
PHYSICAL REVIEW E OCTOBER 1999VOLUME 60, NUMBER 4
Pattern selection in a lattice of pulse-coupled oscillators

X. Guardiola* and A. Dı́az-Guilera†

Departament de Fı´sica Fonamental, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Spain
~Received 10 February 1999; revised manuscript received 14 May 1999!

We study spatio-temporal pattern formation in a ring ofN oscillators with inhibitory unidirectional pulselike
interactions. The attractors of the dynamics are limit cycles where each oscillator fires once and only once.
Since some of these limit cycles lead to the same pattern, we introduce the concept of pattern degeneracy to
take it into account. Moreover, we give a qualitative estimation of the volume of the basin of attraction of each
pattern by means of some probabilistic arguments and pattern degeneracy, and show how they are modified as
we change the value of the coupling strength. In the limit of small coupling, our estimative formula gives a
pefect agreement with numerical simulations.@S1063-651X~99!02110-8#

PACS number~s!: 05.90.1m, 87.10.1e, 05.50.1q, 87.17.Aa
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I. INTRODUCTION

The study of the collective behavior of populations
interacting nonlinear oscillators has attracted the interes
physicists and mathematicians for many years since they
be used to modelize several chemical, biological, and ph
cal systems@1,2#. Among them, we should mention cardia
pacemakers cells@3#, integrate and fire neurons@4#, and other
systems made of excitable units@5#. Most of the theoretical
papers that have appeared in the scientific literature deal
oscillators interacting through continuous-time couplings,
lowing them to describe the system by means of coup
differential equations and apply most of the modern non
ear dynamics techniques. More challenging from a theor
cal point of view is to consider a pulse coupling, or in oth
words, oscillators coupled through instantaneous interact
that take place in a very specific moment of its period. T
richness of behavior of these pulse-coupled oscillatory s
tems includes synchronization phenomena@6#, spatio-
temporal pattern formation@7# ~we could mention, for in-
stance, traveling waves@9#, chessboard structures@7#, and
periodic waves @10#!, rhythm annihilation @11#, self-
organized criticality@8#, etc.

Most of the work on pattern formation has been done
mean-field models or populations of just a few oscillato
However, such restrictions do not allow us to consider
effect of certain variables whose effect can be crucial
realistic systems. The specific topology of the connection
geometry of the system are some typical examples wh
usually induce important changes in the collective behav
of these models. Pattern formation usually takes place w
oscillatory units interact in an inhibitory way, although it h
also been shown that the shape of the interacting pulse, w
the spike lasts for a certain amount of time, or time delays
the interactions, can lead to spatio-temporal pattern for
tion also in the case of excitatory couplings@14,15#. Only
recently, general solutions for the general case, where
pattern existence and stability are proved, have been wo
out @12,13#. The aim of this paper is to study some patte
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properties and get a quantitative estimation of the probab
of pattern selection under arbitrary initial conditions or,
the language of dynamical systems, the volume of the ba
of attraction of each pattern. Keeping this goal in mind,
will use the general results given in@13# where, assuming a
system defined on a ring, the authors developed a mathem
cal formalism powerful enough to get analytic informatio
on the system, not only about the mechanisms which
responsible for synchronization and formation of spat
temporal structures, but also, as a complement, to con
under which conditions they are stable solutions of the
namical equations.

Despite the apparent simplicity of the model, some ri
lattices of pulse-coupled oscillators are currently used
modelize certain types of cardiac arrhythmias where ther
an abnormally rapid heartbeat whose period is set by
time that an excitation takes to travel the circuit@16#. More-
over, there are experiments where rings of a few R15 n
rons from Aplysia are constructed and stable patterns
reported@17#. Our one-dimensional~1D! model allows us to
study analytically the most simple patterns and underst
their mechanisms of selection.

The structure of this paper is as follows. In Sec. II w
review the model introduced in@13# as well as set the nota
tion used throughout the paper. In Sec. III we study so
pattern properties which will be useful and in Sec. IV w
propose an estimation of the probability of selection of ea
pattern. In the final section we present our conclusions.

II. THE MODEL

Our system consists of a ring of (N11) pulse-coupled
oscillators. The phase of each oscillatorf i evolves linearly
in time,

df i

dt
51, ; i 50, . . . ,N ~1!

until one of them reaches the threshold valuef th51. When
this happens the oscillator fires and changes the state o
rightmost neighbor according to
3626 © 1999 The American Physical Society
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PRE 60 3627PATTERN SELECTION IN A LATTICE OF PULSE- . . .
f i>1⇒H f i→0

f i 11→f i 111«f i 11[mf i 11

subjected to periodic boundary conditions, i.e.,N11[0,
and where« denotes the strength of the coupling andm51
1«, where we have assumed that, from an effective poin
view, the pulse interaction between oscillators, as well as
state of each unit of the system, can be described in term
changes in the phase, or in other words, in terms of
so-called phase response curve~PRC!, «f in our case. A
PRC for a given oscillator represents the phase advanc
delay as a result of receiving an external stimulus~the pulse!
at different moments in the cycle of the oscillator. We w
assume«,0 throughout the paper, as we are only interes
in spatio-temporal pattern formation and«.0 always leads
to the globally synchronized state@13#. This linear PRC has
a physical sense in some situations. For instance, it show
when we expand the nonlinear PRC for the Peskin mode
pacemaker cardiac cells@3# in powers of the convexity of the
driving or in neuronal modeling@18#. In practice, however,
this condition can be relaxed since a nonlinear PRC does
change the qualitative behavior of the model provided
number of fixed points of the dynamics is not altered. Mo
over, a linear PRC has the advantage of making the sys
tractable from an analytical point of view.

Let us describe the notation used in the paper. The po
lation is ordered according to the following criterion: Th
oscillator which fires will always be labeled as unit 0 and t
rest of the population will be ordered from this unit cloc
wise. After the firing, the system is driven until another o
cillator reaches the threshold. Then we relabel the units s
that the oscillator atf51 is now unit number 0, and so on
This firing 1 driving ~FD! process forN11 oscillators can
be described through a suitable transformation

fW 85Tk~fW ![1W 1MkfW , ~2!

whereMk is anN3N matrix, fW is a vector withN compo-
nents, 1W is a vector with all its components equal to 1, andk
stands for the index of the oscillator which will fire next. W
call this kind of transformation a firing map, and we have
define as many firing maps as oscillators could fire, that
index k must run fromk51 (f1 fires! to N (fN fires!. For
example, in theN1154 oscillators case we have that th
firing map corresponding to the FD process, wheref2 is the
next oscillator which fires,

f051 →
firing

0 →
driving

12f25f28 ,

f1 → mf1 → mf1112f25f38 ,

f2 → f2 → 15f08 ,

f3 → f3 → f3112f25f18 ,

would beT2(fW ),
f
e
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S f18

f28

f38
D 5S 1

1

1
D 1S 0 21 1

0 21 0

2m 21 0
D S f1

f2

f3

D , ~3!

where the 333 matrix is M2, and so on. Once we hav
defined all possible firing maps for a given number of osc
lators, we can proceed to deal with the attractors or fix
points of the system dynamics. As has been proved in@13#,
these fixed points must be cycles ofN11 firings. We define
a cycle as a sequence of consecutive firings where each
cillator fires once and only once. Mathematically, each cy
is described by means of a return map. The return map is
transformation that gives the evolution offW during a cycle
and is the composition of all firing maps involved in th
firing sequence of that cycle,

fW 85Tc1
+Tc2

•••+TcN11
~fW ![RW c1McfW , ~4!

where Tci
+Tcj

(f) is the usual composition operatio

Tci
„Tcj

(f)… and

RW c51W 1 (
i 5c1

cN S )
j 5c1

i

Mj D •1W and Mc5 )
j 5c1

cN11

Mj .

Note that not all possible combinations of firing maps a
allowed, just those whose indicesci sum p(N11) without
any partial sum equal toq(N11), wherep.q are positive
integers.

As all firing maps are linear transformations, return ma
are also linear. There areN! possible cycles in theN11
oscillators case~all permutations of firing sequences with th
initial firing oscillator f0 fixed!. Following our previous ex-
ample, for the four-oscillators case all possible firing s
quences and their associated return maps are

A: 0,1,2,3→T1+T1+T1+T1 ,

B: 0,1,3,2→T2+T3+T2+T1 ,

C: 0,2,1,3→T1+T2+T3+T2 ,

D: 0,2,3,1→T3+T2+T1+T2 ,

E: 0,3,1,2→T2+T1+T2+T3 ,

F: 0,3,2,1→T3+T3+T3+T3 .

Now, in order to find the attractors of the dynamics, we m
solve the fixed-point equation

fW c* 5RW c1McfW c* ~5!

for every cyclec. Formally,

fW c* 5RW c•~I2Mc!
21. ~6!

As was shown in@13#, there areN different stable solutions
to the whole set of fixed-point equations. Their stability
assured by the fact that«,0, since it guarantees that a
eigenvalues ofMc lie inside the unit circle for all cyclesc. In
our four-oscillators example, these solutions are
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fW A* 5S 1,
3

413«
,

2

413«
,

1

413« D ,

fW B* 5fW C* 5fW D* 5fW E* 5S 1,
1

21«
,1,

1

21« D ,

fW F* 5S 1,
1

41«
,
21«

41«
,
31«

41« D ,

which are a kind of four-oscillators traveling wave, ches
board, and inverse traveling-wave structures.

From now on we will label such solutions with indexm
(m51, . . . ,N) since their first component always satisfie

f1* 5
m

N111m«
. ~7!

Therefore, in the example, we relabel patternsfW A* as m

53, fW B* , fW C* , fW D* , fW E* asm52, andfW F* asm51.
Since there areN! possible cycles andN solutions to Eq.

~7!, there will be some fixed points or patterns which w
appear more than once, so we shall useC(N11,m) to char-
acterize these degeneracies. In the example, the values o
degeneracies areC(4,1)5C(4,3)51 andC(4,2)54. In gen-
eral, patterns which are solutions of a cycle consisting of
iterative application of the same firing map~as A and F in
our example! have no periodicities, whereas the solutions
mixtures of different firing maps (B, C, D, and E) have
some periodic structures that are also solutions of Eq.~7! for
a case with fewer oscillators. In Fig. 1 we can visualize
solutions forN1152, 3, and 4 oscillators and realize th
solutionm52 for the four-oscillators case is a periodic com
position of solutionm51 for the two-oscillators case.

III. PATTERN PROPERTIES

As we have seen, the stability of all pattern solutions
Eq. ~6! is guaranteed by the fact that«,0, but the existence
of such solutions is not ensured. In fact, for small values
the coupling strengthu«u all patterns do exist, but, as w
increase it, some patterns disappear. The reason for th
that the solution loses its physical meaning becausef1* .1.

FIG. 1. Graphic representation of the patterns solution of Eq.~7!
for a small value of the coupling strengthu«u at the beginning of the
cycle ~we must keep in mind that spatio-temporal patterns are
namical structures that evolve in time!. The leftmost square repre
sentsf0 and the rightmostfN , and their phase is visualized in
gray scale where black meansf51 and whitef50.
-
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Their first component is always the one that becomes la
than unity earlier and this happens, for eachm and according
to Eq. ~9!, when

«,«m* 512
N11

m
. ~8!

Our coupling strength range of interest ends at«521, since
at «<21 we always find the same pathological dynami
which does not have any physical or biological sense. R
istic couplings never reach such higher values. Therefore
« runs from 0 to21, all patterns whosem satisfy m.N
11/2 disappear.

There is another interesting pattern property which has
do with the calculation of the pattern degeneracyC(N
11,m). In principle, to calculate such degeneration, w
should solve fixed point Eq.~6! for all possible cycles and
count how many of them lead to the same pattern. Althou
for few oscillators the problem is quite straightforward,
we deal with a higher and higher number of oscillators,
number of cycles increases~it grows asN!) and solving Eq.
~6! becomes more difficult. Fortunately, there is another w
of calculatingC(N11,m) which reduces the problem to
combinatorial question. Let us show it through an examp
In the previous four-oscillators case, if we count, for ea
firing sequence, the number of oscillators which have
ceived the pulse before firing, we can easily realize that
number is the same as its value ofm,

A: 0,1,2,3, m53,

B: 0,1,3,2, m52,

C: 0,2,1,3, m52

D: 0,2,3,1, m52,

E: 0,3,1,2, m52

F: 0,3,2,1, m51.

Here an overbar means that the oscillator has already
ceived a pulse during the cycle. The point is that it turns
that every patternm corresponds to a sequence of firin
involving exactlym oscillators that, when they do fire, ha
already received a pulse from their leftmost neighbor. The
fore, this property~we have checked for several values
N11) allows us to associate every cycle with the pattern
leads to, just by counting these kinds of firings. Now, calc
lating C(N11,m) becomes a straightforward matter.
Table I we have computedC(N11,m) for several values of
N11.

Apart from brute force counting, degeneracy distributi
C(N11,m) can also be determined from the following rel
tion:

C~N11,m!5mC~N,m!1~N112m!C~N,m21! ~9!

for 2<m<N21. This recursion relation is closed by

C~N11,1!5C~N11,N!51, ~10!

-
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which corresponds to the firing sequences

0,N,~N21!, . . . ,2,1 and 0,1,2, . . . ,~N21!,N̄,

respectively.
From the previous relations one can deduce by induc

the symmetry of the distribution with respect to its extrem
at m51 andm5N,

C~N11,m!5C~N11,N112m! ~11!

and

(
m

C~N11,m!5N!. ~12!

Another interesting property is the periodDm
N11 of each

spatio-temporal patternm. Since all oscillators are in a
phase-locked state, they must oscillate with the same pe
Then, as the intrinsic period of each oscillator is 1, and wh
any oscillator that receives the delaying pulse from its nei
bor has a phase equal tof1* , one can easily realize that th
effective period is

Dm
N11511«f1* 5

N1112m«

N111m«
. ~13!

Therefore, the larger the value ofm, the longer the period o
its associated pattern. It is important to notice that we h
not fixed the value of such periods~each pattern has its ow
which is different from the others!, since there are som
authors who fix all periods equal to some constant, and u
as a condition to find the structures@17#.

IV. PATTERN SELECTION

Once we have characterized all spatio-temporal patte
we proceed to find some general formula which give us so
estimation of the probability of each pattern to be select
or, in other words, an estimation of the volume of its basin
attraction. In order to achieve this objective, we should
derstand the mechanism which led to the selection of a
tain spatio-temporal structure and how it is modified as
parameters of the model (« in our case! change.

There is an easy and straightforward way to get the es
tial features of this mechanism, assuming that the probab
of one oscillator to fire next is, basically, proportional to

TABLE I. Pattern degeneracyC(N11,m). The first column
stands for the numberN11 of oscillators and the first row form.

1 2 3 4 5 6 7 8 9

2 1
3 1 1
4 1 4 1
5 1 11 11 1
6 1 26 66 26 1
7 1 57 302 302 57 1
8 1 120 1191 2416 1191 120 1
9 1 247 4293 15619 15619 4293 247 1

10 1 502 14608 88234 156190 88234 14608 502
n
s

d.
n
-

e

it

s,
e

d,
f
-
r-
e

n-
ty

phase~that is, if it has a phase slightly below 1 it has
higher probability to be the next firing oscillator, whereas
it has a smaller phase, it will rarely fire next!. Imagine the
phases of all oscillators randomly distributed over the int
val (0,1). Then we let the system evolve until one of t
oscillators reaches a phasef i51 and emits a pulse that i
received by its rightmost neighbor, which lowers its phase
an amount«f i 11. Now we assume that all phases are ag
randomly distributed over (0,1) except the one which
ceived the pulse whose phase is distributed over (0,11«).
So, we get rid of memory effects~we know that the oscillator
that has fired should, now, have a phase equal to zero! and
just keep in mind whether each oscillator has receive
pulse or not. Therefore, the point is that under these co
tions, the probability that one oscillator which has still n
received a pulse fires is some constant and, on the o
hand, for those that had, the probability is this constant tim
the factor (11«). Then, we can characterize the probabil
of having some cycle just by recalling how many oscillato
fire, having previously received a pulse during that cyc
Basically, this probability is proportional to (11«)n, where
n stands for the number of oscillators which fire having
ready received a pulse~the product of all constant terms wi
be absorbed in a normalization factor!. This approach, where
we assume all firings as almost-independent events, ca
viewed as a kind of mean-field approximation. Then, as
been shown before, since cycles leading to the same pa
m always exactly havem oscillators that fire having receive
the interacting pulse, we can give an estimation of the pr
ability for patternm selection in theN11 oscillators case,

pm
N11~«!.N~«!C~N11,m!~11«!m. ~14!

HereN(«) is chosen so that a summation of the probabilit
over m gives 1,

(
m

pm
N11~«!51. ~15!

In the limit of small coupling strength«→0, which is the
more interesting case for the majority of physical and b
logical systems, one can assume that interaction plays alm
no role when pattern selection takes place. That is, the
that one oscillator has received the pulse from its neigh
does not lower its probability to fire, as the pulse does
modify appreciably its phase. Then, we can consider tha
cycles have approximately the same probability to be
lected, (11«)m→1, and only pattern degeneracy has to
considered to get a good estimation ofpm

N11 ,

pm
N11.

C~N11,m!

N!
. ~16!

The dominant pattern, that is, the one which has the lar
probability to be selected, coincides with the mean value
m @due to the symmetric behavior ofC(N11,m)],

^m&N115(
m

m
C~N11,m!

N!
5

N11

2
. ~17!
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For an odd number of oscillators^m&N11 does not exist and
we have a competition between the two closest patternm
5N/2 andm5(N12)/2. Recall that the most probable pa
terns turn out to be those with the ‘‘shortest wavelengths,
fact that was already reported in simulations of these sort
systems@7#. In Figs. 2 and 3 we check this new approxim
tion for the N11510 and 9 case and realize that the e
pected results are in good agreement with simulations d

There is also the interesting question of how this proba
ity distribution modifies when the number of oscillators i
creases. In Fig. 4 we showpm for different values ofN11.
Since there are more possible values ofm available, as we

FIG. 2. Estimation ofpm for small coupling strength in the cas
of an even number of oscillatorsN11510 and for values of«
equal to20.01 and20.1. Dashed line follows the theoretical va
ues estimated through Eq.~16!. We can realize that the smalleru«u
is, the more accurate our estimations are. The most probable pa
is m5(N11)/2 and the probability for the patterns near the e
tremes is almost zero due to the fast decay ofpm there.

FIG. 3. The same as Fig. 2 but now for an odd number
oscillatorsN1159. We can realize that there is not a peak an
more, instead almost all the probability is concentrated in the
competing patternsm5N/2 andm5(N12)/2.
a
of

-
a.
l-

increaseN11, pm
N11 diminishes. The distribution also get

narrower as we increaseN11 and this becomes clear whe
one studies the variance ofpm . It can be found that

^m2&N115(
m

m2
C~N11,m!

N!
5

~N11!2

4
1

N11

12
.

~18!

We could not prove this without an explicit expression f
C(N11,m), but we have checked itN up to 170. Therefore,

sN11
2 5

N11

12
5

^m&N11

6
. ~19!

It turns out that for a large number of oscillators, almost
initial conditions lead to a pattern whosem approximately
falls in the interval̂ m&N116A^m&N11. In order to compare
it for a different number of oscillators, we have to normali
m dividing by N11. In that case, one observes thatsN11

2

;1/AN11, so that as we increaseN11, the spread ofpm
N11

diminishes getting the distribution sharpened.
As Eq. ~14! does not take into account the disappeara

of the different patternsm at the different values of«m* pre-
dicted by Eq.~9!, it cannot give a good quantitative estim
tion of pattern selection for higher coupling values. Nev
theless, we can expand Eq.~14! to leading order in«. For
small «, pm

N11 are approximated by

pm
N11.

C~N11,m!

N! F11S m2
N11

2 D «G . ~20!

In Fig. 5 we compare this approximation with simulate
data. The slopes near«50 agree with Eq.~21!. In our simu-
lations we calculate the probability of each pattern to
selected just by counting how many realizations~with f0
51 and the rest of the oscillators with random initial cond
tions! lead to each patternm and divide over the total numbe
of realizations. Although we only have a good quantitati
estimation ofpm

N11 for small values of«, Eq. ~15! catches

ern
-

f
-
o

FIG. 4. pm calculated by means of Eq.~17! for different values
of N11. The distribution gets narrower and the height of its pe
diminishes as we increase the number of oscillators.
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PRE 60 3631PATTERN SELECTION IN A LATTICE OF PULSE- . . .
the two basic mechanisms responsible of pattern selec
On the one hand, it is clear that for higher values of
coupling strengthu«u, when one oscillator receives a puls
its phase lowers to almost zero and, consequently, its fi
probability also does. Therefore, pattern selection probab
pm

N11(«) is strongly controlled by the number of oscillato
which have to fire having already received a pulse, that
the probabilistic factor (11«)m. As a consequence,pm

N11

begin to decrease sooner whenu«u increases, the largerm is.
On the other hand, for small values of the coupling streng
interaction plays almost no role andpm

N11(«) is dominated
by the degeneracy factorC(N11,m). Therefore,pm

N11(«)
for the different values ofm are basically ordered asC(N
11,m). In Figs. 6, 7, and 8 we show results from simulatio
of pm

N11(«) for a different number of oscillators.

V. CONCLUSIONS

In this paper we have studied some properties of
spatio-temporal patterns that appear in a ring of pu

FIG. 5. Estimation ofpm
N11 for a system ofN1156 oscillators

by means of the linearized Eq.~21!. For small« the slopes match
with simulated data.

FIG. 6. pm(«) in the case ofN1154 oscillators. In this case
we see that although for small coupling a chessboard (m52) is the
dominant pattern, the inverse traveling wave (m51) is the most
probable pattern for higher values of the coupling strength. Sim
lations are done over 2500 realizations.
n.
e

g
y

s,

,

e
-

coupled oscillators with inhibitory interactions. We have f
cused our attention on estimating the probability of select
a certain pattern under arbitrary initial conditions and
have shown the two basic mechanisms responsible for t
the degeneracy distributionC(N11,m), for small values of
«, and m, the number of oscillators that do fire having a
ready received a pulse, for higher values of«. According to
this, the different probabilities of selecting patternm start
being distributed following the degeneracy distributio
C(N11,m), and, as« decreases, these probabilities dimini
in a hierarchical way: the larger the value ofm, the sooner its
selection probability is going to decrease, so that only p
terns with smallerm will survive for higher values of«.
Moreover, some of the structures disappear, at the diffe
values of«m* , during this process. We have found out
approximation formula forpm

N11(«) which takes into ac-
count all these mechanisms and gives us a quantitative
mation of the different selection probabilities for small«.

The estimation of the volume of the basin of attraction
each spatio-temporal patternm also gives us an idea of th
stability of the different structures with respect to additi

-

FIG. 7. The same as Fig. 6 forN1155.

FIG. 8. The same as Fig. 6 forN1156.
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noise fluctuations@for instance, we can add some rando
quantityh to all phases after each firing event or a contin
ous timeh(t) in the driving#. Simulations of arrays of noisy
pulse coupled oscillators showed that our most probable
terns were also the most stable@7#. The present paper onl
concerns spatio-temporal pattern formation in a ring of
cillators, nevertheless all results are trivially generalized
bidirectional couplings. Although the question of what ha
pens when dealing with higher dimension lattices rema
opened, some simulation results in 2D @7# showed that al-
most all realizations lead to a chessboard pattern in ana
ce

ty

.

-

t-

-
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-
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with our results in the ring. That makes us believe we ha
caught the basic features of the problem in our 1D model.
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