represent

FIG. 1. A schematic example of two spin and bond configura-
tions. The spin at site 1 belongs to the infinite cluster in both con-
figurations~a,b! with different orientations. While both configura-
tions give positive contributions to the percolation probabilityP1
they give opposite configurations to the magnetization^S1&. Simi-
larly the spins at sites 1 and 4 are connected in both configurations
~g1451!. However, they are parallel~g14

i 51! in ~a! and antiparallel
(g14

i” 51) in ~b!. Therefore both configurations give a positive con-
tribution to the pair connectness functionp14 but opposite contribu-
tion to the pair correlation function̂S1S4&.
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correlated spins anymore. As a consequence the percolation
temperatureTp is higher than the thermodynamic critical
temperatureTc . We will generalize now the KF approach@1#
in order to define clusters which represent correlated spins
even in the frustrated case. The clusters will reduce to the
usual KF-CK clusters in the unfrustrated case.

We will achieve this goal in two steps. First, in this sec-
tion, following the approach introduced by Ben Avet al.
@14,26# ~BKD!, we will consider a large class of clusters
which contain as a particular case the KF-CK clusters. Sec-
ond, in the following section, we will give a criterion to
choose systematically the ‘‘right’’ clusters in successive or-
der approximations in such a way that pair connectness and
pair correlation functions tend to coincide. We will consider
an approximation good enough when the percolation tem-
peratureTp has approached the critical temperatureTc .

Let us consider a square lattice with ferromagnetic and
antiferromagnetic interactions@27# and let us focus our at-
tention on a single isolated plaquette. This can be either un-
frustrated or frustrated@28#. Following Ref. @14#, it is pos-
sible to generalize the KF procedure by assigning globally to
each bond configuration on a given plaquette or even on
larger spin blocks taken as ‘‘elementary units’’~see Fig. 2!

its own bond probability. Within each elementary unit or
plaquette each bond configuration probability is independent
of each other, and thus, it is not given, as in the CK formal-
ism, by the product of bond probabilities of single pairs of
spins.

We consider, to begin with a specific case, a checkerboard
partition of the square lattice~see Fig. 3! and we take one of
the two sets of plaquettes~the shaded or the unshaded ones!
as the set of ‘‘elementary units’’ on which we make our
independent choices. We proceed further by generalizing the
KF approach. Consequently we ‘‘dilute’’ the couplings on
the plaquette, replacing them with a set of new interaction
configurations which contain onlyJ8°` or J850 interac-
tions @23#. We consider the generic Hamiltonian~1!. In Secs.
V–VII we will consider specific examples. The possible in-
teraction configurations are shown in Fig. 4. We assign a
bond weightw0 to the interaction configurationc0 of the first
row ~no bonds!, we assign the same weight
w15w25•••5w4 to all the configurations of bonds,
c1 ,...,c4 in the second row, and so on. The symmetry of the
plaquette allows us to choose the same weight for symmetric
configurations, i.e., members of the same row in Fig. 4.

The requirement of the equality between the partition
function of the original model and that of the diluted model
gives

)
^ i , j &Pplaq.

ebJ~e i j SiSj21!5 (
a50

M

wa )
^ i , j &Pca

ebJ8~e i j SiSj21!,

~10!

where the sum is over all the possible interaction configura-
tions on the plaquette~M515 for the example in the Fig. 4!.
With ^ i , j &Pca we mean the NN spins connected byJ8 in-

FIG. 3. A checkerboard partition of a square lattice. To cover all
the lattice, we can choose the shaded plaquettes, or the unshaded
ones, as set of elementary units.

FIG. 4. The possible bond configurations on the square
plaquette: full lines are infinite interactions or present bonds, while
zero interactions are not marked. The labela is the index of con-
figurationca and of the corresponding statistical weightwa . As an
example the configurationa50 has no bond present.

FIG. 2. Examples of possible elementary units partitioning a
square lattice. The unmodified KF-CK clusters~see text! are con-
structed starting from elementary unit~b!. The clusters discussed in
Secs. V, VI, and VII make use of elementary unit~c!.
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teractions inca and with ^ i , j &Pplaq. the NN spins on the
plaquette. The previous relation can be rewritten as

(
a50

M

wae
2bH̃plaq.~$Si %,ca!5e2bHplaq.$Si %, ~11!

where

H̃plaq.~$Si%,ca!52 (
^ i , j &Pca

J8~e i j SiSj21! ~12!

and

Hplaq.~$Si%!52 (
^ i , j &Pplaq.

J~e i j SiSj21! ~13!

are the energy of the plaquette viewed as ‘‘elementary unit’’
in the new interaction configurationca and in the original
system.

Of course such procedure can be repeated for every
Hamiltonian that can be written as sum of elementary unit
energies, i.e.,

H~$Si%!5(
l
H l~$Si%!, ~14!

whose blockl we dilute and obtain the stochastic Hamil-
tonian

H̃~$Si%,C!5(
l
H̃ l~$Si%,ca~ l !! ~15!

with C5ø lca( l ) .
The equivalence between the original model and the di-

luted one is obtained imposing@cf. Eq. ~11!#,

(
a~ l !

wa~ l !e
2bH̃ l ~$Si %,ca~ l !!5e2bH l ~$Si %!, ~16!

where thewa( l ) is weight with which the configurationca( l )
on thel th elementary unit occurs.

Furthermore, the partition function can be written as

Z5(
$Si %

)
l
e2bH l $Si %5 (

$Si %,C
)
l
e2bH̃ l ~$Si %,ca~ l !!wa~ l ! .

~17!

Spins that are connected by infinite strength interaction
are frozen while the others do not interact. Thus the dilution
of the original Hamiltonian is also called a freezing and de-
leting operation. Of course we have

e2bH̃ l ~$Si %,ca!5d$Si %,ca~ l !
, ~18!

whered$Si %,ca
is 1 or 0 depending whether or not the spin

configurations satisfy all thè strength interactions in the
interaction configurationca( l ) of the l th plaquette. Two
spins connected by an infinite strength interaction will be
frozen in the configuration which satisfy the interaction. On
the entire lattice we can define

d$Si %,C
5)

l
d$Si %,ca~ l !

5 )
^ i , j &PCF

dSiSj )
^ i , j &PCA

~12dSiSj !,

~19!

whereCF andCA are defined like in Eq.~2!.
Let us observe that

)
l
wa~ l !d$Si %,C

5 )
a50

M

~wa!na~C!d$Si %,C
, ~20!

wherena(C) is the number of elementary units on which we
have chosen theath configuration~with a50,...,M ! in the
given interaction configurationC @with (ana(C)5N u
whereN u is the number of elementary units#.

Therefore, from Eqs.~17!, ~18!, and~20!, we obtain

Z5(
C

)
a50

M

~wa!na~C!(
$Si %

d$Si %,C
5(

C

* )
a50

M

~wa!na~C!
2
N~C!,

~21!

where(C* stands for the sum over all the interaction configu-
rations that are compatible with at least one of the possible
spin configurations~i.e., all the unfrustrated graphs!. Equa-
tion ~21! is the generalization of Eq.~3! which can be recov-
ered considering a pair of NN spins as elementary unit.

Equation~21! can be also obtained following the CK ap-
proach where the clusters are defined in the original system
introducing fictitious bonds between spins satisfying the in-
teraction. Given a spin configuration$Si%, the probability to
realize a configuration of bondsca( l ) on each unitl is given
by

P~ca~ l !u$Si%!5
wa~ l !d$Si %,ca~ l !

e2bH l $Si %
, ~22!

wherewa satisfy Eq.~16!. Due to~16! and ~18! these prob-
abilities are normalized for any spin configuration
(a( l )P(ca( l )u$Si%)51. The Kronecker delta assures that the
bonds are thrown only between spins satisfying the interac-
tion. For the entire system the weight for a given configura-
tion of spins $Si% and bond configurationC5ø lca( l ) is
given by

W~$Si%,C!5)
l
P~ca~ l !u$Si%!e2bH~$S&%!

5)
l
wa~ l !d$Si %,ca~ l !

, ~23!

where~14! have been taken into account. Finally from~19!
and ~20! we have

W~$Si%,C!5 )
a50

M

~wa!na~C!d$Si %,C
. ~24!

Summing over the spin and bond configurations we re-
cover Eq.~21!. The advantage of this approach is to make
clear that both spins and bonds can be defined in the original
system where the clusters are defined as maximal sets of
spins connected by bonds. To calculate the statistics of the
CK clusters we have to generate equilibrium spin configura-
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tions first. Then, for each equilibrium configuration we can
assign a bond configuration on each unitl with probability
given by ~24!.

Summarizing, following the approach of BKD, we have
defined a vast class of generalized percolation models
equivalent to our original spin model Eq.~1!. When one
reduces the elementary unit to a single spin pair one recovers
KF-CK solution and that for larger units it is always possible
to find a solution in the form of product of KF probability
p512e22bJ, or, generally, solutions that are factorization
of probabilities for a subpartition of the elementary units.

The generalization discussed does not solve automatically
our problem of recovering the identity between cluster con-
nectivity and spin correlation function, Eq.~9!, when frustra-
tion is present. However, the great freedom given by Eq.~16!
still gives hope to find solutions forwa( l ) , in such a way to
achieve the equality~9! at least in an approximate way. Then
it is crucial to find a criterion to select among the many
different possibilities offered by Eq.~16!, those for which~9!
holds. This is the second step needed to achieve our aim and
will be discussed in the next section.

IV. CONDITIONS BETWEEN CORRELATION
AND CONNECTIVITY

For each percolation model defined in the preceding sec-
tion @satisfying Eq.~16!#, it is straightforward to generalize
the relations~4! and ~5! provided that now the average over
the spin and bond configurations has to be computed with
weights given in Eq.~24!. In particular relation~5! is also
valid when we consider a subsystem made of a single unitl ,
namely,

^SiSj& l5^g i j
i & l2^g i j

i” & l , ~25!

for eachi and j on the unitl . Here

^•••& l5
(a,$Si %

•••P~cau$Si%!e2bH l ~$Si %!

($Si %
e2bH l ~$Si %! , ~26!

where the sum is over all possible spin and cluster configu-
rations on the unitl andP(cau$Si%) is given by~22!. When
the quantity to average is function only of the spin variables
like ^sisj& l , due to Eq.~22!, Eq. ~26! simplifies to

^•••& l5
($Si %

•••e2bH l ~$Si %!

($Si %
e2bH l ~$Si %! . ~27!

Our aim is to find among the large class of solutions of
Eq. ~16! a solution forwa( l ) in such a way that the equality
~9! is satisfied. In this way the percolation temperatureTp
would coincide withTc and the clusters so identified will be
characterized by percolation critical exponents equal to ther-
modynamical critical exponents. Since this is not a trivial
task, we seek solutions which fulfill approximately Eq.~9!
by imposing the condition on a subsystem made of a single
unit, namely,

u^SiSj& l u5^g i j & l . ~28!

To find the solution of~16! and~28! may still be compli-
cated due to the large number of unknown~2n, wheren is
the number of edges in the unit cell!. Technically the prob-
lem can be simplified if we make use of Eq.~25! which is
always valid if Eqs.~16! are satisfied.

Equation~28! together with Eq.~25! implies for each pair
i j in the elementary unit

^g i j
i” & l50 if ^SiSj& l.0,

^g i j
i & l50 if ^SiSj& l,0, ~29!

^g i j & l50 if ^SiSj& l50.

If ~29! and ~16! are satisfied, from~25! follows that also
~28! is satisfied. As we will show in the next section in a
specific example it is easier to impose~16! and ~29! than to
impose the equivalent conditions~16! and ~28!.

It is clear that the larger the unit the better Eq.~9! is
satisfied. It also clear that there is no guarantee on how good
the different approximations are and how fast Eq.~9! is ap-
proached by increasing the unit size. However, this proce-
dure, by increasing the size of the unit, allows a systematic
way to improve the approximation.

Equations~16! and ~28! introduce a set of independent
conditions whose number depends on the size and the sym-
metry of the chosen elementary unit. In general we are not
able to know if the conditions introduced by~16! and ~28!
have a solution and if it is unique. Of course only solutions
such thatwa( l ).0 are acceptable and these conditions intro-
duce further restriction.

In general, there are two possibilities. The first possibility
is that there are no solutions which satisfy Eq.~28!. In this
case we can relax Eq.~28! by imposing

(
i j

r i j
k ^g i j & l5(

i j
r i j
k u^SiSj& l u, k50,1,2,...,kM , ~30!

wherer i j is the distance between spini and j . ChoosingkM
in an appropriate way it is possible to reduce the number of
conditions until a solution is found. IfkM>2 we believe that
the solution is rather reasonable since the conditions of Sec.
II are satisfied on the unit.

The second possibility is that the solution is not unique. In
this case we expect only small differences among different
solutions.

To show how this scheme works, in the following sec-
tions we will analyze a number of frustrated systems. In all
cases we are always able to satisfy conditions~16! and~28!.

V. DECORATED ISING MODEL

In order to check our approach we have considered a
decorated Ising model with frustration. Starting with an Ising
model on a square lattice we introduce between each pair of
NN spinsSi , Sj on the square lattice two extra spinsSk , Sl
~see Fig. 5! modifying the interaction from

H~Si ,Sj !52J~SiSj21! ~31!

to

54 179PERCOLATION AND CLUSTER MONTE CARLO DYNAMICS FOR . . .



H~Si ,Sj ,Sk ,Sl !52J~SiSj1SiSk1SiSl1SkSj2SlSj23!;

~32!

this generic set of four spins will be the elementary unitl .
For simplicity in Eqs.~31! and ~32! and in the following of
this section we omit the labell .

The partition function of this model is reducible to the
Ising one via a ‘‘decimation’’ on spins Sk ,
Sl :(Sk ,Sl

e2bH(Si ,Sj ,Sk ,Sl )5A(J)e2b J̄ iSj21). The critical
temperature can therefore be calculated exactly
Tc52.24... . Monte Carlo estimation of the percolation
temperature for the unmodified KF-CK clusters on such a
system givesTp2Tc.0.2 ~here and in the following tem-
perature are expressed in units ofJ/kB!. As expected the
presence of frustration prevents the coincidence of percola-
tion and thermodynamic properties for the unmodified
KF-CK clusters.

We have to solve Eqs.~16! and ~29! for the unknown
weightswa wherea labels the bond configurations in the
elementary unit~Fig. 5!. The average in Eq.~29! is over all
spin and bond configurations with probability given by~26!
whereH l is given by~32!.

The spin correlations can be easily calculated from~27!
since they does not require the knowledge of thewa . We can
immediately find~Fig. 5!

^SiSj& l.0, ~33!

^SiSk& l5^SkSj& l52^SjSl& l5^SlSi& l.0, ~34!

^SkSl& l50. ~35!

We can disregard bond configurations by inspection. For
example, the weight of a bond configuration which connects
i and j through sitel must be zero. In fact this bond con-
figuration would correspond toSi andSj antiparallel result-
ing in ^g i j

i” & l.0 contrary to Eq.~29!. By imposing Eqs.
~29!–~35! we reduce the number of possible bond configu-
rations to 12. Furthermore, three of them have the same con-
nectivity properties~i.e., they connect the same sites! as the
configurationa53 ~Fig. 6!. Therefore they can be disre-
garded reducing the number of weights different from zero to
9. Equation~16! now reads

w01w45u4,

w01w11w45u3,
~36!

w01w213w45u2,

w01w11w21w313w45u,

whereu5e22bJ. The structure of such an equation system
still allows us to chose one unknown arbitrary; in particular
we have imposedw450 because it provideswi>0;T.

Then the solution is

w05u4, w15u3~12u!, w25u2~12u2!,
~37!

w35u~12u2u21u3!, w450.

In order to calculate the percolation temperature of the
clusters defined by Eq.~37!, Tp , we proceed in the following
way. Given a spin configuration$Si% we assign to each
plaquette l a bond configuration with the probability
P(cau$Si%) provided by Eqs.~22! and ~37!. Then we obtain
clusters defined in the entire lattice as maximal sets of spins
which are connected by bonds~CK-like cluster definition!. It
is then possible to measure percolation quantities.

We have estimatedTp via a data collapsing of the prob-
ability P(T,L) of having a percolating cluster at temperature
T in a system of sizeL ~Fig. 7!. We have simulated the
model with both standard spin-flipMC dynamics and the
clusterMC dynamics which we will discuss in Sec. VIII A
obtaining indistinguishable results within our numerical pre-
cision. In Fig. 7 we have reported the results obtained with
the latter dynamics. Using the scaling ‘‘ansatz’’ that near the
percolation point P(T,L)5 f (@T2Tp#L

1/np), where the
functional shape off is unknown, we have found that

FIG. 5. The decorated Ising model described in the text: each
pair of interacting spinSi , Sj in a square lattice is decorated by
spinsSk , Sl . Full lines are ferromagnetic interactions, dashed lines
are antiferromagnetic interactions.

FIG. 6. The bond configurations of the decorated Ising model
~Sec. V! whose weights are different from zero@Eq. ~57!#. We
assign the same weight to all the elements belonging to the same
group. In the figure each group is identified by a curly bracket. The
conventional representation of interactions is the same as in Fig. 5.
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Tp.2.25 andnp.1 consistent with the critical temperature
Tc52.24 and with the critical exponentn51 of a ferromag-
netic Ising model.

VI. ASYMMETRIC FULLY FRUSTRATED „AFF… MODEL

Let us consider a less trivial model, the frustrated Ising
model on a square lattice with periodic boundary conditions
where each plaquette contains three equal ferromagnetic in-
teractions J and one antiferromagnetic interaction
2XJ(0<X<1). This model interpolates between the fully
frustrated~FF! model (X51) and the diluted ferromagnetic
Ising model (X50) @29#.

If we takewa according to the definition given in Fig. 8
Eqs.~16! specified to this case give

w11w35u3,

w11w25u21X,

w112w21w31w51w61w71w95u, ~38!

w112w21w31w412w71w95u,

w113w21w412w61w85uX,

whereu5e22bJ. The number of unknowns is larger than the
number of equations. The percolation temperatures associ-
ated to these solutions will be, in general, higher than the
thermodynamic critical temperature. In order to have these
two temperature as close as possible and the cluster connec-

tivity representing as better as possible the spin correlation,
as discussed in Sec. IV, we can impose either conditions~28!
or more simply Eq.~29!. For pedagogical reasons we choose
here Eq.~28!. These are three independent equations

2w612w71w813w95uuX1u32u2u21Xu,

4w212w412w612w71w813w95uuX2u31u2u21Xu,

~39!

4w312w513w71w813w75uuX2u323u13u21Xu.

Equations~38! and ~39! have the solution@29#

w15u3, w25u2~uX2u!, ~40!

w45u~11u222uX11!, ~41!

2w55H u~31u2!2uX~113u2!, u.u*

0, u,u* ,
~42!

2w65H u~12u2!~uX2u!, u.u*

2w4 , u,u* ,
~43!

w85H 0, u.u*

uX2u323u13uX12, u,u* ,
~44!

andw35w75w950. Equations~38! and~39! do not provide
a unique solution. In fact a general solution can be found
choosingw3 as a free parameter. However, the further re-
quirementwa>0 leads tow350. The solution changes form
for a temperatureT* such thatu*5e22J/KBT* satisfies the
equation (113u2)uX2u323u50. This is due to the fact
that atT5T* the correlation between spins linked by the
interaction2XJ ~let us call themS1 andS2! changes sign
leading to different possible bond configurations. For ex-

FIG. 7. Decorated Ising model in two dimensions~see Sec. V!:
data collapsing for the probabilityP(T,L) of having a percolating
cluster at temperatureT in a system of sizeL510, 20, 30~for each
size the number of system spins is 53L2!. The data have been
obtained by using the cluster dynamics discussed in Sec. VIII A.

FIG. 8. Bond configurations for the AFF model~Sec. VI!. The
15 possible bond configurations are grouped, by symmetry, in 9
groups. To each element of a group is assigned the same weightwa

@cf. Eqs.~59! and~60!#. In the figure we show only one element for
each group; the other elements can be obtained trivially conserving
the number of ferromagnetic and antiferromagnetic bonds. In the
brackets it is shown the number of bond configurations belonging to
the specific group. Full~dashed! lines are bonds between ferromag-
netically ~antiferromagnetically! interacting spins.
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ample, the configuration associated to the weightw5 which
links antiferromagneticallyS1 and S2 vanishes when
^S1S2&.0 @30#.

It is interesting to specify the general solution for the
diluted ferromagnetic Ising model (X50) and the FF model
(X51).

In the first case (X50) it resultsu,u* for any tempera-
ture and we get the following nonzero weights

w15u3, w25u2~12u!, w45w65u~12u!2,

w85~12u!3. ~45!

These weights reproduce the original KF-CK solution for a
plaquette; in fact they are in the form of products ofu and
12u which are the KF-CK weights for a single spin pair.
Since forX50 the model reduces to a ferromagnetic Ising
model where some interactions have been set equal to zero,
the original KF-CK solutions reproduces the right clusters.

In the caseX51 it resultsu.u* for any temperature and
one obtains the following nonzero weights

w15u3, w45w55u~12u2!, ~46!

which are in agreement with the cluster structure used in Ref.
@31#. It is worthwhile to note that in this limit all the bond
configurations which connect spins on opposite corners have
weights equal to zero preventing the four spins of the
plaquette to belong to the same cluster even atT50.

In order to check if the percolation model we have defined
has the expected properties, i.e., ifTp5Tc , we have studied
the percolation and spin properties of the system with both

spin-flip standard MC dynamics and the cluster MC dynam-
ics which we will discuss in Sec. VIII B obtaining indistin-
guishable results within our numerical precision. In Figs. 9
and 10 we have reported the results obtained with the latter
MC dynamics averaging at least over 63104 MC sweeps
after discarding the first 104.

In Fig. 9 we show the data collapsing for the mean cluster
size defined asS5(snss

2, wherens is the number of clus-
ters of sizes and the sum is over finite clusters for three
values ofX ~X50.5,X50.75,X51!. For comparison in Fig.
10 we show, for the sameX values, the data collapsing for
x5(^M2&2^uM u&2) whereM is the magnetization. From
those data we extract the percolation temperature,Tp(X), the
critical temperatureTc(X) and the critical exponentsgp(X),
np(X), g(X), andn(X) for any X value. Summarizing we
find

Tp~0.5!.1.24, Tp~0.75!.0.97, Tp~1!,0.1, ~47!

gp~0.5!.1.75, gp~0.75!.1.75, gp~1!.2.0, ~48!

np~0.5!.1.0, np~0.75!.1.0, np~1!.1.0, ~49!

for the percolation quantities, and

Tc~0.5!.1.24, Tc~0.75!.0.972, Tc~1!.0, ~50!

g~0.5!.1.75, g~0.75!.1.75, g~1!.1.51, ~51!

n~0.5!.1.0, n~0.75!.1.0, n~1!.1.0 ~52!

for the thermodynamic quantities. We note that
Tp(X).Tc(X) within the estimated numerical precision.

FIG. 9. The data collapsing for mean cluster sizeS of AFF models for systems withX50.5, 0.75, 1.0 and number of sizesL. The data
have been obtained by using the cluster dynamics discussed in Sec. VIII B.
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Furthermore the same critical exponents control the diver-
gence of percolation and spin propertiesgp(X)5g(X) and
np(X)5n(X) for all X values butX51. In theX51 case we
find n(1)Þnp(1)51.0 andg(1)Þgp(1)52.0. This result
arises from the fact that the conditionu^SiSj&u5^g i j & is sat-
isfied only approximately@36#. The value ofTc(X), g(X),
and n(X) are in agreement with the exact solution which
givesTc(0.5)51.239..., Tc(0.75)50.972..., Tc(1)50 @32#,
n51 andg57/4 for XÞ1, n51 andg53/2 for X51. It is
worth noting that different choices of the clusters which do
not satisfy Eq.~28! as the unmodified FK-CK clusters sys-
tematically giveTp.Tc and percolation critical exponents
consistent with those obtained in the random percolation
@21,22#.

A. Fractal structure

We have analyzed the cluster structure atT.Tp(X)
.Tc(X) @20,35#. For XÞ1 we have found that a typical
configuration of critical clusters is a fractal made of a back-
bone and dangling bonds. The backbone is made of links and
blobs as found in the ferromagnetic Ising model@34# where
the fractal dimension of the entire cluster was found to be
equal toD51/2(g/n1d) which for dimensiond52 gives
D515/8 and the fractal dimension of the links or red bonds
was found equal toDR513/24.

For the symmetric fully frustrated modelX51 the struc-
ture changes drastically. In fact all the clusters are made of
self-avoiding chains with fractal dimension given by the
scaling relationD51/2(gp/np12). Using the numerical re-
sultgp.2.0 andnp.2.0 we find numericallyD.2 in agree-
ment with the result of Ref. BADK, Coddington, Kerler that
for T50 predicts two percolating self-avoiding chains which

fill up the entire system. It is interesting to note that if the
approximation could be improved such that the condition~9!
would be exactly satisfied we would obtaing5gp57/4 and
n5np51. In the plausible event that the exact clusters are
still self-avoiding chains the fractal dimension would be
D57/4 identical to the fractal dimension of a self-avoiding
random walk at theu point @37#.

VII. ISING SPIN GLASS

The most complex and interesting model in the class of
spin systems described by the Hamiltonian~1! corresponds
to the case in whiche i j is a random variable: this introduces
quenched disorder together with frustration. We have studied
the6J Ising spin glass, in the case of a square lattice with
the probability distributionp(e i j )5kde i j ,211(12k)de i j ,1

where k is the concentration of antiferromagnetic interac-
tions. The phase diagram of such system was described by
Ozeki @38# and exhibits at low temperature a paramagnetic-
ferromagnetic transition if the concentration of antiferromag-
netic interactionsk is enough diluted~i.e., if 0<k<k0, with
k0;0.1!, otherwise there is a spin-glass transition at zero
temperature~i.e., if k0<k<0.5!. The casek51/2 correspond
to the Edwards and Anderson~EA! model @24#.

As in the AFF case, we partition the lattice in square
plaquettes of four spins. The system is then characterized by
two kind of plaquettes: frustrated and unfrustrated. Frus-
trated plaquettes are those with one or three antiferromag-
netic interactions@28#. We have analyzed such cases in Sec.
VI where we have obtained the probabilitiesP(cau$Si%) for
the bond configuration,ca , given a configuration of spin
$Si% @see Eqs.~22! and~46!#. We note that the weights given
in Eq. ~46! for a frustrated plaquette containing three ferro-

FIG. 10. The data collapsing for susceptibility for the AFF model, with the same values ofX andL as in Fig. 9.
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magnetic and one antiferromagnetic interactions only depend
on the interactions satisfied. Therefore the same weights can
be used for the frustrated plaquette containing an odd num-
ber of antiferromagnetic interactions. We have used the un-
modified KF-CK weightsp512e22Jb for the unfrustrated
ones@Eq. ~45!#.

In order to compare the results obtained using the
plaquette of four spins as a unit~we call this choice second-
order approximation! with those obtained by using the single
pair of spins as unit~first-order approximation! we have
simulated the model with both standard spin-flip MC dynam-
ics and the cluster MC dynamics which we will discuss in
Sec. VIII C. The percolation quantities which we have mea-
sured,Tp , gp , andnp , do not depend, within our numerical
accuracy, on the dynamics used.

In the case of EA model~k50.5!, we have found a per-
colation temperatureT p

(2).1.40 higher than the critical tem-
peratureTc50, but lower than that obtained with the un-
modified KF-CK clusters whereT p

(1).1.80 @10#. We have
also estimated the percolation critical exponentsnp andgp
via a data collapsing~see Fig. 11!, obtaining the values
np.1.33 andgp.2.36, which are consistent with the ran-
dom bond percolation valuesnp54/3 andgp543/18.

We have also studied the region of lowk whereTc is
finite and the transition is ferromagnetic@38#. In Fig. 12 we
showT p

(1)(k), T p
(2)(k), andTc(k) for 0<k<0.1 andk50.5.

The values have been obtained after a data collapsing for the
mean cluster sizeS @Eq. ~19!# and susceptibilityx, respec-
tively. It is clear from Fig. 12 that the percolation tempera-
ture T p

(2)(k) is again lower than the one obtained for un-
modified KF-CK clustersT p

(1)(k), and higher than the
critical temperatureTc(k); for values k>0.1 percolation
temperatures slowly decrease reaching thek50.5 value:
T p
(1)(0.5).1.8 andT p

(2)(0.5).1.4, whileTc abruptly goes to
zero @38#.

From this analysis it comes out that neither the unmodi-
fied KF-CK clusters nor our clusters are able to correctly
represent spin correlations in spin glass systems. However,
since the percolation temperatureT p

(2),T p
(1) one might ex-

pect that a systematic improvement can be obtained if larger
elementary units are used~Fig. 2!.

VIII. MONTE CARLO DYNAMICS ASSOCIATED
TO PERCOLATION MODELS

It is possible to apply the general definition of cluster
given above, to develop general MC cluster dynamics. The
clusters are constructed assigning to each elementary unit
one of the possible bond configurations according to the
probability given in Eq.~22!. Then the usual SW algorithm
can be applied to the clusters described above. Following
Ref. @14# it can also be proven that detailed balance holds
~see Appendix!.

A. Decorated Ising model

We partition the original square lattice in plaquettes as
described in Sec. V, and use the clusters defined there. With
that cluster definition we have implemented the SW general-
ized cluster dynamics.

We have estimated the percolation temperatureTp.2.25
and the percolation critical exponentsgp.1.77 andnp.1.
The values obtained are indistinguishable from those ob-
tained by using spin-flip MC dynamics reported in Sec. V.
We have also estimated the corresponding thermodynamic
quantitiesTc.2.24,g.1.78, andn.1.05 which are consis-

FIG. 11. The data collapsing for mean cluster sizeS for EA spin
glass model for systems with sizeL548, 64, 80, 100. Critical ex-
ponents and temperature are also reported.

FIG. 12. The critical temperatureTc(k), the percolation tem-
peratureTp

(1)(k), for unmodified FK-CK clusters, and the percola-
tion temperatureTp

(2)(k), for the clusters discussed in Sec. VII,
versus the antiferromagnetic interactions concentrationk for an
Ising model with variable antiferromagnetic interaction concentra-
tion. The arrows show the values ofk50.5. The data reported have
been extracted by data collapsing of mean cluster size,S, and sus-
ceptibility x ~see text!. The cluster dynamics used is described in
Sec. VIII C.
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tent with a ferromagnetic Ising critical point within our nu-
merical accuracy.

In order to study the relaxation times we have computed
the time dependent magnetization correlations

f~ t !5
^uM ~ t !M ~ t8!u&2^uM ~ t8!u&2

^M ~ t8!2&2^uM ~ t8!u&2
, ~53!

whereM (t) is the magnetization at timet. Using the new
cluster dynamic we find a dramatic reduction of the slowing
down which is present for the standard SW dynamics. The
new dynamics has critical autocorrelation times of about 10
MCS ~Monte Carlo step per spin!, whose order of magnitude
is comparable to those of the standard SW dynamics for a
ferromagnet of the same size at criticality. On the contrary
standard SW algorithm on the decorated Ising model shows
very large correlation times atTc ~see Fig. 13!. Our ap-
proach, then, reduces the critical slowing down in this sys-
tem when compared to standard SW and local spin flip dy-
namics.

B. AFF model

We partition the original lattice in elementary units as
described in Sec. VI and use bond configurations and the
associated probabilities introduced there to define clusters.
With such cluster definition we have then implemented a SW
generalized cluster dynamics. We have estimated percolation
quantitiesTp(X), gp(X), and np(X) for X50.5, 0.75, 1.0
obtaining values indistinguishable from those calculated by
using spin-flip MC dynamics. We have also computed the
critical temperatureTc(X) and critical exponentsg(X) and
n(X).

In order to study the relaxation times of our SW general-
ized cluster dynamics we have calculated the magnetization
correlation function~53! versus Monte Carlo sweeps at the
critical temperatureTc(X). It shows a dramatic reduction for
all theX values which we have studied (X50.5, 0.75, 1.0)

FIG. 14. The relaxation timet versus system sizeL for the AFF model~Sec. VI! with X50.5, 0.75. Assuming a power law scaling
t5kLz the estimated values ofz(x) arez(0.5)50.30 andz(0.75)50.46. Logarithms are in base 10.

FIG. 13. Correlation function,f(t), as a function of time~MC
steps per spin! for the decorated Ising model introduced in Sec. V at
T51.6 and for a system sizeL532. Two MC dynamics are com-
pared: unmodified FK-CK cluster dynamics~dashed line! and the
cluster dynamics introduced in Sec. VIII A~full line!.
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with respect to SW unmodified CK-KF cluster and local MC
dynamics. For a quantitative analysis of the critical dynamic
exponentz(X) at Tc(X), we have calculated the integrated
autocorrelation timet using the self-consistent procedure
suggested in Ref.@39# with a window equal to 6. This
method allows us to calculatet for different system sizeL in
a consistent way. We found a power law scaling of the form
t5kLz as shown in Fig. 14. The estimated values ofz(X)
for X50.5,0.75 arez(0.5).0.30 andz(0.75).0.46. The re-
sult definitely shows a strong systematic reduction of the
critical dynamic exponent compared with those of standard
MC dynamics. These results seem to indicate that the crite-
rion to let Tp(X) as near as possible toTc(X) ~we have
previously showed the coincidence of these two temperatures
for these models!, allows us to individuate efficient cluster
dynamics. It is worth noting that even in the caseX51 when
Tp5Tc50, np5n51, andgp.g the cluster dynamics ex-
hibits a drastic reduction of the critical slowing down. Nev-
ertheless, our analysis suggests that, forX51, it is possible
improve further this result considering larger units as starting
point of the proposed procedure.

C. 6J Ising SG model

The panorama is more variegated in the more complex
case of Ising spin glass with varying ferromagnetic interac-
tions concentrationk. This model exhibits in 2D a
paramagnetic-ferromagnetic transition for 0<k<0.1 and a
spin-glass transition for 0.1<k<0.5. Analogously to the
other presented cases the cluster dynamic is realized by using
the clusters defined in Sec. VII. For frustrated plaquettes we
have used the probabilities calculated in Sec. VI forX51

@Eqs. ~46! and ~22!#, while for unfrustrated plaquettes we
have used unmodified KF-CK clusters@Eqs.~45! and ~22!#.

To check our simulation, we measured thermodynamic
functions as energyE and specific heatCv @40#. They repro-
duce known data in literature up to a temperature,Tf , under
which our MC cluster dynamics freezes. We have also esti-
matedTp , gp , and np obtaining good agreement with the
values obtained by using spin-flip MC dynamics.

We have already noted that in Ising spin glasses the per-
colation temperature of unmodified KF-CK clusters,
T p
(1)(k), is higher than the percolation temperature,T p

(2)(k),
of the clusters defined in Sec. VII: we have

Tp
~1!~k!>Tp

~2!~k!>Tc~k!, ~54!

whereTc is the thermodynamical critical temperature. The
equality holds only fork50 and 1~ferromagnetic and anti-
ferromagnetic case, respectively!.

It is possible to summarize the results in this way: ask
departs from the ferromagnetic Ising modelk50, relaxation
times for temperature close to the critical temperatureTc(k)
get longer, and in the region where ferromagnetic phase dis-
appears~0.1<k<0.5!, they become extremely long, even if
always shorter than those of both standard SW cluster dy-
namics~unmodified KF-CK clusters! and local spin-flip dy-
namics.

Along the paramagnetic-ferromagnetic transition line@i.e.,
at Tc(k) with 0<k<0.1# we have estimated the critical au-
tocorrelation timet~k!, defined as the time to reduce square
magnetization correlation to 1/10 of its value att50. These
results are shown in Fig. 15 for a square lattice of size
L532.

In the region where the ferromagnetic phase disappears
~0.1<k<0.5! and the SG transition takes over atTSG50, our
simulations get worse. We have studied for the casek50.5
the following relaxation function

q~ t !5
1

N (
i

^Si~ t0!Si~ t1t0!& ~55!

as a function of time~Monte Carlo step! for systems whose
size is L580, 90, 100. Due to very long autocorrelation
times we were able to perform simulation up toTf.0.8.
Averages in Eq.~55! were taken over~1–4!3104 MCS dis-
carding the first 53103 MCS. We observed that relaxation
time of our cluster dynamics aboveTf is at least one order of
magnitude lower than that of a standard spin-flip dynamics
~see Fig. 16 and, for comparison, Ref.@41#!.

In conclusion, in the case of spin glass we see that to a
lowering of the differenceuTc2Tpu corresponds a reduction
of the relaxation times. However, there are indications that
such a reduction exists only forT.Tf . Our results suggest
that taking a partition of the lattice made by larger ‘‘elemen-
tary’’ units the procedure we have discussed define clusters
whose percolation temperature is closer to the critical tem-
perature of the original spin model. The associated cluster
dynamics is expected to be characterized by shorter autocor-
relation times. Work is in progress in this direction.

FIG. 15. The relaxation timest versus antiferromagnetic inter-
actions concentrationk at T5Tc

0(k) for the Ising model with vari-
able antiferromagnetic interactions of sizeL532. T5Tc

0(k) is de-
fined as the temperature at which the susceptibility of a system of
size L532 gets its maximum. Two MC dynamics are compared:
unmodified FK-CK cluster dynamics~squares! and the cluster dy-
namics introduced in Sec. VIII C~triangles!.
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IX. SUMMARY

In this paper we have discussed a general scheme for
devising efficient MC cluster dynamics for spin models. The
scheme is based on three main steps. The first one consists in
choosing a partition of the lattice into ‘‘elementary units.’’
Then, using a method first introduced by Kandel, Ben-Av,
and Domany@14# which is based on independent choices on
each elementary unit, it is possible to define a vast class of
cluster models whose free energy is identical to the original
spin model. Finally, among the many cluster models it is
possible to choose the one which satisfies at the best the
equality between cluster connectivity and spin correlation
@cf. Eqs.~9! and~28!#. This procedure defines clusters which
can be used to implement a MC cluster dynamics. We have
applied this method to a number of 2D frustrated spin mod-
els taking as elementary unit a single plaquette. We show
that every timeTc.Tp ~i.e., the thermodynamic critical tem-
perature of the spin modelTc is equal to the percolation
temperature for the equivalent percolation model! the asso-
ciated MC cluster dynamics is characterized by very small
autocorrelation times and a critical dynamic exponentz
much smaller than the one obtained in local~Metropolis! MC
dynamics. We have also shown that in the more complex
case of a spin glass where disorder is added to frustration the
percolation temperatureTp results larger than spin glass tem-
peratureTSG and the percolation critical exponent are con-
sistent with random bond percolation exponents. However,
we see that in this case the percolation temperature can be
decreased up toTp.1.4 using a lattice partition based on a
single plaquette. This result suggests that taking larger el-
ementary units, like the ones in Fig. 2~d!, Tp can be further
reduced. Then, we still find a lowering of the autocorrelation
time forT.Tf.0.8, but, this time, there are no indication of
a lowerz compared to standard Metropolis dynamics.

In conclusion our procedure allows for a systematic de-
crease of the autocorrelation times and, therefore, may serve
as a general framework for the development of efficient MC
dynamics in frustrated spin models.

APPENDIX

The aim of this appendix is to show that the MC dynam-
ics defined in Sec. VIII satisfies detailed balance. Following

Ref. @14# we show that provided the mapping fromH to H̃
@see Eq.~16!#, a MC dynamic which verifies detailed balance
principle for H̃ verifies it also forH. In particular after ex-
ecuting a freezing and deleting operation on the original spin
system, we can implement with the built clusters a cluster
dynamic based, for example, on random flipping of indepen-
dent clusters as in SW procedure. This is possible because
such a dynamics certainly satisfies the detailed balance prin-
ciple and is generally ergodic at finite temperature.

To prove that detailed balance is respected, let us make
the following preliminary considerations. We can rewrite the
relation ~16! as

(
a~ l !

wa~ l !e
2bH̃l ~$Si %,ca~ l !!

e2bHl $Si % 51. ~A1!

This is the normalization condition for the conditioned prob-
ability to have the bond configurationca( l ) on the l th el-
ementary block, given the spin configuration$Si% on the sys-
tem, i.e., Eq.~A1! expresses the normalization condition for
the

P~ca~ l !u$Si%!5
wa~ l !e

2bH̃l ~$Si %,ca~ l !!

e2bHl $Si % . ~A2!

Since the choices on the elementary block are independent,
the probability of the bond configurationC on the whole
system, given the spin configuration$Si%, is the product
P(Cu$Si%)5P lP(ca( l )u$Si%).

To obtain detailed balance principle, we must impose the
following condition:

e2bH~$Si %!T~$Si%→$Si8%!5e2bH~$Si8%!T~$Si8%→$Si%!,

~A3!

whereT($Si%→$Si8%) is the transition probability from state
$Si% to state$Si8%.

By definitionT($Si8%→$Si%) may then be written as

T~$Si8%→$Si%!5(
C

P~Cu$Si8%!T̃C~$Si8%→$Si%!, ~A4!

FIG. 16. The relaxation function,q @see Eq.
~79!#, for Ising SG model versus time~MC steps
per spin!. The temperatures reported are, from the
bottom to the top,T51.4, 1.3, 1.2, 1.1, 1.0, 0.9,
0.8 and the system sizes are:L580, 90, 100.
The cluster dynamics used are described in Sec.
VIII C.

54 187PERCOLATION AND CLUSTER MONTE CARLO DYNAMICS FOR . . .



where T̃C($Si8%→$Si%) is the transition probability associ-
ated with the dynamic that we use on the dilute system with
the HamiltonianH̃ ~for example, this dynamic may be the
simple random flipping of independent clusters!. Generally,
let us suppose that theT̃C($Si8%→$Si%) respects the detailed
balance principle, i.e.,

e2bH̃~$Si8%,C!T̃C~$Si8%→$Si%!5e2bH̃~$Si %,C!T̃C~$Si%→$Si8%!.

~A5!

Therefore, from Eq.~A4! and the definition ofP(Cu$Si%),
we have

T~$Si8%→$Si%!

5(
C

S )
l

wa~ l !e
2bH̃l ~$Si8%,ca~ l !!

e2bHl $Si8% D
3T̃C~$Si8%→$Si%!, ~A6!

that, using Eq.~A5!, becomes

T~$Si8%→$Si%!

5(
C

S )
l

wa~ l !e
2bH̃l ~$Si %,ca~ l !!

e2bHl $Si8% D
3T̃C~$Si%→$Si8%!. ~A7!

Now, multiplying and dividing fore2bH($Si %), we obtain

T~$Si8%→$Si%!

5
ebH~$Si %!

e2bH~$Si8%! (
C

S )
l

wa~ l !
l e2bH̃l ~$Si %,ca~ l !!

e2bHl $Si % D
3T̃C~$Si%→$Si8%!, ~A8!

and by Eq.~A4! and the definition ofP(Cu$Si%), we get

T~$Si8%→$Si%!5
ebH~$Si %!

e2bH~$Si8%!
T~$Si%→$Si8%!. ~A9!

This expression is Eq.~A3! and therefore the validity of the
principle is demonstrated@14#.

Summarizing, the main assumptions underling this proof
consist in supposing that we can write the Hamiltonian as
sum on elementary blocksH5( lHl , the choices on the el-
ementary blocks are independent from each other and we are
using a dynamics for the dilute systemH̃ that respects the
detailed balance principle.

In particular a generalized cluster MC dynamics may be
implemented with the following steps: individuate the clus-
ters with ‘‘freezing and deleting’’~i.e., to mapH into H̃!;
random flip of such clusters~this move certainly verifies de-
tailed balance because clusters are not interacting inH̃!, and
iterate.

About the ergodicity we can say that the cluster dynamics
here described is certainly ergodic for every finite tempera-
ture, because the probability to go from a given spin configu-
ration to any other is always different from zero for every
nonzero temperature. In general ergodicity at zero tempera-
ture is difficult to prove: it must be checked specifically in
each particular case. Nevertheless it is possible to guarantee
ergodicity also in such extreme conditions, alternating clus-
ter moves with a dynamics that certainly is ergodic at this
temperature, without changing the qualitative features of the
cluster dynamics@14#.

In conclusion, we have proven that adopting the proposed
mapping of Hamiltonians, and in particular for our general
definition of clusters, it is possible to develop MC dynamics
which verify detailed balance principle.
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