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When certain control parameters of nervous cell models are varied, complex bifurcation structures develop
in which the dynamical behaviors available appear classified in blocks, according to criteria of dynamical
likelihood. This block structured dynamics may be a clue to understand how activated neurons encode infor-
mation by firing spike trains of their action potentials.
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I. INTRODUCTION

The neuronal code problem �1–7� is a major issue in to-
day’s neuroscience. A common assumption in the scientific
community is that, in the nervous system, information is
transmitted along the neurons axon by means of trains of
spikes of the action potential. The problem that then emerges
is how the information carried by the neuron is encoded in
these trains. Because action potential firing is quite irregular,
a first classical hypothesis is that the code is simply given by
the firing rate averaged in an appropriate time interval. Re-
cently, based on experiments and computer simulations, a
more sophisticated theory is emerging which asserts that the
information is coded in the temporal structures of the firing
sequence �3–5�, and that synchronization between different
neurons plays a relevant role �1,2�. These new hypotheses
require that accurate and reproducible firing structures can be
produced in the nervous system �6,7�. Unveiling the mecha-
nisms that allow the generation of properly structured trains
of spikes is then a problem of major importance.

By means of a study of the Hindmarsh-Rose neuron
model �8�, we will show that there is a particular type of
dynamic behavior, which we call block structured dynamics,
that provides the background for a potential neural coding
mechanism. The important feature of these structures is that
the system bifurcation diagram can be divided into disjoint
blocks, each corresponding to a family of dynamical behav-
iors sufficiently alike between them as to be considered as
the same dynamics in a coarse description and different
enough from the dynamics of other blocks as to be unam-
biguously distinguished from one another. This feature al-
lows us to imagine reliable coding mechanisms whose foun-
dations lie in three important general properties of life:
variability �no two individuals of a given population are ex-
actly alike�, noise �life occurs in a noisy environment�, and
self-regulation �living beings are able to maintain vital pa-
rameters within controlled limited ranges of values�.

The Hindmarsh-Rose model �8� results from a simplifica-
tion of the current-voltage relationships of the Hodgkin-
Huxley model of neuronal activity �9�. It provides a realistic
description of the firing dynamics of neurons observed in
molluscans, crustaceans, and vertebrates �8,10�. Therefore,
this model has been used to study different aspects of neu-
ronal dynamics such as transitions between different firing
regimes �11�, the effect of noise on neuronal signal transduc-
tion �12� and on synchronization �13�, the synchronization

dynamics of two coupled neurons �14,15�, the collective dy-
namics of populations of coupled neurons �16,17�, and the
information exchange in neuronal communication �18�.
Moreover, we have found that it displays very neatly the
block structure dynamics, which is the object of this paper.
Because of all this, we have chosen it for the research re-
ported here.

The layout of the paper is as follows. Block structured
dynamics in the Hindmarsh-Rose model will be described in
Sec. II, the effect of external noise will be studied in Sec. III,
and ideas on neuronal coding will be discussed in Sec. IV.
Finally, results for other models of excitable cells will be
discussed in Sec. V, and the paper will end in Sec. VI with
some comments and conclusions.

II. BLOCK STRUCTURED DYNAMICS

The relevant observable that describes the dynamical state
of a single neuron is the membrane potential, x. According to
the Hindmarsh-Rose model �8�, its dynamics is given by the
following system of stochastic differential equations written
in dimensionless form:

dx = �y + 3x2 − x3 − z + I�dt + bdWt, �1�

dy = �1 − 5x2 − y�dt , �2�

dz = �r�4�x + 8/5� − z��dt , �3�

where t is time; x ,y ,z are dynamical variables that describe
the dynamic state of the neuron; and Wt a standard Wiener
process �19�, which stands for an external noisy environ-
ment. The membrane potential as a function of time is given
by x�t�. Charge transport processes across the axon mem-
brane are assumed to occur through fast channels �Na+ and
K+ ions� as modeled by y�t� and through slow channels
�other ions� which are taken into account through z�t�. The
external electrical current applied, I, and the rate of change
of z�t�, r, are the control parameters of the model used often.
The Hindmarsh-Rose model is derived from a mapping �20�
of the dynamics of the Hodgking-Huxley model �9� to a
dimensionless mathematical model of a nonlinear oscillator.
The units of the quantities in Eqs. �1�–�3� can then be esti-
mated from this mapping. Using the results in Refs. �8,20�,
the estimate for the units of time �, voltage �, and density
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current �, are ��1.0 ms, ��25 mV, and ��2.5 mA/cm2.
Units for other quantities can be inferred from them. We
have solved numerically Eqs. �1�–�3� by means of a Euler-
Maruyama scheme �19� with time step �t=0.0001. The
noisy environment has been modeled by b�Wt
=��tD��t��t, with ��t� being a white Gaussian noise with
zero mean and variance 1, and the strength of the noise being
measured by the parameter D.

The results presented in this paper are for fixed I=3.28,
and r changing as the control parameter. This parameter
measures the efficiency of the ionic transport across the
nerve cell membrane through channels different from the fast
Na+ and K+ channels. Thus, it describes the average effect of
a variety of channels that may be voltage sensitive as well as
chemically activated. Then, the variation of r can have two
meanings. For a single cell, this will be given by the fraction
of these channels that are simultaneously opened during ef-
fective nerve operation. This may change, for example, by
changing the concentration of some appropriate channel ac-
tivating or deactivating chemical. In a population of cells,
different values of r would mean to consider different cells
of the population, having each cell its own characteristic
density of channels, which will define a particular average
value for r in each neuron.

The set of parameter values implied in Eqs. �1�–�3� and
the value of I chosen are within the range of values proposed
by Hindmarsh-Rose �8� and are considered realistic. We
change here the value of r within a range that includes but
exceeds that studied by Hindmarsh-Rose �8�. However, be-
cause of the meaning of r as an average of the ion perme-
ability of several different channels, and the well-known ex-
perimental fact that neurons are characterized by a great
variability among individuals, we mean that this extension is
justified and useful.

Bifurcation diagrams and Lyapunov spectra provide a glo-
bal view of the dynamical behaviors available to a system
when a control parameter is modified. In the present case, we
have obtained them numerically by running Eqs. �1�–�3� for
D=0. The feature of the action potential dynamics that is
implied in neural coding is the sequence of spikes, which is
described by the succession of interspike intervals �ISI�, de-
noted by �Tj=1,2,. . .,N�. We have obtained bifurcation diagrams
from the ISI values T, and Lyapunov exponents � from stan-
dard techniques. The results presented in Fig. 1 show that the
bifurcation diagram and Lyapunov spectrum observed are
more complex than what is usually seen in three-dimensional
flows. The well-known structure of the bifurcation diagram
of the logistic map appears as the basic constitutive element
of the complexity presented in Fig. 1. The main features
of this standard structure, which has been widely studied
in the literature �21�, can be seen in Figs. 1�a� and 1�b� for
r	0.010 25: an inverted period doubling route to chaos
which starts at r�0.036 �out to the right of the plot� and
ends at r�0.010 25.

When r decreases from r�0.010 25, the bifurcation dia-
gram and the Lyapunov spectrum become more complex.
The dependence of the transversal Lyapunov exponent on r
results from the repetition, with a change of scale, of the
characteristic structure of the logistic map. We describe the
complexity observed in the bifurcation diagram by means of

the division of the whole diagram in a sequence of blocks.
This is done by dividing the r axis in a series of intervals
limited by points where chaos-periodicity transitions occur
by means of a saddle-node bifurcation. Each of these inter-
vals is what we call a block and corresponds with a whole
repetition of a logistic map structure in the Lyapunov spec-
trum plot.

These intervals are defined in such a way that the bifur-
cation diagram that corresponds to each block can be seen as
being made up by the superposition of p logistic-map-like
structures, with p in each block a unit larger than in the
previous block. Being p and p+1, the periodicities observed
in the nonchaotic left sides of the upper and the lower points
of an interval, the correspondent block will be identified by
the number p at the upper limit. For example, in Figs. 1�a�
and 1�b� a block with p=3 begins at r�0.010 25 and ends at
r�0.006 48, where a new block with p=4 starts.

The decrease of the control parameter causes a cascade of
period adding bifurcations, as new blocks are developed
�Figs. 1�c� and 1�d��. This cascade is not infinite, but ends at
certain maximum p, which in the case of the example studied
here is p=15. However, in similar calculations performed
with different values of I, we found this number to be differ-
ent, being larger for smaller values of I. When the maximum

FIG. 1. �Color online� The Bifurcation diagram �a�, �c�, and the
two largest Lyapunov exponents �b�, �d� of the Hindmarsh-Rose
neuron model for values of r in the intervals: �a�, �b� �0.0049,
0.0200�, and �c�, �d� �0.0010, 0.0050�. Blocks are identified by their
numbers p and separated by vertical dotted lines in �b�, �d�. Quan-
tities plotted are dimensionless. T is measured in units of time �,
and � and r in units of reciprocal time �−1.
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p is reached, further decrease of r results in a continuous
interior crisis, which is a chaos-chaos transition �previously
studied in Ref. �11��, which separates the bursting and the
spiking dynamics in the Hindmarsh-Rose model.

The bifurcation diagram of a dynamical system provides a
global picture of the dynamical states available to that sys-
tem. In particular, for neurons it tells us which are the firing
regimes available. Spike firing is the mechanism that the
neurons use to encode information; consequently, bifurcation
diagrams of neurons contain fundamental information for
neuronal coding. We illustrated this in Fig. 2 by means of
plots of x�t� for different values of r. The time series shown
in Figs. 2�a�, 2�c�, and 2�e� have been computed for r in the
periodic regimes within the blocks p=3, p=4, and p=10,
respectively. They show that the dynamics is made by a se-
quence of identical bursts of spikes, each burst containing as
many spikes as the periodicity p of the block. The time series
in Figs. 2�b� and 2�d� are for the chaotic regimes within the
blocks p=3 and p=4. In these cases, x�t� is given by an
aperiodic sequence of burst with different numbers of spikes
each. However, the block periodicity is conserved in the
sense that bursts with a number of spikes equal to the peri-
odicity of the block are dominant. The above bifurcation
diagrams are then closely related to neural coding because
each block has associated a characteristic structure of the
action potential firing, and neuronal information is assumed
to be encoded in this kind of structure.

III. BLOCK STATISTICS

To show how this block structure can be used for neuronal
coding, we rely on the fact that within each block there is a
cascade of bifurcations in which, as r decreases, orbits of
low periodicity lose stability in favor of orbits of higher pe-
riodicity until a chaotic regime is reached where all these
periodic orbits become an unstable set �22�. External noise
will tend to even out the dynamics within each block �21� by
allowing the system to move in the neighborhood of these
unstable periodic orbits. Because each block has a different
basic periodicity, we expect that, in a noisy environment,
there will be observables that, despite the smoothing caused
by the noise, will retain memory of the block structured dy-
namics. Therefore, we consider the full stochastic dynamics
�D
0� given by Eqs. �1�–�3� and focus on statistical quan-
tities that are commonly used to characterize the sequences
of ISI.

We have studied the moments of a statistical distribution:
mean, variance, and skewness �23�, as well as others like the
coefficient of variation which is commonly used �24� in this
context. We present now the results for the variance, which is
a quantity frequently used in experiments. This is defined as

V =
1

N − 1	 j=1

N
�Tj − 
T��2, �4�

with 
T�=N−1	 j=1
N Tj being the mean of the distribution. The

dependence of V�r� on D appears in Fig. 3.
For the free noise case �upper curve in Fig. 3�a��, the

dependence of V on r displays a block structure according
to those in Fig. 1. Within each block, the variation of V�r�
has roughly the shape of a wave with a minimum, Vm

�p�

=V�rm
�p��, and a maximum, VM

�p�=V�rM
�p��, occurring at rm

�p� and
rM

�p�	rm
�p�, respectively. This structure is associated to the pe-

riod doubling transition between regular and chaotic dynam-
ics inside the block with the lower values of V corresponding
to chaotic behavior. Moreover, the center of oscillation of
each wave decreases monotonously with increasing r, which
results in an overall negative slope in the plot of V versus
ln�r�.

The effect of external noise is to smooth this structure
until V becomes a monotonous decreasing function of r
�curves from top to bottom in Fig. 3�a��. In this transition, we
have a low noise regime where the wave structure, although
softened, persists. In this regime, there are still minima and
maxima, Vm

�p� and VM
�p�, for V�r� within each block, but the

values of these two extrema approach each other with little
change in their positions. At certain value of the noise
strength characteristic of each block, DC

�p�, the extrema dis-
appear within the block and V�r� becomes monotonously
decreasing. The values DC

�p� are larger as the blocks come
closer to the limits of the r interval, where the block struc-
tured dynamics occurs. For V, they change smoothly from
DC

�6��0.0015 to DC
�14��0.0055, being the values of DC

�p� for
consecutive blocks close to each other. So that given a block
p, there is an interval of noise intensities where, for at least a
series of several consecutive blocks, V�r� has roughly the
shape of a stairs profile, with plateaus having approximately

FIG. 2. �Color online� Time series for the membrane potential
computed for values of r that lead to dynamics in block p=3, �a�
r=0.0095 and �b� r=0.0080; in block p=4, �c� r=0.0062 and �d�
r=0.0056; and in block p=10, �e� r=0.002 65. Quantities plotted
are dimensionless, t is measured in units of time �, and x in units of
voltage �.
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the width of the block, and the fluctuations of V�r� being
smaller than the steps between consecutive plateaus. We il-
lustrate this in Fig. 3�b�, where a detail of V�r� for blocks
p=10 and p=11 is shown, for D=0.0048, which verifies
DC

�10��D�DC
�11�.

Moreover, a signature of the block structured dynamics
still persist for large noise levels, as shown by the curve for
V�r� at D=0.100 �bottom curve of Figs. 3�a� and 3�c��. This
comes from the above mentioned decrease of the centers of
oscillation within each block and shows up as a straight line
with slope �V /��ln r��−3.9�102 in the V versus ln�r�
plot.

The outputs of experiments are ISI sequences; therefore,
other statistical quantities are easily accessible experimen-
tally and deserve to be considered. We present three of them
in Fig. 4 for two extreme cases of the noise strength, D=0
and D=0.1, and an intermediate value appropriate for each
case. The mean 
T� appears in Fig. 4�a� for the intermediate
value D=0.0040; the skewness,

S =
1

N
	 j=1

N �Tj − 
T�
�V

��3

, �5�

in Fig. 4�b� for D=0.0015; and the coefficient of variation,
CV=�V / 
T�, in Fig. 4�c� for D=0.0035. The qualitative be-
haviors observed in the three cases are essentially the same
seen above for the variance, with an oscillation inside each
block and a certain shift of the centers of the oscillations.
This shift is approximately linear for S and CV plotted versus
ln�r�, but has a more complex structure for 
T�. Two other
quantitative differences are relevant: the overall slope of the
several curves and the ability of the observables to pre-
serve signatures of the block structured dynamics against
the effect of noise. To ease comparison, the slopes have
been estimated from the curves for D=0.1. In the normal-
ized form given, the ratio R=�Q / �Q15��ln r��, with
Q� �
T� ,S ,CV ,V� being the quantity considered, and Q15 as
the value of Q at the limit between blocks p=15 and p=14.
This ratio is R�0.10 for 
T�, R�0.32 for CV, R�0.41 for V,
and R�0.47 for S. Otherwise, for levels of noise allowing us

FIG. 3. �Color online� �a� Dependence of V on r for a series
of seven values of D, evenly spaced an amount 0.001, starting at
D=0 and ending at D=0.006, plus an additional plot for D=0.100.
The plots for the different values of D have been shifted down an
amount 150.0 from its previous element in the series to separate
them and make the figure clear. Plots of V�r� at p=10 and p=11 for
�b� D=0.0048 and �c� D=0.1. In these last two cases, boxes of
width ��p� and height �p� are also plotted. Quantities plotted are
dimensionless, V is measured in units of time squared �2, and r in
units of reciprocal time �−1.

FIG. 4. �Color online� Statistical quantities characterizing the
ISI distribution as functions of r for representative values of the
noise strength. �a� The mean for D=0 �top�, D=0.0040 �middle�,
and D=0.100 �bottom�. The last two curves are shifted down the
same amount, 3.5, to make the figure clear. �b� The skewness
for D=0 �top�, D=0.0015 �middle�, and D=0.100 �bottom�. The
last two curves are shifted down 0.5 and 1.5, respectively. �c� The
coefficient of variation for D=0 �top�, D=0.0035 �middle�, and
D=0.100 �bottom�. The last two curves are shifted down 0.3 and
0.6. Quantities plotted are dimensionless, 
T� is measured in units
of time �, S and CV are pure numbers �no units�, and r is measured
in units of reciprocal time �−1.
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to use a stair-like dependence as in Fig. 3�b�, we have found
that the skewness, for which 0.15�DC

�p��0.25 is the weak-
est, while the mean �0.40�DC

�p��0.60� and the coefficient of
variation �0.35�DC

�p��0.50� rate similar to the variance in
this issue.

IV. NEURONAL CODING

We will now show that the behavior of observables like
V�r� may contribute to our understanding of how neurons
encode information. Let us start with a more formal presen-
tation of the relevant results shown in Fig. 3. For a level of
noise Dm smaller than DC

�p�, but close to it, we can idealize
the dependence of V on r, by means of a surrogate variance,
v�r�, and its uncertainty function, u�r�. To define these func-
tions, we consider an interval which begins at rI

�p� and ends at
rF

�p�, with rI
�p� being the smallest value of r�rM

�p� which veri-
fies v�r��VM

�p�, and rF
�p� as the largest value of r	rm

�p� which
verifies V�r�
Vm

�p�. Once defined, these intervals for a block,

v�r� and u�r�, are given by v�r�= �rF
�p�−rI

�p��−1�
r
I
�p�

rF
�p�

V�r�dr

�v�p� and u�r�=VM
�p�−Vm

�p��v�p�, both for r���p�

��rI
�p� ,rF

�p��. These functions are defined only in the set of
points enclosed in ��p�. In practice, this is most of the range
of variation of r because u�r� and v�r� are to be used for D in
the neighborhood of a DC

�p� where V�r� is approximately a
stairs shaped function, so that rI

�p−1�−rF
�p� is small compared

to the length of ��p�. Moreover, we note that, for each block,
v�r� and u�r� provide an appropriate coarse description of
V�r� for a range of values of D, up to certain value DM,
greater then DC

�p�, but close to it. So, these functions are con-
structed to work as a coarse description of V�r� in a narrow
but finite range of values of noise around the set of values of
DC

�p�, at least for a subset of a few consecutive blocks. For
example, in Fig. 3�b�, rectangles of base ��p� and height
v�p�, around v�p�, are plotted for p=10 and p=11.

Therefore, at least for a subset of consecutive blocks, the
function v�r� that takes a constant value v�p�, inside ��p�, with
a tolerance v�p� equal to the value of u�r� in ��p� is a well-
constructed coarse description of V�r�. Provided that inter-
vals v�p� and v�p+1�, around v�p� and v�p+1�, are separated by
well-defined gaps, a coding mechanism can be defined. A
common way to construct messages is by defining a set of
code units �“letters”� and then to make meaning units as
strings of code units �“words”�. The simplest set of code
units is the binary code made up of two bits, which allows us
to construct messages as sequences of 0 s and 1 s. Therefore,
a feasible hypothesis is that the neuronal code is made of
words that convey meaning, which are composed of strings
of letters. If this is to work, we need a mechanism that has
two basic properties. One is accuracy: It must allow the gen-
eration of letters that have to be unambiguously distinguish-
able from one another. The other is reproducibility: It has to
be possible to repeat precisely each letter as many times as
needed.

The above block structures allow us to design a coding
mechanism which has these fundamental properties by as-

signing a different letter to each of the blocks available, so
that any neuron whose r is inside the interval ��p� is sending
the reproducible letter v�p�. This is named by the value of
V�r��v�p� within v�p�, which is definitely different than the
letter sent by other neuron working at r� in the interval
��p�����p�, which is characterized by V�r��v�p���v�p�, be-
cause v�p�� and v�p� are disjointed intervals. Then accuracy
is granted and precise words can be encoded by means of
sequences of letters which can be unambiguously detected
because of the stairs shape of V�r�. We give an example of
this in Fig. 3�b�, where V�r� is displayed together with the
intervals ��p� and the tolerances v�p� that define boxes in the
r-V plane, which are the regions of neuronal working asso-
ciated to the letters v�10� and v�11�. Messages in binary code
can be constructed working only within these two regions.

These ideas, with some changes, can also be applied to
large levels of noise as illustrated in Fig. 3�c�, where V�r� in
the region around the blocks p=10 and p=11 is plotted for
D=0.100. Because signatures of the block structured dynam-
ics still persist in the form of a monotonous decay with a
large slope, it is possible to define boxes in the r-V plane,
similar to those considered above, which will allow neuronal
coding in a similar way. In this case, however, there is more
freedom to choose the values of �, v, and v, which define
each letter, because they do not have to be associated to
blocks. We show in Fig. 3�c� an arbitrary choice of two
boxes for which neuronal coding reasoning similar to that
presented above can be done.

We note that, as illustrated by the results in Fig. 4, not all
statistical quantities will rate equally for such a neural cod-
ing. A relevant feature is the overall slope, which has to be
large to distinguish efficiently different letters, no matter if a
stairs profile based code �Fig. 3�b�� or a slope based code
�Fig. 3�c�� is used. The mean rates poorly in this issue, be-
cause of both the nonlinear shift of the centers of oscillation
for low noise and the small slope for large noise. The other
three quantities show a better behavior with the skewness
getting the best result. Regarding to the resistance to noise
needed for a coding based on a stair profile, the skewness,
which can only be used for D�0.0020, rates below the other
three quantities, which allow this form of neural coding up to
D�0.0050.

Based on the above ideas, we speculate on possible neural
coding systems that can generate time-varying stimulus that
carry information. Varieties of neural systems exist, depend-
ing on the animal considered and on the task to be per-
formed. Therefore, we do not expect a single mechanism of
information processing that works for all cases, but a variety
of them that could be designed using block structured dy-
namics. To illustrate this, we give two simple examples of
input-output systems able to encode information, each based
in one of the interpretations for the variation of the parameter
r given in Sec. II. For simplicity, we assume that the input is
a certain stimulus s, which can take two values s� and s�.
The output has to be a train of spikes which transmits the
letter v�p� for s� and v�p+1� for s�.

In our first example �Fig. 5�a��, we assume that the value
of r of a neuron can be modified by means of the change of
the concentration c of some channel activating chemical.
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That means that for a series of values of p, there are values
of the concentration cp with uncertainties �cp, such that
when c=cp±�cp, the neuron dynamics occurs in block p.
Then, if c is sensitive to the stimulus s, it is possible to
change its value between c��cp±�cp and c��cp+1±�cp+1;
then, r changes between values within the intervals ��p� and
��p+1�. This would determine the output of the neuron, which
will be a train of spikes carrying the appropriate letter, v�p� or
v�p+1�, for the particular value of the stimulus, s� or s�. We
guess the following biological mechanism for the realization
of this transduction, which leans on the glial cells �25� that
provide structural support, nourishment, and chemical envi-
ronment regulation to the neurons. The stimulus s� would act
on some glial cells to modify the value of c to c�; likewise,
s� would change c to c�. Depending on the value of s, the
appropriate output will result as a train of spikes along the
neuron axon with dynamics in block p or in block p+1. This
biological mechanism for information transductions, which
goes beyond direct synaptic stimulation, might seem un-
usual. This may be because, since their discovery, the glia
was considered as a mere provider of support for the neu-
rons. Forty years ago, some pioneering work �26,27� empha-
sized the role of glial cells in the genesis of field potentials.

Recently, based in these and other works, it has emerged the
conviction that the neuroglia plays a significant role in neu-
ronal information processing �28�. Because of this, we have
introduced this possibility in our analyses.

In our second example �Fig. 5�b��, we understand the pa-
rameter r as the value of a property of a single neuron that
differentiates it from other neurons. For neural coding, this
parameter tells us which letter, v�p�, it is able to generate. The
binary stimulus s can be encoded by two different neurons,
working in blocks p and p+1, by activating or deactivating
the appropriate neuron. Because the output of this system is
the sum of the signals of the two neurons, in each case a
constant membrane potential will add with a train of spikes
giving a resulting signal with the appropriate statistics. A
possible mechanism able to perform this task relies in the
existence of excitory and inhibitory channel synapses �25�.
That means that the input of a neuron on another can con-
tribute positively or negatively to the generation of an action
potential; then, the following arrangement that includes the
two types of synapses would perform the desired switching:
the stimulus s� is transmitted by a nerve fiber that bifurcates
providing an excitory input to a neuron working in block
p and an inhibitory input to the neuron working in block
p+1. Similarly, the stimulus s� bifurcates to excite the neu-
ron in block p+1 and inhibit the neuron in block p.

With the exception of primitive organisms, the activity of
a nervous system is not performed by single neurons but by
functional units made of a number of neurons. One of these
units, whose job is to create certain messages, has to be made
of at least a bunch of neurons that must have their values of
r distributed around the rp which is in the middle of one of
the above intervals ��p� with a dispersion much smaller than
��p� /2. Nonchannel synaptic connections �25� would then be
established only between neurons whose value of r is within
the same ��p�. If these connections are properly set, synchro-
nization of the dynamics �29� of the neurons in the bunch can
occur �13–17�, and this will output a well-defined signal,
characterized by a v�p� with a tolerance smaller than v�p�.
Then, the functional unit would be organized into bunches of
neurons, each being a differentiated element specialized in
the generation of a letter v�p�. A time-varying stimulus, s�,
s� , . . ., can be encoded by these units by means of the above
mechanisms: �i� changing the chemical environment to
modify the value of r in a single bunch, or �ii� having several
bunches, each with its own r, and activating and deactivating
them as needed. So, these functional units would generate
accurate messages made of words composed of strings of
letters: v�a�v���. . ., which would be sequences of trains of
spikes, each with the appropriate value of v�p�. These time-
varying signals would allow decoding by measuring a con-
venient quantity characterizing the ISI distribution. We note
that for all this to work, the noise level must be stable; which
is not a strong requirement if one has in mind the self-
regulatory abilities of living beings.

V. OTHER MODELS

We note that block structured dynamics is not a particular
property of the Hindmarsh-Rose model �8�. Other models of

FIG. 5. �Color online� �a� The output of a neuron is modified by
means of the change of the block where its dynamics occurs. The
input from a stimulus which may take two values, s� or s�, activates
the physiology of glial cells �astrocytes� to change the environmen-
tal concentration of some chemical able to modify the sensitivity of
some ion gates in the neuron axon. �b� The activity of two different
neurons that are working in different blocks is switched on and off
by means of the stimulation of excitory �filled arrows� and inhibi-
tory �open arrows� synapses. In the two cases, �a� and �b�, the input
s� creates trains of spikes grouped in bursts of three; meanwhile,
the input s� results in bursts of four spikes.

J. M. GONZÁLEZ-MIRANDA PHYSICAL REVIEW E 72, 051922 �2005�

051922-6



excitable cells display structures that are similar to those pre-
sented in Fig. 1. These include the model of Chay for a nerve
cell �30�, the modified Hodgkin-Huxley model of thermally
sensitive neurons �31�, and the Sherman model for a pancre-
atic � cell �32�.

We will illustrate this by means of some results for the
Chay model �30�, which is based on a Hodgkin-Huxley-type
�9� formalism. In the formulation of this model, it is assumed
that the membrane potential is determined by the combined
dynamics of inward Na+-Ca2+ ion channels, outward K+ ion
channels �that can be of two types: voltage or chemical ac-
tivated�, and the average effect of other ionic channels,
called leakage channels. The model has three dynamical
variables: the membrane potential V, the probability of open-
ing the K+ voltage sensitive channels n, and the concentra-
tion of intracellular Ca2+ ions C. The dynamics equations are
then

dV/dt = gI
*m�

3 h��VI − V� + gK,V
* n4�VK − V�

+ gK,C
* C

1 + C
�VK − V� + gL

*�VL − V� , �6�

dn/dt = �n� − n�/�n, �7�

dC/dt = ��m�
3 h��VC − V� − kCC� . �8�

In these equations, m�, h�, and n� are steady state values
of probabilities of activation or inactivation of voltage
sensitive ion channels given by x�=ax / �ax+bx�, with
x� �m ,h .n�, and

am =
25 + V

10
�1 − exp�− �25 + V�/10��−1, �9�

bm = 4 exp�− �50 + V�/18� , �10�

ah = �7/100�exp�− �50 + V�/20� , �11�

bh = �1 + exp�− �20 + V�/10��−1, �12�

an =
20 + V

100
�1 − exp�− �20 + V�/10��−1, �13�

bn = �1/8�exp�− �30 + V�/80� . �14�

The relaxation time for n is �n= �230�an+bn��−1. The param-
eters of the system are the reversal potentials �VI=100 mV,
VK=−75 mV, VL=−40 mV�, and the maximal conductances
divided by the membrane potential �gI

*=1800 s−1, gK,V
*

=1700 s−1, gL
* =7 s−1� for the mixed Na+-Ca2+, the K+, and

the leakage voltage sensitive ion channels, respectively, plus
kC=3.3/18 mV, �=0.27 mV−1 s−1 and VC=100 mV. The
control parameter of the model is the conductance for the
Ca2+ sensitive K+ ion channel, gK,C

* , which we change in the
range from 10.5 s−1 to 15.5 s−1. According to Chay �30�, all
these figures are in a range in which they can be taken as
realistic values which allow qualitative reproduction of ex-
perimental results.

Our determination of the bifurcation diagram and the
two largest Lyapunov exponents, presented in Fig. 6,
show that after a continuous interior crisis that occurs at
gK,C

* �10.95 s−1, three blocks of dynamics, with periodicities
5, 4, and 3, develop as gK,C

* increases. This suggests that
block structured dynamics may be common in systems of
excitable cells, especially when parameters that describe the
efficiency of ion channels are considered.

VI. CONCLUSIONS

In summary, we have shown that there are block bifurca-
tion structures in excitable systems, which are robust against
noise and make it possible to encode messages in the random
trains of spikes that run along a neuron axon. These struc-
tures allow the classification of the dynamics available to the
system in classes, labeled by its periodicity. They may be
common in models for the action potential that include con-
trol parameters describing the permeability of the membrane
to certain ions. In a noisy environment, it is possible to find
statistical observables that, despite the tendency of the noise
to blur all structure, retain some features of the underlying
block bifurcation structure. We have shown two potential
ways to allow neuronal coding from these physical behav-
iors: one is based on a stairs profile for medium and low
noise and the other on monotonous variations of appropriate
observables for large noise.

FIG. 6. �Color online� �a�, �c� The Bifurcation diagram and �b�,
�d� the two largest Lyapunov exponents for the Chay model.
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These results appear interesting for both physicists and
biophysicists. Among other issues, the search for the condi-
tions of existence of block structured dynamics, and the elu-
cidation of the particular properties that these structures
could induce in the physics of driven or coupled nonlinear
oscillators, are of potential interest in nonlinear physics. Oth-
erwise, the detailed biophysical mechanisms behind block
structured dynamics, the extent of its presence in excitable
cells, as well as all issues related to its application in neural

coding, such as the choice of optimal observables or the
elucidation of neuronal coding systems, are of interest in
biophysics.
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