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Amplification and displacement of chaotic attractors by means of unidirectional chaotic driving
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~Received 18 November 1997; revised manuscript received 26 January 1998!

Chaotic systems, when used to drive copies of themselves~or parts of themselves! may induce interesting
behaviors in the driven system. In case the later exhibits invariance under amplification or translation, they may
show amplification~reduction!, or displacement of the attractor. It is shown how the behavior to be obtained is
implied by the symmetries involved. Two explicit examples are studied to show how these phenomena mani-
fest themselves under perfect and imperfect coupling.@S1063-651X~98!13206-3#

PACS number~s!: 05.45.1b, 42.65.Sf, 47.52.1j, 95.10.Fh
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Pecora and Carroll@1# have reported a driving metho
~PCM for short! that allows synchronization between tw
identical chaotic systems. This has been successfully im
mented in experiments; in particular, it has been observe
electric circuits,@2,3# and used in telecommunication devic
@4#. Further developments have focused towards general
forms of synchronization@5,6#, understood as situation
where the two systems evolve in perfect correlation des
that their distance in phase space does not go to zero,
the Pecora and Carroll synchronization. Recently, there h
appeared two interesting behaviors of a response under
otic driving @7#: the amplification~reduction! of a chaotic
attractor, and the sustained evolution of the driven syst
repeating the drive attractor, in a region of phase space
from where the stable attractor lies. Because the driv
scheme proposed is the same as that used by Pecora
Carroll for synchronization, there is no doubt about the p
sibility of preparing an experimental setting for their obs
vation. Moreover, such driving situations might occur in n
ture~e.g., the case of neuronal systems has been the obje
speculation @1,8#!. The possibilities of getting amplified
~shrunken! copies of a given chaotic signal, or copies of
system steadily evolving within variable ranges differe
from those imposed by its constrains, enriches the rang
behaviors expected from driven chaotic systems, and t
provides new tools for prediction, explanation, or applicat
in science and technology. The aims of this report are
show how the behavior to be obtained is implied by t
system symmetries, to study these systems to gain ins
into how these phenomena manifest themselves, and to s
that they are robust enough to be observed in experimen

Consider a dissipative nonlinear dynamical system

dx

dt
5f~x!, ~1!

with xPRn, whose evolution is chaotic and occurs in
strange attractor,A @9#. Divide the set ofx coordinates in
two subsetsx1PRn1 and x2PRn2, wheren11n25n, such
that the latter is invariant under a set of transformations
coordinates,TP , that act only on the variables,x2. Then, the
dynamical equations are rewritten as

dx1

dt
5f1~x1 ,x2!, ~2a!
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dx2

dt
5f2~x1 ,x2!, ~2b!

In particular, given this decomposition, thex2 subsystem will
be attracted to a set of pointsA2,Rn2.

The set of transformations of coordinatesTP :x2→x2* ,
from Rn2→Rn2, all have the same functional form, each pa
ticular transformation is specified by the values of a set
parametersP5(P1 ,P2 , . . . ,Pq), which change continu-
ously in a given interval,PiP@ai ,bi #,R, such that 0
P@ai ,bi #, to produce the different transformations of the s
It is assumed that these transformations are continuous in
sense thatuP2P8u→0 implies uTP(x2)2TP8(x2)u→0 for all
pointsx2PA2. Moreover,TP→I , whenP→0, whereI is the
identity. Under any one of this transformations Eq.~2b! re-
mains unchanged; i.e., Eq.~2b! holds for x2* as well as for
x2. Two particular transformations of that type will be stu
ied: an amplitude transformation, defined byTA(x2)[A•x2,
with APR, and a displacement transformation, defined
TD(x2)[x21D, with DPRn2.

In the PCM @1,8#, for that type of system, the drive i
described by Eqs.~2!, and a copy of the symmetric sub
systemx2, denoted byx28 , called the response, is prepared
that its dynamics is governed by the equation

dx28

dt
5f2~x1 ,x28!, ~3!

which is driven by the variablesx1, that constitute the drive
signal. The trajectoryx28(t)5x2(t) is a solution of Eq.~3! if
x2(t) is a solution of Eqs.~2! in A2. However, for this syn-
chronized state to be asymptotically stable, all Lyapunov
ponents of the response, called conditional Lyapunov ex
nents, have to be negative. Synchronization can be teste
computing the largest conditional Lyapunov exponentL,
which can be obtained from the time evolution of the dri
as

L5 lim
t→`

1

t
ln

udx2~ t !u
udx2~0!u

, ~4!

wheredx2[ux282x2u is an infinitesimal deviation ofx28 from
x2. If L,0, it is guaranteed that there will be asymptotica
7321 © 1998 The American Physical Society
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7322 57BRIEF REPORTS
stable synchronization from an appropriate subset of in
conditions of drive and response@8,10#.

For the type of symmetric systems studied in this pap
when the coordinate transformationTP is applied to thex2
subsystem attractor,A2, one obtains a copy of it,TP(A2),
which somehow mimicsA2. For the amplitude transforma
tion TP(A2) is an enlarged or shrunken copy ofA2, while for
the displacement transformation it is a fair copy ofA2 dis-
placed from the region where the stable attractor evolves.
know that when initial conditions of drive and response
such thatx28(0)5x2(0) the evolution ofx2 and x28 is such
thatx28(t)5x2(t) for t.0. Therefore, because Eq.~2b! holds
for x2* , it must happen that if the response initial condition
TP@x2(0)#, it will evolve in TP(A2) following a trajectory in
perfect synchrony withx2(t) that follows some type of copy
of A2, amplified~shrunken! or displaced.

For these systems, the largest conditional Lyapunov
ponent has to be zero. BecauseTP is continuous, a single
small perturbation applied to the response, when it is follo
ing a trajectory inTP(A2), will send it to another trajectory
in TP1dP(A2), similar and close to the former where it wi
stay. BecauseTP→I , whenP→0, one can have the points o
TP(A2) as close as the point ofA2 as desired. Therefore, i
the initial condition for the response isT0@x28(0)#, i.e.,
x28(0)5x2(0), it will follow a trajectory inT0(A2)5A2 that
exactly reproducesx2(t). Then, a small perturbation applie
to the response evolving inA2 will send it to a trajectory in
TdP(A2), with dP small, so that it is a close reproduction
the unperturbed trajectory inA2. Therefore, there is neithe
divergence,L.0, nor convergence,L,0, of close trajecto-
ries, and then,L50.

In particular, for the case of the amplitude transformati
every initial condition of the response will evolve in a se
TA(A2), whose points are related to those of the origin
system attractor by means ofx285Ax2, with the value ofA
determined by the values of the initial condition. Therefo
dx2(t)5ux28(t)2x2(t)u5uA21uux2(t)u, and with udx2(0)u
.uA21uux2(0)u, with both x2(t) andx2(0) points inA2, it
must be

L5 lim
t→`

1

t
ln

uA21uux2~ t !u
udx2~0!u

50 ~5!

because the argument in the logarithm is a fluctuat
bounded quantity. For the case of the displacement trans
mation, every initial condition of the response will evolve
a set of points,TD(A2), which is related to the original sys
tem attractor by means ofx285x21D, with the value ofD
determined by the values of the initial condition. Therefo
dx2(t)5ux28(t)2x2(t)u5uDu, and with udx2(0)u.uDu, it
must be

L5 lim
t→`

1

t
ln

uDu
udx2~0!u

50 ~6!

because the logarithm argument is a bounded constant.
The existence of this non-negative conditional Lyapun

exponent means that, in the present case, we will not h
asymptotically stable behaviors; i.e.,ux28(t)2TP@x2(t)#u→0
for ux28(0)2TP@x2(0)#u<d, as would occur ifL,0. Instead
l
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we have what it is known as uniform stability@9#, which is
defined by the following condition: ifux28(0)2TP@x2(0)#u
<d for some small positive real numberd, there must exist
another small positive real number«, such that ux28(t)
2TP@x2(t)#u<« for t>0. It is to be noted that uniform sta
bility, although weaker then asymptotic stability, is strong
than another type of stability, frequently found in nature a
technology, orbital stability. This is defined@9# as the case in
which if ux28(0)2TP@x2(0)#u<d, there must exist an« and
some functiont* (t) such thatux28(t* )2TP@x2(t)#u<« for t
>0; so, in this last case, there is no isochronous corresp
dence between the two time evolutions that one finds in
cases of asymptotic and uniform stability.

The amplitude transformation has been studied in the
renz model~LM for short! for convection in fluids@11# given
by ẋ5s(y2x), ẏ5(r 2z)x2y, andż5xy2bz. The values
of the parameters ares516, r 545.92, andb54, as in@8#.
The equations forx andy are invariant under an amplitud
transformationTA(x,y)[(Ax,Ay). Therefore, one can ob
serve the amplification of the signal in thex-y plane. Then,
the appropriate drive signal isz, and the response subsyste
is described by

ẋ85s~y82x8!, ~7a!

ẏ85~r 2z!x82y8. ~7b!

The displacement transformation is studied in the dou
scroll ~DS for short!, which is a model of an electric circui
@12,3#: ẋ5a@y2x2 f (x)#, ẏ5x2y1z, and ż52by,
where f (x)5bx1 1

2 (a2b)@ ux11u1ux21u#. The parameter
values studied area510, b514.87, a521.27, and
b520.68 as in@3#. The equations forx andz are invariant
underTD(z)[z1D; therefore, one may obtain a displac
ment of the attractor in thez direction using as the respons
a copy of the (x,z) subsystem. Then, the drive variable w
be y and the response equations will be given by

ẋ85a@y2x82 f ~x8!#, ~8a!

ż852by. ~8b!

The numerical results presented have been obtained
means of numerical integrations of the above equations u
a fourth-order Runge-Kutta algorithm with a time step
0.003 for LM, and 0.02 for DS.

The conditional Lyapunov exponents have been obtai
from the integration of the variational equation

d~dx2!

dt
5Dw„h~x1 ,x28!…dx2 , ~9!

where Dw„h(x1 ,x2)… is the Jacobian of the response atx28
5x2, where the time evolution ofx1 andx2 is given by Eqs.
~2!. In Fig. 1~a!, for LM, and Fig. 1~b!, for DS, there appea
some representative results for the parameter dependen
the conditional Lyapunov exponents for the response,
the Lyapunov exponents for the original three-dimensio
system. These figures show that the largest conditio
Lyapunov exponent, being determined by the symmetries
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the system, is null and does not change when the sys
parameters change, despite that this changes the behav
the system.

To observe the amplification of the attractor, in LM, a
the displacement, in DS, the appropriate equations of mo
have been integrated in each case. The corresponding
nomena have been monitored by means of parametric p
of the variables of the response versus the variables of
drive, which appear as straight lines when both sign
evolve in perfect synchrony. The amplificationA is mea-
sured by the slope of the straight line, and the displacem
D by its ordinate in the origin. A case for LM with initia
conditions such that theA.5 is displayed in Fig. 2~a!, which
shows how they8 signal is an amplified copy, by a factor 5
of the y signal ~a plot for thex signal would have to look
almost the same!. The results in Fig. 2~b!, for DS with initial
conditions appropriate to obtainD.10, show howx8(t)
5x(t), while z8(t).z(t)110. Similar calculations per
formed for the same systems using different initial con
tions resulted in the same types of behaviors, but with
ferent numerical values forA or D.

The magnitude of the amplification, or displacement,
determined by the initial conditions of the systems. Beca
of the uniform stability that characterizes this case, we h
to expect a linear relation betweenA, or D, and the initial
distance between the systems. To observe this depende
have chosen a point in the stable attractor as a fixed in
condition for the drive, and studied the degree of amplifi
tion, or displacement, for initial conditions of the respon
evenly distributed on a rectangular grid in thex8-y8 plane,
for LM, or the x8-z8 plane, for DS. For a given drive initia

FIG. 1. Lyapunov exponents~thin lines! and conditional
Lyapunov exponents~thick lines! as functions of the parameters o
the system:~a! r dependence for LM, and~b! b dependence for DS

FIG. 2. Amplification and displacement monitored by means
parametric plots:~a! y signal for LM with initial conditions chosen
to getA.5, and~b! x andz signals for DS with initial conditions
chosen to obtainD.110.
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condition, I obtained that, for LM, the functionsA
5A(x08 ,y08) are given by two symmetric planes that interse
theA50 plane along a straight line that crosses the origin
coordinates. The inclination and orientation of these plan
given respectively by the angleu between the planesA
5A(x08 ,y08) and A50, and by the anglef between the
straight line made by the intersection between those pla
and thex08 axis, change with the values of the drive initi
condition. For DS,D5D(x08 ,z08) is given by a plane whose
intersection with theD50 plane is a straight line parallel t
thex08 axis. The inclination and orientation of this plane do
not change with the initial condition of the drive, while th
distance between its intersection with theD50 plane and the
x08 axis, d, changes with the drive initial condition. To ex
plore those dependencies on drive initial conditions I ha
determined the functionsA5A(x08 ,y08) and D5D(x08 ,z08)
for sets of drive initial conditions made of points taken co
secutively along a trajectory in the stable attractor. Fig
3~a!, for A(x08 ,y08), and Fig. 3~b!, for D(x08 ,z08), show thatu
and f, as well asd, change continuously and smoothly a
the drive evolves in its attractor.

To study the behavior of the response trajectories in
presence of external noise, a series of time evolutions h
been performed adding a Gaussian white noised t to the drive
signal. The control parameter in this study is the dispers
in the distribution ofd t , s, given in units of the amplitude o
the signal considered. Calculations made for a fixed ob
vational time window of 104 time steps~about 100 orbits!
showed that, once the time window is fixed, there is a le
of noise below which one obtains a response trajectory
accurately reproduces the drive attractor amplifi
~shrunken!, for LM, or displaced, for DS. Once that level o
noise is overcome these trajectories exhibit a diffusivel
behavior: for LM one obtains amplified copies of the dri
attractor with an amplitude that fluctuates, and for DS o

f

FIG. 3. ~a! Time dependence of the angles,u andf, for LM. ~b!
The same for the distanced for DS.
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7324 57BRIEF REPORTS
obtains displaced reproductions of the drive that shift up
down along thez axis. Moreover, I have studied the avera
size of the window,W, in which the response reproductio
of the attractor is acceptable, as a function of the amplit
of the noise. The quantityW was defined as the averag
length of the time interval in which a fit to a straight line
x85x8(x) and y85y8(y) ~for LM !, or x85x8(x) and z8
5z8(z) ~for DS! starts to fail for each level of noise. Such
breakdown of the fit was defined as the case when the
relation coefficient of the fit drops below 0.9999. Th
choice, although somewhat arbitrary, is based on results
tained for the dependence of this quantity with the level
noise for a fixed time window (104 time steps! as those dis-
played in Fig. 4~a!. The results obtained forW(sz) and
W(sy), displayed in Fig. 4~b!, show that these functions ar
potential laws, and increase as the noise level decrease

In conclusion, when chaotic systems that exhibit inva
ance properties under a special type of continuous trans
mation are subject to chaotic driving under a PCM, they c
undergo interesting synchronizationlike phenomena. Th
include partial amplification of the attractor, and displac
ment of it to a region of phase space where the origi
system is unstable. The particular orbit is determined by
initial conditions. It is a consequence of these symmet
that the largest conditional Lyapunov has to be null; then,
stability is not asymptotic, but uniform. The numerical stu
r-
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of these phenomena has shown that under perfect coup
the largest conditional Lyapunov exponent is indeed null
is possible to observe amplified or displaced trajectories
the computer simulations, and the degree of amplification
displacement obtained is smoothly dependent on the in
conditions. Computer simulations under situations of ext
nal noise have shown that the phenomena studied here
allow experimental observation.

This research was supported by DGICYT, through Proj
Nos. PB93-0780 and PB96-0392.

FIG. 4. ~a! Breakdown of the synchronizationlike behavior me
sured by the correlation coefficient (CC) for LM ~circles! and DS
~squares!. ~b! Window size where the response is a fair copy of t
drive attractor as a function of the amplitude of the noise for L
~circles! and DS~squares!.
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