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Abstract: The density profiles of dark matter halos is a subject that has been addressed by
numerical and analytic means. One interesting result of simulations is the finding that the inner
properties of halos depend on their background density, which is interpreted as due to the different
merger rates suffered by halos in different environments, the so-called “assembly bias”. In this
work, we use the analytic CUSP formalism to derive the density profiles of purely accreting halos
in different backgrounds, which shows that mergers are not the origin of that effect.

I. INTRODUCTION

Dark matter clustering plays a crucial role in the for-
mation and evolution of structure in the Universe. In this
respect, the typical properties, such as the density profile,
of dark matter halos provide very valuable information
on the way these objects grow.

Both theory and observations show that dark matter
halos increase their mass and size in two complementary
ways: by accreting surrounding material or undergoing
major mergers with other similarly massive halos. In-
deed, their collapse from the primordial density fluctua-
tion which acts as a seed is neither monolithic nor spher-
ical; it is rather clumpy and ellipsoidal. The difficulty to
study this kind of collapse by analytic means is the reason
why this issue has been traditionally addressed through
numerical simulations. Cosmological simulations lead to
a very accurate description of the final halo properties,
but they are not well suited to understand how those
properties emerge, and their results may be somewhat
biased due to technical details such as the complex selec-
tion procedure one must apply to the raw data [1].

Simulations have shown the density profile of halos of
a given mass slightly depends on their particular back-
ground density. This effect is called “assembly bias” since
it is commonly believed that it is caused by the differ-
ent frequency of mergers suffered by halos growing in
different environments. This explanation relies on the
idea that the density profile of halos retains the memory
of their past mergers so that should be, in particular, a
slight difference between the profile of purely accreting
halos and halos of the same mass formed in a merger.
Nonetheless, the analytic derivation of halo density pro-
files by means of the CUSP formalism [1] has demon-
strated that both density profiles must be identical due to
the violent relaxation produced in mergers which erases
the memory of the halo past history. According to CUSP,
the “assembly bias” found in simulations would not be
the result of mergers, but would also affect purely accret-
ing halos. Indeed, the different density profile of halos in
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different backgrounds would already be imprinted in the
initial field of density fluctuations. More specifically, the
density profile of the halo seed determining that of the fi-
nal halo would already depend on its background density.
Unfortunately, that claim is still to be proven.

In this paper we address this issue. Using the CUSP
formalism, we derive the density profile of purely accret-
ing halos from seeds lying in different background den-
sities, and show that the density profile of the final ha-
los depends, indeed, on the evolved background density,
which shows that the assembly bias can be obtained with-
out making appeal to the action of mergers. To begin
with, we will briefly explain how CUSP allows one to de-
rive the density profile of an halo from the density profile
of its seed. Then we will modify that derivation so as
to deal with the seeds embedded in different background
densities. The accurate derivation in the most general
conditions requires a complex numerical treatment. To
avoid those complications we adopt some practical ap-
proximations and simplifying assumptions which allow
us to perform the calculations fully analytically. This
way, the treatment is simpler and better shows what is
fundamental in the derivation.

II. CUSP FORMALISM

The ConflUent System of Peak trajectories is a rig-
orous formalism that can correctly describe and explain
the origin of dark matter halo properties ”from the statis-
tics of peaks (secondary maxima) in the filtered Gaussian
random field of the density fluctuations” [1]. Its predic-
tions agree successfully with the results of N-body simu-
lations. One interesting result of CUSP is that it allows
one to prove that the density profile of purely accreting
halos does not depend on their particular more or less
clumpy growth, i.e. it does not depend on whether or
not the halo has undergone major mergers. Thus to de-
rive the typical density profile of halos of a given mass
one can safely assume the halo evolving by pure accretion
from a typical seed in the primordial density field.

Next, we remind the main lines of that derivation.
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A. Halo-peak correspondence

A well known result of structure formation theory is
that, in the simplest case of spherical collapse, all peaks
with a positive density contrast δth (index “th” means
that we are considering a simple top-hat filtering window)
at any scale Rth collapse at the same time t in the density
field at ti,

δth(t, ti) = δthc (t)
D(ti)

D(t)
(1)

where δthc (t) is the critical linear density contrast for col-
lapse at t, which, in the Einstein-de Sitter cosmology is
constant and equal to 1,686, and D(t) is the so-called lin-
ear growth factor, which in that cosmology simply equals
the scale factor a(t). For simplicity, we hereafter adopt
that cosmology, which is a very good approximation for
the real flat cosmology holding for our Universe at high
enough redshifts (low enough cosmic times t).
On the other hand, the mass M of halos at t is related

to the scale Rth of the peak at ti, giving it rise through

Rth(M, ti) =

[
3M

4πρc(ti)

]1/3
(2)

with ρc(t) being the mean cosmic density at t.
Thus, in top-hat spherical collapse there is a one-to-one

correspondence between halos and peaks given by those
two relations.

However, in the real Gaussian random density field,
peaks are triaxial and collapse ellipsoidally. In this more
realistic case, the collapsing time for an halo with M and
t depends not only on the density contrast and scale R of
the corresponding peak, but also on its ellipticity e, pro-
lateness p, and curvature x. This means that, contrarily
to what happens in spherical collapse, the collapsing time
of peaks with the same density contrast δ(ti) will be dif-
ferent in general because depending on other characteris-
tics of the peak. Fortunately, the probability distribution
functions of e, p and x of peaks with δ at scale R when
one uses the Gaussian window (notice that we drop in-
dex “th” in this case) are very sharp at their maximum
values, allowing us to take them fixed to these maximum
values. Then, all peaks with density contrast δ on differ-
ent scales R collapse at the same time t

t = ti + tc[R, δ, emax, pmax, xmax] (3)

into halos of different masses M .
Thanks to this result, a one-to-one correspondence can

also be defined [1] between halos with mass M at time
t and Gaussian filtered triaxial peaks collapsing ellip-
soidally with density contrast δ and scale R in the initial
density field, given by

δ(t, ti) = rδ(t)δ
th(t, ti) (4)

R(M, t, ti) = rR(M, t)Rth(M, ti) (5)

where rδ(t) is approximately unity in the Einstein-de Sit-
ter universe (a(t) = D(t)), and the function rR(M, t) is
given below in terms of the Gaussian and top-hat spec-
tral moments on the respective scales corresponding to
the mass M .
Indeed, taking profit of the fact that the power spec-

trum of density perturbations in the real Universe around
any given scale is approximately of the power form,

the corresponding spectral moment of jth order, σf
j , on

scale Rf for a filtering window f with Fourier transform
Wf (kRf ) takes the form

(σf
j )

2(Rf ) ≈
C

2π2Rn+3+2j
f

∫ ∞

0

dx xn+2(1+j)W 2
f (x). (6)

Thus, isolating rR(M, t) from Eq. (5) and using the rela-
tion between the scale corresponding to M and the 0th
order spectral moments for both the Gaussian and top-
hat filters, we arrive at

rR(M, t) = [Q0r
−1
σ (M, t)]

2
n+3 , (7)

where constant Q2
j is defined as

∫ ∞
0

dx xn+2(1+j)W 2
Gauss(x)∫ ∞

0
dx xn+2(1+j)W 2

th(x)
,

and rσ(M, t) can once again be approximated by unity
in the Einstein-de Sitter universe.
Altogether allows us to write the relation (5) in the

simple approximate form

R(M, ti) ≈ Q
2

n+3

0

[
3M

4πρc(ti)

]1/3
(8)

The values n and Q0 at the scales of galactic halos are
∼ −1, 5 and ∼ 0, 5, respectively.

B. Peak trajectories

Given the one-to-one correspondence between halos
with M at t and their associated peaks with δ on scale
R at the initial time ti, as a halo accretes and its mass
grows, the associated peak traces a continuous trajectory
δ(R) in the δ-R plane.
Taking advantage of the relation

∂δ(r, R)

∂R
= R∇2δ(r, R) ≡ −x(r, R)σ2(R)R (9)

satisfied by the density contrast with varying scale for
a Gaussian filter, where x(δ,R) is the curvature of the
peak on scale R. Consequently, the mean peak trajectory
δ(R) tracing the mass growthM(t) by accretion of typical
halos satisfies the differential equation

dδ

dR
= −x̄(R, δ)σ2(R)R (10)

where x̄(R, δ) is the mean curvature x of peaks with δ on
scale R, related to the mean instantaneous accretion rate
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of halos with M at t. Note that, in the previous deriva-
tion, the inverse of the mean inverse curvature of peaks
has been replaced by the simple mean peak curvature.
This is indeed a very good approximation because of the
above mentioned sharp distribution of peak curvatures
around the maximum value.

For halos of galactic scales, x̄(R, δ) can be approxi-

mated by γν with γ =
σ2
1

σ0σ2
and ν = δ(t)

σ0(R) . With that

approximation equation (10) takes the simple form

d ln δ

d lnR
≈ −

[
σ1(R)

σ0(R)

]2
R2 (11)

Thus, given that the power spectrum of density fluctu-
ations is approximately of the power-law form P (k) ≈
Ckn, we have

d ln δ

d lnR
≈ k, (12)

whose solution is also of the simple power-law form

δ(R) ≈ DRk (13)

with index k = [(n+ 3)/2]3/2 ∼ 0.65, and D an integra-
tion constant fixing the particular trajectory correspond-
ing for the halo with M0 at t0.

C. Halo density profile

The typical unconstrained density profile of halos with
current mass M0 at the final time t0 can be derived from
the previous results. Indeed, taking into account that
accreting halos grow inside-out [1], the time evolution of
the mass and radius of halos, M(t) and r(t), determine in
the parametric form (with t as parameter t), their mass
profile M(r). And by differentiating it, we can obtain
the desired the density profile ρ(r).
The typical mass growth M(t) of accreting halos with

M0 at t0 can be readily obtained from their associated
typical peak trajectory δ(R), Eq. (13) using the relations
R(M, ti) and δ(t, ti) given by Eqs. (8) and (4). We then
obtain

δ(t, ti) ≈ DQ
2k

n+3

0

[
3M(t)

4πρc(ti)

]k/3
, (14)

which, by isolating the mass of the halo scaled to its
current value and expressing δ(t, ti) in terms of δthc (t)
(Eq. [1]), leads to

M(t)

M0
≈

[
δthc (t)

δthc (t0)

a(t)

a(t0)

D2(t0)

D2(t)

]3/k
. (15)

On the other hand, the evolution of the typ-
ical (virial radius of halos with M at t, r =
{3M/[4π∆vir(t)ρc(t)]}1/3, scaled to its current value r0
leads to

r(t)

r0
=

[
M(t)∆vir(t0)ρc(t0)

M0∆vir(t)ρc(t)

]1/3
. (16)

Thus, the density profile ρ(r) in the parametric form
is given by

ρ(t) =
∆vir(t0)ρc(t0)

4π

d(M(t)/M0)

dt

[
d([r(t)/r0]

3)

dt

]−1

(17)
and r(t) from equation (16).
Differentiating the relation (15) and taking into ac-

count the Friedman equation in the Einstein-de Sitter
universe at the matter-dominated era,(

ȧ

a

)2

=
8πG

3

ρc(t0)

a3(t)
, (18)

we arrive at

d(M/M0)

dt
≈ −3

k

M(t)

M0

ȧ

a(t)
. (19)

To derive Eq. (19) we have used the relations δthc (t) =
1.686 and D(t) = a(t) holding for the Einstein-de Sitter
universe [4].
On the other hand, differentiating the relation (16), we

are led to

d(r/r0)
3

dt
≈ 3M(t)

kM0

[
∆vir(t0)

∆vir(t)

]2
a2(t)ȧ

[
k − ∆vir(t)

∆vir(t0)

]
,

(20)
where, in the Einstein-de Sitter universe ∆vir(t) is con-
stant and equal to 18π2 [4].
Plugging these expressions in Eq. (17) we finally obtain

ρ(t) =
9πρc(t0)

2a3(t)
(1− k)−1 (21)

defining, together with r(t) in Eq. (16), the desired ap-
proximate unconstrained halo density profile ρ(r) in the
parametric form.
To illustrate the goodness of this kind of derivation

we show in Figure 1 the accurate unconstrained typi-
cal (mean) halo density profile predicted by CUSP for
halos of M = 1013M⊙ in a realistic universe (with the
best current values of the cosmological parameters), com-
pared to the corresponding density profile found in sim-
ulations (we actually represent two different analytic fits
to it commonly used).

III. DENSITY PROFILE OF HALOS WITH
BACKGROUND

Let us now turn to the main objective of this work:
the derivation of the density profile of halos with M0

constrained to lie at t0 on a specific background.
To do that we will follow exactly the same derivation

above, but for that particular kind of halos. The con-
dition to lie on a specific background will translate on
the corresponding seeds which will thus be peaks also lo-
cated in a specific background evolving into the final one
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FIG. 1: [1] Mean unconstrained density profiles for halos of
Mvir = 1013M⊙ derived by means of CUSP with no free
parameter (solid lines), compare to the the results of simula-
tions (dashed lines). Top panel is for the NFW analytic fit
and the bottom is for the Einasto analytic fit. In each panel
we also represent the deviations which show the same S-shape
as found in the fits with those analytic functions, with the re-
sults of numerical simulations.

at the final time t0. In fact, since the background does
not collapse at t0 we can simply monitor its evolution
of its density contrast in the linear regime, given by the
simple expression [6]

δb(t) = δb(ti)
D(t)

D(ti)
(22)

As D(t0) and D(ti) are known, δb(ti) can be readily
related to the final value δb(t0). Note that the scale Rb

of the background also varies with time in such a way that
at every moment the background enclosing (according to
the simple top-hat expression) the same constant mass
Mb.

Following the same steps leading to the typical peak
trajectory associated to typical accreting halos, but now
with the constraint that peaks along the trajectory lie
on the varying background with δb on scale Rb, we
obtain a differential equation for the density contrast
δ(R,Rb) of the constrained peaks identical to that for
uncosntrained ones, Eq. (10), but with the curvature of
peaks at each point of the trajectory satisfying that con-
straint, x(δ,R|δb, Rb(δb,Mb)). However, the approxima-
tion ⟨x⟩ ≈ γν used above is still valid now [1], though
with slightly different values of the functions γ and ν,
hereafter denoted with tilde, having the influence of the
background [2].
Their detailed expression is

γ̃2 = γ2

[
1 + ϵ2

(1− r1)
2

(1− ϵ2)

]
(23)

ν̃ =
γ

γ̃

(1− r1)

(1− ϵ2)

[
ν
(1− ϵ2r1)

(1− r1)
− ϵνb

]
(24)

in terms of the spectral parameters,

ϵ ≡ σ2
0h

σ0σ0b
, r1 ≡ σ2

1hσ
2
0

σ2
0hσ

2
1

with σjh(R,Rb) defined just as σj Eq. (6) and replacing

R for the rms average scale Rh ≡ [(R2+R2
b)/2]

1/2. Here,
we must emphasise the reliability of the results since for
ϵ → 0, γ̃ = γ and ν̃ = ν we come back to the same
functions as in the no-background scenario.
That accurate expression for the mean curvature

greatly complicates the explicit form of that equation.
Instead of Eq. (11), we now have

dδ

dR
= −δ(σ2

0bσ
2
1 − σ2

0hσ
2
1h)− δb(σ

2
0hσ

2
1 − σ2

1hσ
2
0)

σ2(σ2
0σ

2
0b − σ4

0h)
σ2hRh

(25)
Solving analytically that equation requires, besides

adopting the simple Einstein-de Sitter like ever, neglect-
ing R in front of Rb. Then, expression (25) becomes,

dδ

dR
≈ −B

A

(
δ − δb2

n+3
2

)
2

n+6
2

Rn+5

Rn+6
b

(26)

where A and B are two constants defined as, A ≡∫∞
0

dx xn+2W 2
f (x) and B ≡

∫∞
0

dx xn+4W 2
f (x), respec-

tively, for the Gaussian filter. Eq. (26) can be reexpressed
in the simpler form similar to Eq. (12)

d ln δ

d lnR
≈ −B

A

(
1− δb

δ
· 2

n+3
2

)(
21/2

Rb/R

)n+6

. (27)

Taking into account that, in linear regime, all fluc-
tuations evolve in the same way with time from ti to t0
(the only difference for the fluctuation collapsing into the
halo is that, at that time, it reaches the critical density
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contrast for collapse), we have that δb(t)/δ(t) is a con-
stant, hereafter denoted as ∆δ. And the same is true for
the ratio R/Rb = (M0/Mb)

1/3, hereafter denoted as ∆R,
Eq. (27) can be readily integrated. Interestingly enough,
the resulting peak trajectory

δ(R) ≈ DRk̃, (28)

in the present conditioned case is a power-law like that in
the previous unconditioned one, but with the new index
where in this case,

k̃ = −B

A

(
1−∆δ · 2

n+3
2

)(
∆R2

1/2
)n+6

(29)

with both constant values ∆δ and ∆R smaller than unity.
In other words, the trajectory of peaks subject to lie on
a given background density is the same as for uncondi-
tioned peaks but with slightly different power index.

This is a very interestingly result because it means
that, using that peak trajectory and following the same
derivation above for the unconditioned density profile of
halos, we will obtain a conditioned profile of the same
form as (21) but replacing k by k̃ and, therefore, we come
back to the same definition as before. We thus conclude
that the typical (mean) density profile ρ(r) of purely ac-
creting halos lying on any specific background is similar,
though not identical, to that of unconditioned accret-
ing halos of the same mass at the same cosmic density,
the difference being only encoded in the slightly different
value, dependent on ∆δ and ∆R, of index k (k̃) appearing
in the expression of ρ(t), Eq. (21).

IV. CONCLUSIONS

The purpose of this paper was to find an analytical
expression for the the typical (mean) density profile of
purely accreting halos subject to the condition of lying in

a specific background, and see whether or not it depends
on the background. If it depended on it, this would mean
that the different typical (mean) density profiles found
in simulations for halos in different backgrounds can be
explained without making appeal to mergers, as usually
believed, the so-called assembly bias.
Instead of following an accurate derivation, we have

preferred to derive simple analytic expressions, which
better show where the different background enters in the
final result. To do that we have adopted the simple case
of an Einstein-de Sitter univers and used some approxi-
mations. But these approximations and simplifying as-
sumptions should not alter the main conclusion of the
work.
We have found a very simple result showing that the

density of purely accreting profile of halos slightly de-
pends, indeed, on the background density. This result
is thus fully consistent with the claim reached by means
of CUSP that the density profile (and all other proper-
ties) of halos of a given mass at a given cosmic time does
not depend on the amount and frequency of the mergers
they have suffered. They only depend on the properties
of their respective collapsing seeds (peaks) in the primor-
dial field of density fluctuations.
One last point, personally this thesis has been ex-

tremely enriching and has helped me to open my mind
and gain a deeper point of view on the subject of struc-
ture (and galaxy) formation in the Universe which was
given as well by my advisor.
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