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Abstract: This work aims to calculate the Feynman propagator of several physical systems
governed by quadratic actions by means of the Path Integral approach. Consequently, once the
propagator is known for the case of a harmonic potential, a system of coupled oscillators will be
studied. Finally, it will be possible to determine the time evolution of a Gaussian wave function
when its width is initially modified, as well as the effect induced by a periodic external force.

I. INTRODUCTION

This work follows Feynman’s program of formulating
Quantum Mechanics (QM) in terms of path integrals.
According to Feynman [1], the fundamental quantities
by which QM is naturally formulated are complex
numbers. These numbers, from now on called Proba-
bility Amplitudes (φi), contain the whole information
of the system such that the probability of finding a
particle whose quantum state is described by φ, is given
by: P = |φ|2. The probability amplitude can have
several contributions in such a way that: φ =

∑n
i=1 φi.

Consequently, the classical rule for adding probabilities
is not followed: P = |φ1 +φ2|2 6= P1 +P2 being Pi = |φ2

i |.

This rule can be extended to trajectories or paths x(t).
In the sense that if you want to calculate the probability
amplitude of a particle going from a = (xi, ti) to b =
(xf , tf ), i.e., the propagator K(b, a), you must calculate
it as the sum of the contributions over all possible paths:

K(b, a) =
∑

over all paths

φi[x(t)] (1)

where the probability amplitude of each path is given
by: φi[x(t)] = Ce(i/~)S[x(t)], where S[x(t)] is the classical
action. Inspired by the principle of least action, Feynman
stated [3] that in the quantum case, not only the path
with a minimum action but all paths contribute. They
contribute with the same amplitude but with different
phases.

If we consider a one dimensional non-relativistic parti-
cle with mass m subjected to a quadratic potential V (x),
we know [1] how its wave function evolves over time by:

Ψ(b) =

∫ ∞
−∞

K(b, a)Ψ(a)dxi (2)

In the following sections, the Feynman propagator will be
used to determine the time evolution of several physical
systems governed by quadratic actions. Only conserva-
tive systems are allowed, since otherwise there would be
no Lagrangian.
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II. HARMONIC OSCILLATOR PROPAGATOR

Let us imagine we want to compute the probability
amplitude for a non-relativistic particle of mass m sub-
jected to a harmonic potential of going from a = (xi, ti)
to b = (xf , tf ). This probability amplitude will be given
by the propagator:

K(b, a) = N

∫
Dx(t)e

i
~S[x(t)] (3)

where Dx stands for the sum over all paths between a
and b. In the classical limit (~ → 0), only the classical
path will contribute to the propagator, as the other paths
will be canceled out due to destructive interference [4].
For the classical path, i.e. the trajectory that a classical
particle obeying the Lagrange equations would follow,
the action is [5]:

Scl[x(t)] =

∫ tf

ti

L(ẋ, x, t) dt =

∫ tf

ti

(
1

2
mẋ2 − 1

2
mω2x2)dt

=
mω

2 sinω(tf − ti)
[(x2

i + x2
f ) cosω(tf − ti)− 2xixf ] (4)

given that: x(ti) = xi and x(tf ) = xf . Now, in an effort
to find the expression of the propagator in Eq. (3), the
variables can be changed in order to consider the trajec-
tory as the classical one plus a deviation, y(t), (Figure
1):

x(t) = xcl(t) + y(t), (5)

where y(t) satisfies: y(ti) = y(tf ) = 0. Then, after
integrating by parts and using the equation of motion,
the cross terms of the action disappear, and it can be
rewritten such that:

S[x(t)] = S[xcl(t) + y(t)] = S[xcl(t)] + S[y(t)] (6)

Thus, the total action is separated into the classical ac-
tion plus the action of the variation with respect to the
classical path. Therefore, the propagator can be now
written as:

K(b, a) = N

∫
Dye

i
~ (S[xcl]+S[y]) = A(t)e

i
~S[xcl] (7)
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FIG. 1: A change of variables is made in order to consider
the trajectory as the classical one plus a deviation, y(t). So,
x(t) = xcl(t) + y(t).

where:

A(t) = N

∫
Dye

i
~S[y] (8)

Note that the classical term has all the dependence on
x whereas A(t) depends only on time, and since the La-
grangian does not depend on time (i.e. it is invariant with
respect to time translations), A only depends on the time
difference which can be redefined as A(tf − ti) ≡ A(tf ).

FIG. 2: One can compute the amplitude of going from a =
(xi, ti) to b = (xf , tf ) as the product of the amplitude from a
to c = (xc, tc) and the amplitude from c to b.

According to Feynman [1], the propagator satisfies:

K(b, a) =

∫ ∞
−∞

K(c, a)K(b, c)dxc (9)

where c = (xc, tc). In other words, the propagator of
going from a to b is equal to the product of propagators
of going from a to c and from c to b integrated over
all possible values of xc, so that ti < tc < tf (Figure
2). Substituting each propagator in Eq. (9), imposing
for convenience that ti = 0 and using the subsequent
relation: ∫ ∞

−∞
dxe−ax

2

=

√
π

a
(10)

the following functional equation is reached:

φ(tf ) = φ(tc)φ(tf − tc) (11)

where:

φ(t) = A(t)

√
2πi~ sinωt

mω
(12)

for every tc as long as ti < tc < tf . The general solution
from Eq. (11) is:

A(t) = exp [(α+ iβ)t]

√
mω

2πi~ sinωt
(13)

The real part of the exponential must be zero (α = 0)
otherwise the solution would not be unitary, and we
would have a probability source or drainer. The imagi-
nary part can be neglected (β = 0) since it is not physical,
and it corresponds to a normalization of the energy, i.e.,
the freedom to choose the zero-point energy. From this
result, it follows that:

A(t) =

√
mω

2πi~ sinωt
(14)

Finally, the expression of the harmonic oscillator propa-
gator is obtained in its full glory:

K =

√
mω

2πi~ sinωt
exp

imω

2~ sinωt
[(x2

i + x2
f ) cosωt− 2xixf ]

(15)
As a check, it can be verified how the harmonic oscillator
propagator, Eq. (15), becomes the free particle propaga-
tor [2] when ω tends to 0.

lim
ω→0

K =

√
m

2πi~t
exp

im

2~t
(xi − xf )2 (16)

III. COUPLED OSCILLATORS

In this section, we will study a system of two identi-
cal masses coupled to each other by means of a spring
of elastic constant k′. In turn, each mass is fixed to the
ground by another spring of elastic constant k. The sys-
tem can be seen in Figure 2. Let our system of coupled
oscillators be described by the following Lagrangian:

L =
1

2
m(ẋ2

1 + ẋ2
2)− 1

2
k(x2

1 + x2
2)− 1

2
k′(x2 − x1)2 (17)
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FIG. 3: System of coupled oscillators.

From the Lagrange equations,

d

dt

(
∂L

∂ẋi

)
− ∂L

∂xi
= 0, (18)

we can easily obtain the equations of motion for the po-
sition of both masses:

mẍ1 = −kx1 + k′(x2 − x1)

mẍ2 = −kx2 − k′(x2 − x1) (19)

Adding and subtracting both expressions, decoupled
equations describing single harmonic oscillators are ob-
tained:

d2(x1 + x2)

dt2
+
k

m
(x1 + x2) = 0

d2(x1 − x2)

dt2
+
k + 2k′

m
(x1 − x2) = 0 (20)

We can now define the normal coordinates in which the
system is totally decoupled and identify its normal fre-
quencies:

q1 ≡
1√
2

(x1 + x2)→ ω1 =

√
k

m

q2 ≡
1√
2

(x1 − x2)→ ω2 =

√
k + 2k′

m
(21)

The first normal frequency, ω1, corresponds to a symmet-
rical motion in which both springs oscillate in phase while
maintaining the relative distance between them. On the
other hand, the second normal frequency, ω2, represents
an antisymmetric motion in which both springs oscillate
in counterphase. Any movement can be expressed as a
linear combination of both normal frequencies. If the
Lagrangian of the system is expressed as a function of
normal coordinates, it is found that:

L =
1

2
m(q̇2

1 + q̇2
2)− 1

2
k(q2

1 + q2
2)− k′q2

2 (22)

When expressing it according to the normal frequencies,
a decoupled Lagrangian is obtained:

L =

(
1

2
mq̇2

1 −
1

2
mω2

1q
2
1

)
+

(
1

2
mq̇2

2 −
1

2
mω2

2q
2
2

)
(23)

Thus,

L(q̇1, q̇2, q1, q2) = L1(q̇1, q1) + L2(q̇2, q2), (24)

where Li is the Lagrangian for a simple harmonic os-
cillator. Now, the classical action of the whole system
can be written as the sum of two independent harmonic
oscillators:

Scl =

∫ tf

ti

L(q̇1, q̇2, q1, q2) dt =

∫ tf

ti

(L1 + L2) dt

= Scl(q1) + Scl(q2), (25)

where Scl(qi) is the classical action for a simple harmonic
oscillator, which is well known and described in Eq. (4).
Therefore, in view of this result, one can compute the
probability amplitude of going from one point in space-
time a = (q1i, q2i, ti) to another b = (q1f , q2f , tf ) as the
product of independent propagators. In other words that
is,

K(b, a) = K(q1f , tf ; q1i, ti)K(q2f , tf ; q2i, ti) (26)

where replacing the expressions of the simple harmonic
oscillator propagators given by Eq. (15), it turns out
that:

K(b, a) =
m

2πi~

√
ω1ω2

sinω1t sinω2t
e

i
~ [Scl(q1)+Scl(q2)] (27)

where it has been defined t ≡ tf − ti for simplicity.

IV. TIME EVOLUTION OF A GAUSSIAN
WAVE PACKET

This section aims to study the temporal evolution of a
Gaussian, in this case corresponding to the wave function
of the fundamental level of the harmonic oscillator, when
its standard deviation is initially modified. The initial

FIG. 4: Wave function of modified width at t=0.

conditions can be seen in Figure 2, where ∆0 ≡ ∆(t = 0)
is different from x0, the natural width of the Gaussian.
So, at the beginning, we have that:

Ψ(x, t = 0) =
1√

∆0
√
π
e−

1
2 ( x

∆0
)2

(28)
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where ∆0 6= x0, and x0 =
√

~
mω has units of length. As

explained earlier, the propagator gives us the probabil-
ity amplitude of going from one state (xi, ti) to another
(xf , tf ). In Dirac’s bra-ket notation this is expressed as:

K(xf , tf ;xi, ti) ≡ 〈xf |U(tf , ti)|xi〉 (29)

where U(tf , ti) is the time evolution operator. We are
now interested in calculating the time evolution of the
wave function. That is:

|Ψ(tf )〉 = U(tf , ti)|Ψ(ti)〉
〈xf |Ψ(tf )〉 = 〈xf |U(tf , ti)|Ψ(ti)〉

Ψ(xf , tf ) =

∫
dxi〈xf |U(tf , ti)|xi〉〈xi|Ψ(ti)〉 (30)

where the resolution of the identity has been used, i.e.,
Id =

∫
dxi|xi〉〈xi|. Now using Eq. (30) and setting ti =

0; tf ≡ t, we recover:

Ψ(xf , t) =

∫
dxiK(xf , t;xi, 0)Ψ(xi, 0) (31)

thanks to which the time evolution of the wave function
can be determined given the initial conditions and the
harmonic oscillator propagator, both known. In order to
be able to solve the Gaussian integral from the Eq. (31),
it is helpful to use the following relation:∫

dxie
−Ax2

i−Bxi =

√
π

A
e

B2

4A (32)

In our case, A and B take the following values:

A =
1

2∆2
− i cosωt

2x2
0 sinωt

B =
ixf

x2
0 sinωt

(33)

Hence, after arranging the Eq. (32) algebraically with
the values of Eq. (33), we have that the wave function
at an instant t has the following form:

Ψ(x, t) = CeD+iE (34)

where (xf , tf ) ≡ (x, t) has been defined to lighten the
notation. C, D, and E take the following values:

C =
1√

1
∆0

(∆2
0 cosωt+ ix2

0 sinωt)
√
π

D = − x2

2
∆2

0
(x4

0 sin2 ωt+ ∆4
0 cos2 ωt)

E =
x2 sin 2ωt(x4

0 −∆4
0)

4x2
0(x4

0 sin2 ωt+ ∆4
0 cos2 ωt)

(35)

From Eq. (34) and Eq. (35) we can see how the width
of the Gaussian, ∆(t), oscillates with time according to:

∆(t) =
∆0√

2

√√√√(1 +

(
x0

∆0

)4
)

+

(
1−

(
x0

∆0

)4
)

cos 2ωt

(36)

Thus, it has just been demonstrated that when an initial
perturbation is applied to the width of the Gaussian wave
function corresponding to the ground state of the har-
monic oscillator, the wave function oscillates over time
widening and thinning with a frequency twice that of the
harmonic oscillator, while always keeping the maximum
value fixed. Of course, when the initial disturbed width,
∆0, is stretched to the original width, x0, the system
stays still without oscillating, as it should be.

lim
∆0→x0

∆(t) = x0 (37)

On the other hand, to verify the result of Eq. (34) the
following limit for the wave function can be made:

lim
∆0→x0

Ψ(x, t) =
1√
x0
√
π
e−

1
2 ( x

x0
)2

e−
i
2ωt (38)

Recovering the expression of the original undisturbed
wave function, plus a phase introduced by the time evo-
lution operator, as it is expected from a stationary state.

V. PERIODIC EXTERNAL FORCE

In this section, the time evolution of a Gaussian sub-
ject to a harmonic potential and a periodic force will be
studied. The initial wave function is the same as in the
previous section:

Ψ(x, t = 0) =
1

π1/4
e−

x2

2 (39)

(using from now on: ~ = m = ω = 1 and x0 =
√

~
mω = 1)

and the periodic force is: F (t) = f sinαt. Thus, the
Lagrangian of the system is:

L =
ẋ2

2
− x2

2
+ fx sinαt (40)

There is no temporal homogeneity, as the Lagrangian
depends explicitly on time. The classical trajectory for
this system is:

xcl(t) = A sinωt+B sin (u− t) +
f

1− α2
sinαt (41)

where ti = 0 and tf ≡ u. By imposing the boundary
conditions: xcl(0) = a and xcl(u) = b one get:

A =
1

sinu

(
b− f

1− α2
sinαu

)
B =

a

sinu
(42)

Hence, the propagator is:

K(b, t = u; a, t = 0) =
1√

2πi sinu
eiS[xcl] (43)

where A(tf = u, ti = 0) = 1√
2πi sinu

is the same as in the

harmonic oscillator since linear terms of the Lagrangian
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(fx sinαt) do not contribute to A(tf , ti). Now, the action
has to be calculated using integration by parts:

S[xcl] =

∫ u

0

L(ẋcl(t), xcl(t), t)dt =

1

2
(ẋcl(u)xcl(u)− ẋcl(0)xcl(0)) +

1

2

∫ u

0

xcl(t)f sinαtdt (44)

Finally,

Ψ(b, u) =

∫ ∞
−∞

K(b, u; a, 0)
1

π1/4
e−

1
2a

2

da (45)

In this case, we are only interested in |Ψ(b, u)|2. From Scl,
only the terms that depend on a (integration variable)
are needed since all the others appear in the imaginary
exponential and do not contribute to |Ψ(b, u)|2. Hence:

S[xcl] =
a2

2
cotu− a

sinu
(b− xm(u)) + [...] (46)

where xm(u) = f
1−α2 (sin (αu) − α sinu). Then, the ex-

ponential from Eq. (45) can be separated into:

e−a
2Ã+aB̃+[...] (47)

where:

Ã =
1− i cotu

2
B̃ =

b− xm(u)

i sinu
(48)

The result of the Gaussian integral from Eq. (45) is:

Ψ(b, u) =
1

π1/4

1√
2πi sinu

√
π

Ã
e

B̃2

4Ã
+i[...] (49)

Since we are only interested in the squared modulus of
the wave function, we do not consider the imaginary ex-
ponential. Substituting Eq. (48) in Eq. (49), we get:

Ψ(b, u) =
1

π1/4
e

−1
2 (b−xm(u))2+i[...] (50)

Now, retrieving units and setting b = x and u = t, the
squared modulus of the wave function is finally obtained:

|Ψ(x, t)|2 =
1√
π
e(

x−xm(t)
x0

)2

(51)

where x0 =
√

~
mω and xm(t) = f

m(ω2−α2) (ω sin (αt) −

α sinωt). Notice that it is a coherent state: a Gaussian
that does not deform and that moves in block following
the trajectory of the maximum point, which is the clas-
sical trajectory of a harmonic oscillator subjected to a
periodic force with initial conditions: x(0) = ẋ(0) = 0.
It should be noted that this motion has been excited,
in quantum mechanics, with a classical external force.
That is, with a Lagrangian term: xf sinαt. These coher-
ent states exhibit, in quantum mechanics, the quantum
behaviors most similar to classical mechanical motions,
within the limits imposed by the uncertainty principle.

The package has an x0 =
√

~
mω width, it cannot be in-

finitely narrow or punctual. The resonant case can be
retrieved if α tends to ω:

lim
α→ω

xm(t) =
f

2mω
(sinωt− ωt cosωt) (52)

where L’Hôpital’s rule has been used. Indeed, it is a
movement where the amplitude grows linearly with time,
for large time values.

VI. CONCLUSIONS

Describing Quantum Mechanics by means of the Path
Integral approach has allowed us to discover an alterna-
tive way of understanding this wonderful theory without
the need to abandon certain classical tools. Feynman’s
approach has proven to be very useful in tackling the
problems raised in this work involving quadratic actions.
Thus, we have successfully calculated the propagator of
the harmonic oscillator, thanks to which we have been
able to study a system of coupled oscillators. Finally,
it has been possible to determine the time evolution of
a Gaussian wave function when its width has been ini-
tially modified, as well as the effect induced by a periodic
external force in a simple and fun way.
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