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Nonadiabatic resonances in a noisy Fitzhugh-Nagumo neuron model

S. Ripoll Massane´s* and C. J. Pe´rez Vicente†

Departament de Fı´sica Fonamental, Facultat de Fı´sica, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain
~Received 23 July 1998; revised manuscript received 12 October 1998!

We have analyzed the response of a noisy Fitzhugh-Nagumo neuronlike model~FN! to subthreshold external
stimuli. In contrast to previous studies we have focused our attention on high-frequency signals which could be
of interest for real systems such as nervous fibers in the auditory system. We show that the noisy FN behaves
as a stochastic oscillator with a characteristic time scale whose effects remain in a wide range of situations. In
the nonadiabatic regime of frequencies considered in this work we report several resonant behaviors which
resemble those of classical deterministic oscillators but never the typical stochastic resonance phenomenon so
often observed for low-frequency signals.@S1063-651X~99!01304-5#

PACS number~s!: 87.19.La, 87.10.1e, 05.40.2a, 05.20.2y
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I. INTRODUCTION

The analysis of the time-dependent properties of syst
made up of excitable units is essential to understand the
sic mechanisms that govern their dynamical evolution. I
also the natural bridge that allows one to compare exp
mental data with results obtained from theoretical mod
Neural systems are perhaps the most representative and
ied examples. Any realistic model aimed at reproducing
typical behavior of an ensemble of neurons or just an i
lated unit must take into account several observed featu
One of them is the high degree of variability or irregular
in the spike trains@1#. An appropriate balance between exc
tation and inhibition is required to achieve it, otherwise t
interspike interval~ISI! distribution displays a nonrealisti
regularity@2,3#. Moreover, it helps to keep the system firin
with a low level of activity as well as to maintain a spont
neous activity even in the absence of external stimuli@4#.

Noise is another factor that must be incorporated in a
realistic description of excitable systems. Stochasticity,
to the Brownian motion of ions in a temperature bath, co
ductance changes induced by the random opening and
ing of ion channels or simply because of the random relia
ity of synaptic buttons, just to cite some reported examp
play a relevant role in neural signal transmission. Howev
it would be wrong to think of an intrinsic source of random
ness as an ingredient that could systematically worsen
computational properties of real systems. It is well kno
that the cooperation between noise and signal may indu
positive effect on the global features of nonlinear units
improving their ability to detect external subthreshold s
nals. Furthermore, the strong dependence of the ISI hi
gram shape on the noise strength indicates its importa
when determining the variability of the firing pattern.

Recently, several authors have shown that without ex
nal inputs coherence in the response of a neuron mod
maximized for an optimal value of the intensity of noi
@5–7#. Such coherence or regularity defines a character
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time scale that always underlies and does affect the dynam
of the unit even in the presence of continuous stimuli. Not
that a high degree of coherence could be against the af
mentioned variability since it may give rise to an undesira
robustness, preventing the system from inducing change
the firing rate and as a consequence to transmit little in
mation from the environment. In fact, in this context th
process of maximizing the transferred information is equi
lent to minimizing the overlap between signal and bac
ground spike distributions@5#.

The goal of this paper is to analyze in detail these effe
for a Fitzhugh-Nagumo~FN! neuronlike model. We have
chosen this system because there is a large number of re
works considering its noisy response in front of either pe
odic and nonperiodic inputs and in this way we can mak
comparison with them. We will determine the characteris
time of the system derived from the maximal observed le
of coherence and we will establish also a relationship w
the concept of stochastic resonance~SR! @8#. In contrast to
many recent studies@9#, we are not interested in the low
frequency limit where signals are so slow that an adiab
approximation can be applied to get analytic results. We
cus our attention on a more realistic situation, in the effec
high-frequency signals, comparable with the intrinsic per
of the model, whose analysis may be relevant for some
systems such as the auditory system@10#.

The paper is structured as follows. Section II is devoted
the formal description of the model. In Sec. III we analy
the stochastic FN oscillator and determine the typical per
of the system. The response of the model to high-freque
external stimuli is considered in Sec. IV. Finally, there is
short section devoted to conclusions and future work.

II. THE MODEL

In this paper we have considered a standard FN mo
whose dynamical behavior is governed by the following d
ferential equations:

e
dv
dt

5v~v2a!~12v !2w1I , ~1!
4490 ©1999 The American Physical Society
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dw

dt
5v2pw2b, ~2!

wheree fixes the time scale of the fast variablev ~voltage!,
w is the slow ~recovery! variable, I represents an externa
applied current, anda, b, andp are constants whose value
determine the stability properties of the system. Furtherm
a noise termg(t) can be added to the right-hand side of E
~1! as well as a forcing termF(t). For an extensive analysi
of the dynamic behavior of the model, see@11,12#. Through-
out the paper we have fixed the values of the constant
a50.5, b50.15, p51.0, ande50.005 in order to compare
our results with other previous studies on the same mo
@9,13–15#. The currentI will also be considered constant. I
the deterministic case a subthresholdI leads the system to
fixed point located at a well-controlled distance from t
firing point. This is an approximate way to mimic expe
mental observed facts performedin vivo where it has been
shown that, after firing, neurons return very quickly to
operative point very close to the threshold@16#. In this way,
individual neurons have the ability to switch very fast from
resting state to an excited state in front of a selective exte
stimulus. For a suprathreshold constant current the sys
behaves as an oscillator.

III. COHERENCE INDUCED BY NOISE

In this section we analyze the effect of noise on the tim
dependent properties of the system. At this stage no de
ministic forcing termF(t) is considered, only a subthresho

FIG. 1. Power spectrum for several values ofD for the pure
stochastic FN neuron without external stimulus.
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input current that hereafter, and in order to compare w
previous results, has been fixed toI 50.04 so that noise is the
only agent that causes the FN neuron to fire. There are
eral ways to model the features of the noise being, in te
of Poissonian shot noise@17# or uncorrelated Gaussian whit
noise, the most frequent. We have considered the last op
by assuming a Gaussian random process of intensityA2D.
As usual, the response of the system is measured in term
a series of spikes,O(t), instead of considering the whol
evolution of the fast variablev. In this way, we get rid of
subthreshold oscillations and other time structures that
not convey information. Our analysis is performed by usi
three different standard measures: the power spectrum o
spike train, the normalized interspike histogram ISIH,w, and
the autocorrelation time of the output.

The response strongly depends on the intensity of noisD
as we can see from the group of pictures shown below. F
ure 1 displays the power spectrum for several noise inte
ties. For smallD the background is almost uniform with n
apparent structure. However, as the noise intensity increa
the contribution of intermediate frequencies becomes m
important in contrast to the lowv range, which is much
weaker because it is easier to induce firings. The posit
height, and width of the broad peak in the power spectr
depends on the noise intensity. Measures of coherence
fined in @7# as the product of the height of the peakH to its
quality factorQ as

b5HQ, Q5
np

Dn
, ~3!

FIG. 2. ISI histograms for several noise intensitiesD for the
pure stochastic FN neuron without external stimulus.
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4492 PRE 59S. RIPOLL MASSANÉS AND C. J. PE´ REZ VICENTE
wherenp is the frequency of the peak andDn is the width at
the half-maximum height, are maximized for a noise inte
sity nearD58.031026 ~data not shown!. For this noise in-
tensity the maximal contribution to the power spectra com
from a region centered aroundnR'0.85. Therefore, this firs
analysis shows the existence of a noise-induced charact
tic time scale which causes the system to behave as a
chastic oscillator. This is the fingerprint of the so-called c
herent resonance phenomenon~CR! @6#. It is straightforward
to think of nR as the natural candidate for which a classi
resonant process takes place.

Figure 2 shows the ISI distribution for different values
D. Now, the different regimes are more evident. For sm
noise, the distribution is very broad and asymmetric, wh
confirms the continuous flat power spectrum found in Fig
while for largeD the ISIH peak becomes more pronounce
Notice that while the mean value of the distribution is qu
variable and changes more than one order of magnitud
the selected range ofD, the most probable value~MPV!
changes very little. A close analysis of the noise depende
of the MPV ~see Fig. 3! shows a logarithmic relation withD.
This fact is important because the MPV turns out to be
very robust quantity that gives information about the inter
clock of the system and whose effects remain even in
presence of a signal, as we will see later. It is also resp
sible for the main peak observed in the power spectr
shown above becoming the representative parameter o
distribution. In the limit of largeD the ISI distribution tends
to be symmetric and the mean and the MPV tend to the s
value.

FIG. 3. Most probable value of the ISI histogram for the pu
stochastic FN neuron vs the noise intensity.
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Finally, as a complement of the previous discussion let
mention that we have also analyzed the autocorrelation fu
tion of the series of spikes following the scheme proposed
@6#. Again a peak for a noise intensity nearD58.031026

confirms the existence of the characteristic time scale typ
of CR as we could expect from the Wiener-Khinchin the
rem. However, we want to point out several comments ab
this phenomenon. The total periodtp between consecutive
firings is split in two times: the activation timeta and the

FIG. 4. Excursion time versus activation time for the pure s
chastic FN neuron without external stimulus for a noise intens
D58.031026.

FIG. 5. Power spectrum for several values ofD for the stochas-
tic FN neuron when an external sine wave stimulus with periodT
5TR is applied.
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FIG. 6. Power spectrum for several values ofD for the stochastic FN neuron when an external sine wave stimulus with periodT53.0
~above! andT540.0 ~below! is applied.
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excursion timete . In @6# a theory is presented, based o
several important assumptions. First, that the excursion t
is much larger than the activation time, so that a theory fotp
can be accounted for by analyzing just the motion of
slow variable, as in@18#. Figure 4 shows that for the range o
parameters used in this paper this is a crude approxima
since both are of the same order of magnitude (ta is even
slightly larger thante). A possible theoretical alternative i
to realize that the ISIH follows an inverse Gaussian distri
tion @18#

w~ t !5S l

2p D 1/2

t23/2e2l~ t2m!2/2m2t, ~4!

where ^w&5m, sD
2 5m3/l, and the MPV, tMP5

23sD
2 /2m@12A11 4

9 (m/sD)4#. Then, assuming the outpu
of the model as a Markovian shot-noise process and the
malized ISIH as its renewal density, the autocorrelation fu
tion of the outputC(t)5^O(t)O(t1t)& can be written in
the Laplace space as

C̄~s!5
1

2mF11w̄~s!

12w̄~s!
G2

1

ms
~5!

and by using simple transformations it can be shown tha
e

e

on

-

r-
-

S~v!52 Re@C̄~ iv!#. ~6!

In this way, it is possible to find all the relevant quantities
using usual tools of stochastic processes. A good review
be found in @19#. On the other hand, it is not clear at a
whether CR defines a useful and realistic scenario for sig
transmission. In fact, when optimal CR takes place, the
distribution is far from being Poissonian and the high reg
larity displayed in Fig. 2 poses serious doubts about the p
sible modulation of the firing rate elicited by an extern
stimulus. This is one of the main issues of the next secti

IV. PERIODIC SIGNAL MODULATION

Let us discuss some of the open questions raised in
preceding section. Our first goal is to verify the existence
a classical resonant effect. Keeping this goal in mind,
have included a forcing periodic external signal of small su
threshold ~in the absence of noise! amplitude and period
TR51/nR'1.2. Figure 5 shows again the power spectru
for several values of the noise intensity. Let us remark s
eral points. First, as we could expect, there is a clear non
ear effect since there is a strong magnification of the con
bution of nR to S(n), in fact, more than two orders o
magnitude with respect to the free signal case and one o
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of magnitude with respect to any other periodic signal, as
can see in Fig. 6. The resonant effect is observed in a la
range of values ofD, which means that the system is ve
robust whenTR induces its rhythmic response. Moreover,
contrast to typical SR, the magnitude of the resonance is
monotonic with the frequency but there is an optimal va
for the frequency of the external input for which the effect
magnified. This fact resembles the typical classical resona
phenomenon observed in deterministic oscillators. The o
mal value for the frequency is that of the internal clock wh
the pure stochastic FN shows the CR effect.

It is interesting to notice that the highest peak in t
power spectrum is found for a noise intensity different fro
that observed for CR in the signal-free case. To underst
this fact, which at first glance might seem very surprising,
us look at Figs. 7 and 8, where we have paid special atten
to the correlation time between signal and output. In Fig
we can see that while forD58.031026 there is a clear 1:1
synchronization, forD52.031026 the system fails to follow
the signal quite often. However, according to the pow
spectrum, the model responds more coherently in the sec
case. The firing phase histogram shown in Fig. 8 expla
this apparent paradox and also sheds some light on the
ticular structure of the firing pattern. When the optimal C
noise (D58.031026) induces the rhythmic activity of the
neuron, there is a complete modulation of the signal keep
accurate information about its particular shape, not only
the half positive part of the cycle but also in the negat
region. These results are also reflected in the normal
correlation input/output firing rate evaluated as
@9#, which has its maximum at the aforementioned value
the noise intensity, see Fig. 8.~Note that in this context, the

FIG. 7. Temporal evolution of the fast variablev for D52.0
31026 andD58.031026 when the period of the external signal
TR51.2.
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temporal window used to evaluate the firing rate has to
narrower as the firing rate grows in order to keep hig
frequency changes. Therefore, this measure is highly de
dent on the width of this window, which should be adjust
to a value of the order of the typical ISI or lower.! It is clear
that in the lower noise case we cannot say the same as
output does not carry information about the details of
signal in the half negative part of the periodic forcing. No
let us consider only the positive half part of the cycle. Wh
in the first case the FN neuron firing is distributed among
the phases following the original shape of the external sig
in the second case, this shape is deformed in such a way
a narrow interval which coincides with the maximum val
of the periodic stimulus is overvalued. The net effect is th
for small D there is a large contribution to the spectru
coming from a reduced set of frequencies while for largeD
the effect is broadened. From our point of view, this is cle
proof that measures of the signal-to-noise ratio~SNR! based
only on the height of the peak are misleading when refer
to signal information transmission.

Let us make a prediction about the minimalD required to
observe firings in the negative part of the cycle, at least in
1:1 synchronization regime. The condition is fulfilled whe
the half-period of the signal is of the same order of mag
tude as the fluctuationssD of the firing events~width of the
ISIH! induced byD. If sD is too large, noise dictates th
firing times almost independently of the input, and con
quently a spike can occur anywhere without signal cont
On the other hand, ifsD is too small the system become
very robust and a weak external signal is not able to mo
late the firing train enough. It is whensD approximately

FIG. 8. ~Top! Normalized correlation input/output firing rateC1

vs the noise intensityD. ~Bottom! Phase histograms of the series
spikes for D52.031026 and D58.031026. The period of the
external signal isT51.2 in both cases.
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matches the half-period of the forcing that the external sig
can modulate the firing probability in one period leading
the best possible information transmission. Notice that
cording to these arguments the optimal input/output corr
tion depends strongly on the period of the signal and a
consequence there is not just one single optimal value
DT ; in fact, it is a function ofT. When analyzing signal-free
simulations, the prediction indicates that the noise intensi
required to better transmit external signals of different pe
ods are (T540,D'1.031026),(T53,D52.03102624.0
31026), and (T51.2,D'8.031026), which are in good
agreement with the values observed in Fig. 6 and from fir
phase histograms.

In addition, let us remark on another aspect that makes
behavior of the system different from other situations
ported in the literature. One of the relevant features of SR
that the best response of the system is reached when
mean output of the unit matches the period of the exte
signal@8#. In contrast, here, as the MPV of the ISI histogra
becomes almost fixed, we can only modulate the magnit
of the fluctuations of the output firing train becoming t
relevant parameter of the firing distribution. These results
not in contradiction with those reported in previous pap
@8,9,14,15# because one of the most extended assumpt
included in any theory about SR is to consider slow sign
which allows us to introduce adiabatic approximations. T
ISI distribution is very broad and nearly symmetric in th
limit. Then the MPV becomes irrelevant, but these appro

FIG. 9. ISI histograms for several noise intensitiesD for the
stochastic FN neuron when an external stimulus of periodT5TR is
applied.
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mations are not valid in the high-frequency regime. A diffe
ent situation may arise for a population of neurons work
in parallel, as has been reported in@13#. This study is cur-
rently in progress.

We have also analyzed the modulation induced by
presence of the signal from the set of ISI’s, see Fig. 9.
small values ofD we observe the typical multimodal struc
ture with peaks located at multiples ofTR . As D increases,
such structure fades out leading to a single peak, much
rower than in the free signal case, which displays the on
where 1:1 synchronization takes place. As a conseque
the mean value of the distribution is very sensitive to t
action of the external stimulus while the MPV hard
changes, remarking again that the natural period of the
tem is very robust. Furthermore, there is another differe
between this phenomenon and the typical SR. The reso
regime in this case is not reached when the ISI distributio
multimodal but when all the modes collapse in the first o
Measures of the height of the first peak of this distributi
also show a maximum for a noise intensity nearD58.0
31026.

It is also interesting to analyze another behavior when
system is forced with smaller frequency signals. First of
we have considered an intermediate valuen5 1

3 , far enough
from nR to neglect the nonlinearities induced by the reson
effect but large enough to induce strong modulation in
small D regime. Figure 10 shows the ISIH forD51026

showing an interesting structure not commented upon pr
ously in the literature and which is almost identical to th
observed from a single auditory nerve fiber of a squir
monkey @10#. In addition to the standard peaks at appro
mately period multiples of the forcing signal, a new peak
higher frequency comes out which precisely matches
natural period of the systemTR . Notice that this peak was
absent in@10# but not in the original figure coming from
experimental data, which suggests that realistic mod
should give evidence of the existence of its characteri
time even in the subthreshold regime. Such a fingerprint
mains except for extremely small noise intensities. The no
intensity required to match the experimental data is low
than that required to better transmit the forcing signalT
53.0). This fact reinforces again the idea that when

FIG. 10. ISI histogram for a noise intensityD51.031026 for
the stochastic FN neuron when an external stimulus of perioT
53 is applied.
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4496 PRE 59S. RIPOLL MASSANÉS AND C. J. PE´ REZ VICENTE
system is driven by the optimal resonant noise, its respo
is very robust displaying a low degree of variability in th
spike train. Therefore, for a real neuron it is convenient to
operated by a lower level of noise in order to offer a varia
response when the external signal is changed.

Finally, let us analyze the effect of a low-frequency for
ing term,T540, which is much bigger than the natural p
riod of the model but small enough to neglect the adiab
approximation. In this case the intensity of noise required
get an optimal information transmission isD'1.031026. A
direct comparison between the ISI mean value andT shows
that both are so different,T/^w&.10, that we are far from
the standard SR regime. Indeed, we have observed SR
for much slower signals.

FIG. 11. ISI histogram and temporal evolution of the fast va
ablev for several values ofD around 8.531027 for the stochastic
FN neuron when an external signal of periodT540 is applied.
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A deeper analysis of the response of the system sh
that even in this regime the firing pattern carries informat
about the intrinsic periodTR . Figure 11 displays the time
evolution of the fast variablev and the ISIH for the previous
signal but for a lower noise strengthD58.531027 so that
we can observe 1:2 synchronization. Close to the maxim
of the periodic signal the response of the neuron has a typ
structure where two consecutive firings are separated b
short interval which is closely related toTR . This time is the
most natural choice for the system as we have seen be
The ISIH reflects clearly such structure with two peaks, o
centered inTR and the other inT2TR . This a very efficient
way to get information not only about the features of t
external stimulus, but also about the intrinsic response of
system indicating the ISIH is a very good tool. Let us rema
that such precise information cannot be obtained either fr
the firing rate or other measures which use convolutions
tween the output and long temporal windows where tiny ti
details are hidden.

V. CONCLUSIONS

In this paper we have analyzed the response of a FN n
ronlike model to high-frequency external stimuli in the pre
ence of noise. We have seen that the noisy system h
characteristic internal time typical of the coherence re
nance phenomenon. It is a fingerprint that remains presen
all the time-dependent properties of the model. We ha
shown that the system displays a classical resonant effec
such a frequency and that depending on the features of
signal there is always an optimal noise strength which ma
mizes the correlation between input and output, but it h
nothing to do with the typical stochastic resonance so ex
sively studied for the FN model in recent years. Furthermo
we have shown that even for very slow signals, by analyz
the ISI distribution, it is possible to extract information n
only about the stimulus but also aboutTR , which can be
very helpful when analyzing real time data. Finally, we c
reproduce experimental data observed in a single audi
nerve fiber of a squirrel monkey with this kind of analysis
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