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Nonadiabatic resonances in a noisy Fitzhugh-Nagumo neuron model
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We have analyzed the response of a noisy Fitzhugh-Nagumo neuronlike (Rbbled subthreshold external
stimuli. In contrast to previous studies we have focused our attention on high-frequency signals which could be
of interest for real systems such as nervous fibers in the auditory system. We show that the noisy FN behaves
as a stochastic oscillator with a characteristic time scale whose effects remain in a wide range of situations. In
the nonadiabatic regime of frequencies considered in this work we report several resonant behaviors which
resemble those of classical deterministic oscillators but never the typical stochastic resonance phenomenon so
often observed for low-frequency signal§1063-651X99)01304-3

PACS numbdrs): 87.19.La, 87.10te, 05.40-a, 05.20-y

I. INTRODUCTION time scale that always underlies and does affect the dynamics
of the unit even in the presence of continuous stimuli. Notice
The analysis of the time-dependent properties of systemthat a high degree of coherence could be against the afore-
made up of excitable units is essential to understand the bamentioned variability since it may give rise to an undesirable
sic mechanisms that govern their dynamical evolution. It isobustness, preventing the system from inducing changes in
also the natural bridge that allows one to compare experithe firing rate and as a consequence to transmit little infor-
mental data with results obtained from theoretical modelsmation from the environment. In fact, in this context the
Neural systems are perhaps the most representative and stygocess of maximizing the transferred information is equiva-
ied examples. Any realistic model aimed at reproducing thdent to minimizing the overlap between signal and back-
typical behavior of an ensemble of neurons or just an isoground spike distributiongs].
lated unit must take into account several observed features. The goal of this paper is to analyze in detail these effects
One of them is the high degree of variability or irregularity for a Fitzhugh-NagumdFN) neuronlike model. We have
in the spike traing1]. An appropriate balance between exci- chosen this system because there is a large number of recent
tation and inhibition is required to achieve it, otherwise theworks considering its noisy response in front of either peri-
interspike interval(ISI) distribution displays a nonrealistic odic and nonperiodic inputs and in this way we can make a
regularity[2,3]. Moreover, it helps to keep the system firing comparison with them. We will determine the characteristic
with a low level of activity as well as to maintain a sponta- time of the system derived from the maximal observed level
neous activity even in the absence of external stirfili of coherence and we will establish also a relationship with
Noise is another factor that must be incorporated in anyhe concept of stochastic resonan&®) [8]. In contrast to
realistic description of excitable systems. Stochasticity, duenany recent studiefd], we are not interested in the low-
to the Brownian motion of ions in a temperature bath, confrequency limit where signals are so slow that an adiabatic
ductance changes induced by the random opening and clogpproximation can be applied to get analytic results. We fo-
ing of ion channels or simply because of the random reliabilcus our attention on a more realistic situation, in the effect of
ity of synaptic buttons, just to cite some reported exampleshigh-frequency signals, comparable with the intrinsic period
play a relevant role in neural signal transmission. Howeverpf the model, whose analysis may be relevant for some real
it would be wrong to think of an intrinsic source of random- Systems such as the auditory systeiq].
ness as an ingredient that could systematically worsen the The paper is structured as follows. Section Il is devoted to
computational properties of real systems. It is well knownthe formal description of the model. In Sec. lll we analyze
that the cooperation between noise and signal may inducethe stochastic FN oscillator and determine the typical period
positive effect on the global features of nonlinear units byof the system. The response of the model to high-frequency
improving their ability to detect external subthreshold sig-external stimuli is considered in Sec. IV. Finally, there is a
nals. Furthermore, the strong dependence of the ISI histegshort section devoted to conclusions and future work.
gram shape on the noise strength indicates its importance
when determining the variability of the firing pattern.
Recently, several authors have shown that without exter- II. THE MODEL

nal inputs coherence in the response of a neuron model is ) )
maximized for an optimal value of the intensity of noise !N this paper we have considered a standard FN model

[5—7]. Such coherence or regularity defines a characteristitvhose dynamical behavior is governed by the following dif-
ferential equations:
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FIG. 1. Power spectrum for several valuesffor the pure ) o .
stochastic FN neuron without external stimulus. FIG. 2. ISI histograms for several noise intensit2sfor the

pure stochastic FN neuron without external stimulus.

d_W_v_ W—b @) input current that hereafter, and in order to compare with
—vTp ’ previous results, has been fixed te 0.04 so that noise is the
only agent that causes the FN neuron to fire. There are sev-
wheree fixes the time scale of the fast variahle(voltage, eral ways to model the features of the noise being, in terms
w is the slow(recovery variable,| represents an external of Poissonian shot noigd7] or uncorrelated Gaussian white
applied current, and, b, andp are constants whose values noise, the most frequent. We have considered the last option
determine the stability properties of the system. Furthermore)y assuming a Gaussian random process of inten& .
a noise termy(t) can be added to the right-hand side of Eg.As usual, the response of the system is measured in terms of
(1) as well as a forcing terr&(t). For an extensive analysis a series of spikesQ(t), instead of considering the whole
of the dynamic behavior of the model, dd4,12. Through-  evolution of the fast variable. In this way, we get rid of
out the paper we have fixed the values of the constants teubthreshold oscillations and other time structures that do
a=0.5, b=0.15, p=1.0, ande=0.005 in order to compare not convey information. Our analysis is performed by using
our results with other previous studies on the same modghree different standard measures: the power spectrum of the
[9,13—-15. The current will also be considered constant. In spike train, the normalized interspike histogram IS¢, and
the deterministic case a subthreshbléads the system to a the autocorrelation time of the output.
fixed point located at a well-controlled distance from the The response strongly depends on the intensity of ridise
firing point. This is an approximate way to mimic experi- as we can see from the group of pictures shown below. Fig-
mental observed facts performau vivo where it has been ure 1 displays the power spectrum for several noise intensi-
shown that, after firing, neurons return very quickly to anties. For smalD the background is almost uniform with no
operative point very close to the threshdlk®). In this way, apparent structure. However, as the noise intensity increases,
individual neurons have the ability to switch very fast from athe contribution of intermediate frequencies becomes more
resting state to an excited state in front of a selective externamportant in contrast to the low range, which is much
stimulus. For a suprathreshold constant current the systemeaker because it is easier to induce firings. The position,

behaves as an oscillator. height, and width of the broad peak in the power spectrum
depends on the noise intensity. Measures of coherence de-
IIl. COHERENCE INDUCED BY NOISE fined in[7] as the product of the height of the peldkto its

. . ) ~quality factorQ as
In this section we analyze the effect of noise on the time-

dependent properties of the system. At this stage no deter-
ministic forcing termF(t) is considered, only a subthreshold

B=HQ, Q=1Z, @)
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Finally, as a complement of the previous discussion let us
0.6- N mention that we have also analyzed the autocorrelation func-
tion of the series of spikes following the scheme proposed in
[6]. Again a peak for a noise intensity ne@r=28.0x 10 °
confirms the existence of the characteristic time scale typical
0.4 of CR as we could expect from the Wiener-Khinchin theo-
. T T L

10° 107

rem. However, we want to point out several comments about
this phenomenon. The total peridg between consecutive
D firings is split in two times: the activation timg, and the

FIG. 3. Most probable value of the ISI histogram for the pure
stochastic FN neuron vs the noise intensity.

wherew, is the frequency of the peak addv is the width at
the half-maximum height, are maximized for a noise inten-
sity nearD =8.0x 10 ® (data not shown For this noise in-
tensity the maximal contribution to the power spectra comes

from a region centered aroung,~0.85. Therefore, this first = >

analysis shows the existence of a noise-induced characteris”
tic time scale which causes the system to behave as a sto
chastic oscillator. This is the fingerprint of the so-called co-
herent resonance phenomen@R) [6]. It is straightforward
to think of vg as the natural candidate for which a classical
resonant process takes place.

Figure 2 shows the ISI distribution for different values of
D. Now, the different regimes are more evident. For small
noise, the distribution is very broad and asymmetric, which
confirms the continuous flat power spectrum found in Fig. 1
while for largeD the ISIH peak becomes more pronounced.
Notice that while the mean value of the distribution is quite
variable and changes more than one order of magnitude in
the selected range d, the most probable valueMPV)
changes very little. A close analysis of the noise dependenceZ
of the MPV (see Fig. 3 shows a logarithmic relation witb.
This fact is important because the MPV turns out to be a
very robust quantity that gives information about the internal
clock of the system and whose effects remain even in the
presence of a signal, as we will see later. It is also respon-
sible for the main peak observed in the power spectrum
shown above becoming the representative parameter of the
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distribution. In the limit of largeD the ISI distribution tends FIG. 5. Power spectrum for several valuesofor the stochas-
to be symmetric and the mean and the MPV tend to the sam& FN neuron when an external sine wave stimulus with pefiod

value.

=Tg is applied.
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FIG. 6. Power spectrum for several valuesDofor the stochastic FN neuron when an external sine wave stimulus with pE#&I0
(above and T=40.0 (below) is applied.

excursion timet,. In [6] a theory is presented, based on S(w)=2 R4 C(iw)]. 6)
several important assumptions. First, that the excursion time
is much larger than the activation time, so that a theory for

can be accounted for by analyzing just the motion of thep, yhis way, it is possible to find all the relevant quantities by
slow variable, as ifi18]. Figure 4 shows that for the range of ,qing ysual tools of stochastic processes. A good review can
parameters used in this paper this is a crude approximatiofe found in[19]. On the other hand, it is not clear at all
since both are of the same order of magnitutlei¢ even \\hether CR defines a useful and realistic scenario for signal
slightly larger tharte). A possible theoretical alternative is transmission. In fact, when optimal CR takes place, the ISI
to realize that the ISIH follows an inverse Gaussian distribu;istribution is far from being Poissonian and the high regu-
tion [18] larity displayed in Fig. 2 poses serious doubts about the pos-
sible modulation of the firing rate elicited by an external

1/2 . .. . .
stimulus. This is one of the main issues of the next section.

)\ _ _ _ .2 2
(P(t):(z> t 3IZe ANt—pu) /2,u.'[’ (4)

where (¢)=u, oB=u3\, and the MPV, typ= IV. PERIODIC SIGNAL MODULATION

—305/2u[1— 1+ §(ulap)*]. Then, assuming the output  Let us discuss some of the open questions raised in the
of the model as a Markovian shot-noise process and the nopreceding section. Our first goal is to verify the existence of
malized ISIH as its renewal density, the autocorrelation funca classical resonant effect. Keeping this goal in mind, we
tion of the outputC(7)=(O(t)O(t+ 7)) can be written in  have included a forcing periodic external signal of small sub-

the Laplace space as threshold(in the absence of noiseamplitude and period
Tr=1/vg=1.2. Figure 5 shows again the power spectrum
— for several values of the noise intensity. Let us remark sev-
— 1|1+ ¢(s) 1 . i X .
C(s)=—| ———|—— (5)  eral points. First, as we could expect, there is a clear nonlin-
21[1-g(s)] mS ear effect since there is a strong magnification of the contri-

bution of vg to S(v), in fact, more than two orders of
and by using simple transformations it can be shown that magnitude with respect to the free signal case and one order
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FIG. 7. Temporal evolution of the fast variablefor D=2.0 FIG. 8. (Top) Normalized correlation input/output firing ra@,
X 10~ % andD =8.0x 10" ® when the period of the external signal is Vs the noise intensit. (Bottom) Phase histograms of the series of
Tr=1.2. spikes forD=2.0x10 % and D=8.0x10"%. The period of the

external signal iST=1.2 in both cases.

of magnitude with respect to any other periodic signal, as we
can see in Fig. 6. The resonant effect is observed in a largeemporal window used to evaluate the firing rate has to be
range of values oD, which means that the system is very narrower as the firing rate grows in order to keep high-
robust whenTg induces its rhythmic response. Moreover, in frequency changes. Therefore, this measure is highly depen-
contrast to typical SR, the magnitude of the resonance is natent on the width of this window, which should be adjusted
monotonic with the frequency but there is an optimal valueto a value of the order of the typical ISI or lowgtt is clear
for the frequency of the external input for which the effect isthat in the lower noise case we cannot say the same as the
magnified. This fact resembles the typical classical resonancautput does not carry information about the details of the
phenomenon observed in deterministic oscillators. The optisignal in the half negative part of the periodic forcing. Now,
mal value for the frequency is that of the internal clock whenlet us consider only the positive half part of the cycle. While
the pure stochastic FN shows the CR effect. in the first case the FN neuron firing is distributed among all

It is interesting to notice that the highest peak in thethe phases following the original shape of the external signal
power spectrum is found for a noise intensity different fromin the second case, this shape is deformed in such a way that
that observed for CR in the signal-free case. To understanad narrow interval which coincides with the maximum value
this fact, which at first glance might seem very surprising, letof the periodic stimulus is overvalued. The net effect is that
us look at Figs. 7 and 8, where we have paid special attentiofor small D there is a large contribution to the spectrum
to the correlation time between signal and output. In Fig. 7coming from a reduced set of frequencies while for latpe
we can see that while fdd =8.0x 10" ° there is a clear 1:1 the effect is broadened. From our point of view, this is clear
synchronization, fob =2.0x 10" ¢ the system fails to follow proof that measures of the signal-to-noise ra8dR) based
the signal quite often. However, according to the poweronly on the height of the peak are misleading when referred
spectrum, the model responds more coherently in the secorid signal information transmission.
case. The firing phase histogram shown in Fig. 8 explains Let us make a prediction about the minintakequired to
this apparent paradox and also sheds some light on the pasbserve firings in the negative part of the cycle, at least in the
ticular structure of the firing pattern. When the optimal CR1:1 synchronization regime. The condition is fulfilled when
noise O =8.0x10 ) induces the rhythmic activity of the the half-period of the signal is of the same order of magni-
neuron, there is a complete modulation of the signal keepingude as the fluctuationsy, of the firing eventgwidth of the
accurate information about its particular shape, not only inSIH) induced byD. If op is too large, noise dictates the
the half positive part of the cycle but also in the negativefiring times almost independently of the input, and conse-
region. These results are also reflected in the normalizedquently a spike can occur anywhere without signal control.
correlation input/output firing rate evaluated as inOn the other hand, itrp is too small the system becomes
[9], which has its maximum at the aforementioned value ofvery robust and a weak external signal is not able to modu-
the noise intensity, see Fig. 8Note that in this context, the late the firing train enough. It is wheop approximately
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14 14
1.2] 1.2] mations are not valid in the high-frequency regime. A differ-
= 10 = 10 ent situation may arise for a population of neurons working
2 o 2 os in parallel, as has been reported[i8]. This study is cur-
' ' rently in progress.
081 061 We have also analyzed the modulation induced by the
0.4+ 0.4+ presence of the signal from the set of ISI's, see Fig. 9. For
0.2 0.2 small values oD we observe the typical multimodal struc-
0.0 0.04 ture with peaks located at multiples 8. As D increases,
0 123 L 5678 o1 23 :' 5 67 8 such structure fades out leading to a single peak, much nar-

rower than in the free signal case, which displays the onset

FIG. 9. ISI histograms for several noise intensit@sfor the ~ where 1:1 synchronization takes place. As a consequence,
stochastic FN neuron when an external stimulus of pefiedgis ~ the mean value of the distribution is very sensitive to the
applied. action of the external stimulus while the MPV hardly

changes, remarking again that the natural period of the sys-

matches the half-period of the forcing that the external signalem is very robust. Furthermore, there is another difference
can modulate the firing probability in one period leading tobetween this phenomenon and the typical SR. The resonant
the best possible information transmission. Notice that acregime in this case is not reached when the ISI distribution is
cording to these arguments the optimal input/output correlamultimodal but when all the modes collapse in the first one.
tion depends strongly on the period of the signal and as #easures of the height of the first peak of this distribution
consequence there is not just one single optimal value oflso show a maximum for a noise intensity néar 8.0
D+; in fact, it is a function ofT. When analyzing signal-free X 10 °.
simulations, the prediction indicates that the noise intensities It is also interesting to analyze another behavior when the
required to better transmit external signals of different perisystem is forced with smaller frequency signals. First of all,
ods are T=40D~1.0x10 %) (T=3D=2.0x10"°-4.0 we have considered an intermediate valses, far enough
x107%), and (T=1.2D~8.0x10°%), which are in good from v to neglect the nonlinearities induced by the resonant
agreement with the values observed in Fig. 6 and from firingeffect but large enough to induce strong modulation in the
phase histograms. small D regime. Figure 10 shows the ISIH f@=10"°

In addition, let us remark on another aspect that makes thghowing an interesting structure not commented upon previ-
behavior of the system different from other situations re-ously in the literature and which is almost identical to that
ported in the literature. One of the relevant features of SR i®bserved from a single auditory nerve fiber of a squirrel
that the best response of the system is reached when timeonkey[10]. In addition to the standard peaks at approxi-
mean output of the unit matches the period of the externamately period multiples of the forcing signal, a new peak of
signal[8]. In contrast, here, as the MPV of the ISI histogramhigher frequency comes out which precisely matches the
becomes almost fixed, we can only modulate the magnitudeatural period of the systeffiz. Notice that this peak was
of the fluctuations of the output firing train becoming the absent in[10] but not in the original figure coming from
relevant parameter of the firing distribution. These results arexperimental data, which suggests that realistic models
not in contradiction with those reported in previous papershould give evidence of the existence of its characteristic
[8,9,14,15 because one of the most extended assumptionsme even in the subthreshold regime. Such a fingerprint re-
included in any theory about SR is to consider slow signalsmains except for extremely small noise intensities. The noise
which allows us to introduce adiabatic approximations. Thentensity required to match the experimental data is lower
ISI distribution is very broad and nearly symmetric in this than that required to better transmit the forcing signil (
limit. Then the MPV becomes irrelevant, but these approxi-=3.0). This fact reinforces again the idea that when the
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D=8.5x10

A deeper analysis of the response of the system shows
that even in this regime the firing pattern carries information
about the intrinsic period'z. Figure 11 displays the time
evolution of the fast variable and the ISIH for the previous

signal but for a lower noise strengih=8.5x 10"’ so that
oo _ R we can observe 1:2 synchronization. Close to the maximum

A /1 /A A\ A\ A of the periodic signal the response of the neuron has a typical

Vo \ [ T A S R T A structure where two consecutive firings are separated by a
| O L A O short interval which is closely related T;. This time is the

08

08

v(t)

0.4

0.2

0.005
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Input sinus

R most natural choice for the system as we have seen before.
Voo [ .
P \/ \/ Vi L/ Vi The ISIH reflects clearly such structure with two peaks, one
0 50 100 150 200 centered inTg and the other i —Tg. This a very efficient

way to get information not only about the features of the
external stimulus, but also about the intrinsic response of the
system indicating the ISIH is a very good tool. Let us remark

0.10 D8.5x107 that such precise information cannot be obtained either from

0.08 the firing rate or other measures which use convolutions be-
£ 006 tween the output and long temporal windows where tiny time
2 004 details are hidden.

0.02

0.0 T V. CONCLUSIONS

In this paper we have analyzed the response of a FN neu-
D=1.0x10° ronlike model to high-frequency external stimuli in the pres-
ence of noise. We have seen that the noisy system has a
characteristic internal time typical of the coherence reso-
nance phenomenon. It is a fingerprint that remains present in
all the time-dependent properties of the model. We have
shown that the system displays a classical resonant effect for
such a frequency and that depending on the features of the
FIG. 11. ISI histogram and temporal evolution of the fast vari- signal there is always an optimal noise strength which maxi-
ablev for several values ob around 8.5 10’ for the stochastic mizes the correlation between input and output, but it has
FN neuron when an external signal of peride 40 is applied. nothing to do with the typical stochastic resonance so exten-
sively studied for the FN model in recent years. Furthermore,
system is driven by the optimal resonant noise, its respons e have _sh(.)wn.that_eyen for very slow 3'9”'?"5’ by a_nalyzmg
is very robust displaying a low degree of variability in the the 1Sl dlstr|but|or_1, it is possible to extract mf_ormatlon not
spike train. Therefore, for a real neuron it is convenient to peNly about the stimulus _bUt also _abo‘ﬂﬁ, Wh!Ch can be
operated by a lower level of noise in order to offer a variable’€"Y elpful when analyzing real time data. Finally, we can
response when the external signal is changed. reprodqce experlmgntal data obsgrved_ in a single audﬁory
Finally, let us analyze the effect of a low-frequency forc- nerve fiber of a squirrel monkey with this kind of analysis.
ing term, T=40, which is much bigger than the natural pe-
riod of the model but small enough to neglect the adiabatic
approximation. In this case the intensity of noise required to We acknowledge financial support from the Spanish
get an optimal information transmissionds=1.0x10 . A DGES through Grant No. PB96-0168. S.R.M acknowledges
direct comparison between the ISI mean value @rshows financial support from Ministerio de Educanio/ Cultura
that both are so differenff/(¢)>10, that we are far from through a Ph.D. grant No. AP96. Finally, S.R.M. wants to
the standard SR regime. Indeed, we have observed SR onlgank Francisco Masasel.anda(1920—-1998 for his con-
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