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Continuous-time random-walk model for financial distributions
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We apply the formalism of the continuous-time random walk to the study of financial data. The entire
distribution of prices can be obtained once two auxiliary densities are known. These are the probability
densities for the pausing time between successive jumps and the corresponding probability density for the
magnitude of a jump. We have applied the formalism to data on the U.S. dollar—deutsche mark future ex-
change, finding good agreement between theory and the observed data.
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[. INTRODUCTION market priceg18]. There is, however, a drawback to this
approach: no finite moments exist beyond the first and this is
The continuous-time random wallCTRW), introduced certainly a severe limitation of the model. Moreover, the
by Montroll and Weiss in 1965,1], has a large number of Lévy distribution has been tested against data in many situ-
applications to the modeling of many physical phenomenaations, always with the same conclusion: the tails are far too
particularly in the field of transport in disordered medialong compared with actual data. In any case, as Mantegna
[2,3]. In contrast to the standard random walk in which stepsand Stanley have recently shoto], the Levy distribution
are made periodic, the CTRW is based on the assumptiofits very well to the center of empirical distributions—
that the time between steps is random. The CTRW has beesurprisingly much better than the Gaussian density—and it
applied in many different fields. These range from transportilso shares the scaling behavior that appears in data.
in amorphous materialgt], transport in turbid medigs,6], Recently, a new market model was proposed to fill the gap
random networkg7], self-organized criticality[8], liquids  between Gaussian and \ue distributions[20]. The model,
[9], electron tunneling10], theoretical mechanid4.1], time  which was based on a continuous superposition of jump pro-
series analysi$12], and earthquake modelifd 3], just to  cesses, explains the appearance of fat tails and self-scaling
name a few. but still keeps all moments finite. It reproduces price distri-
In this paper, we apply the CTRW formalism to a phe-butions quite exactly, particularly those of tic-by-tic data. In
nomenon more related to social sciences than to natural sdiis paper, we want to address the problem from a different
ences: the distribution of speculative prices. The first analytipoint of view. Thus, we assume that the evolution of prices
cal approach to this class of problems was proposed ancan be modeled by a CTRW. This allows us to calculate the
analyzed by Bachelier, who in 1900 modeled stock pricedistribution of speculative prices. The paper is organized as
movements as an ordinary random walk where prices can gmllows. In Secs. Il and Ill, we set the general formalism and
up and down, at fixed times, due to a variety of many inde-derive the exact distribution of prices and volatility. In Sec.
pendent random causes. This approach necessarily leadsli we derive some asymptotic results mostly valid for long
the conclusion that the probability distribution of speculativetimes. In Sec. V, we apply the model to real data, namely, the
prices is Gaussiail4]. In 1959, Oshorne realized that, since U.S. dollar—deutsche mark future market. Conclusions are
stock prices are necessarily positive, it would be more condrawn in Sec. VI.
venient to consider returns instead of market vallEs].

Thus, if S(t) is an speculative pricéor the value of an in- Il. GENERAL FORMALISM: THE DISTRIBUTION
dEX) at timet and OF PRICES
Z(t)=In[S(t)/S(0)] ) We define the zero-mean retux{t) by
is the return up to time [16]. Then Z(t) is a Gaussian X(t)=2Z(t)—(Z(1)), 2

variable andS(t) is a log-normal process. Nevertheless, as

Kendall first noticed in 195317], the normal density fits whereZ(t) is given by Eq.(1) and(Z(t)) is its average. We
financial data very poorly in the tails of the distribution. As now suppose tha{(t) can be described in terms of a CTRW.
an example, the probability of an event corresponding to fivén this picture X(t) changes at random times
or more standard deviations is up td*ibnes larger than the tg,t;,t5, ... t,, ... and we assume that the intervals be-
one predicted by the Gaussian distribution. Therefore, emtween successive steghich we call “sojourns’) T,=t,
pirical price distributions are highly leptokurtic. The exis- —t,_; (n=1,2,3...) areindependent and identically dis-
tence of these “fat tails” was precisely what led to Mandel- tributed random variables with a probability density function
brot in 1963 to propose the kg distribution for stock given by y(t), i.e.,
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X A Apparently the choice of linearity is against causality be-
cause one has to know future return valXgs,) in order to
draw the segment joining(t,_4) and X(t,). Fortunately,
xey | for the soundness of our model this is not true. Indeed, notice
" that our process is completely equivalent to a random pro-
: cess evolving linearly with a slope changing at the random
X D e | timest, (n=1,2,3...) [21]. If the slope of the segment
' : joining X(t,_4) with X(t,) is independent oty ,t,. 4, - - .,

then the random process is causal. Moreover, if the slope is
independent of its previous values then the process is also
Markovian.

Let us calculate the form gi(x,t) prior to the first jump.
This function will be denoted by,(x,t) and, due to the
linear evolution ofX(t) between steps, it reads

FIG. 1. Schematic representation of the return process. The dots ® B
mark the valueX(t,) of the return after each sojour.,=t, po(x,t)ZJ de p(y,T)o
—t,_1 is the time increment of thath sojourn. t -

yt
X—F dy, 5

where we have assumed that the initial jump occurretl at
=0. In terms ofpy andp, we have that the pdb(x,t) for
the return at time is given by

Y(t)dt=Proqt<T,<t+dt}.

At a given sojourn the zero-mean retuxift) undergoes a
random change giving rise to the random variall¥, t -
=X(t,) — X(t,_1), which is described by a probability den- p(x,t)zpo(x,t)+f dt’f p(X' ") p(x—x",t—t").

sity function defined by 0 - ©)

This equation has been derived from the consideration that at
timet, the process is either within the very first sojourn, this
given by the first term on the right-hand si@&s) of Eq. (6),
or else the first sojourn ended at tirtle<t, at that time the
return had valuex’, and from &’,t’) the process was re-
newed.

It is possible to solve Eq6) by means of a joint Fourier-

Laplace transform. To this end let us denote by

h(x)dx=Progx<AX,<x-+dx}.

In this formulation of the problem, we choose a function
p(x,t) to be the fundamental function, whepéx,t)dxdt is
the joint probability that an increment in returi(t), is
added whose magnitude is betweeandx+ dx and that the
time between successive turns is betweemdt+dt. The
condition that there is no net drift will be assured by requir-
ing that p(x,t) is an even function ok. We can form two
marginal densities out op(x,t): the pausing-time density " "
(1) for the time between successive pulses E’(“”S):J dte‘S‘J dxd“*p(x,t),
0 %

P(t)= JixP(X,t)dX, (3 the joint Fourier-Laplace transform @fx,t). Then the con-
volution theorems applied to E¢) yield

and the probability density functiofpdf) for the changes in

' the . Po(®,)
a single jumph(x), where P(w,s)= OA , @
1-p(w,s)
h(x =f x,t)dt. 4 N -
(x) 0 Pl @ where pgo(w,s) and p(w,s) are, respectively, the joint

Fourier-Laplace transforms of functiopg(x,t) andp(x,t).
The value of the returiX(t) at timet will by given by the  Recall thatpy(x,t) only depends om(x,t), thus, the return
random value of the height atsee Fig. 1. We are interested pdf p(x,t) is exclusively determined by the form p{x,t).
in the probability density function of this variabfx,t). Unfortunately, the form op(x,t) is very difficult to de-

We also assume that between successive steps the tirgrmine from the available data. More easily accessible are
evolution of X(t) is linear (see Fig. 1. The assumption of the marginal densities gb(x,t) in Egs. (3) and (4). It is
linearity between jumps is arbitrary. We could have used stegherefore essential to assume a functional relation between
functions instead, in such a case the return would evolvg(x,t) and its marginal densitieg(t) andh(x). The sim-
discontinuously and during any sojourn the value of the replest choice would be based on the assumption that return
turn (and hence the prigas that of the last jump. On the increments and their duration time are independent random
other hand, the linear choice for the retuft) implies an  variables. In this case,
exponential growth in pric&(t) [cf. Eq.(1)]. This exponen-
tial behavior is an inherent feature of any financial market. p(X,t)=h(x)¢(t). (8
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However, this assumption does not seem to be realistic sinoghere the prime denotes a derivative. In terms of the trans-

one certainly expects some degree of correlation betweefyrmed densities/(s) andh(w) the formal solution to the
return increments and their duration, while E8) implies  problem given by Eq(7) can be written in the following
complete independence between increments and sojouffiore explicit form:
times. Following that intuition, for the rest of the paper, we

will mostly assume that the densip/(x,t) is such that its

characteristic functiop(w,t) has the functional form:

- flﬁz(wz) J'[szh wz)]dz
0

1-h(w)J[sh(w)]

p(w,s)=

(13
v

, 9
o) ©)

p(w,t)=y

Subject to the assumption in EQ), Eq. (13) furnishes a

] ) ) ) ) complete solution to the problem and it can be a convenient
where(t) is the pausing-time density, which we assume 0gtarting point for numerical methods when further analytical

be a decreasing function of timg2], andh(w) is the char-  insight is unavailable.

acteristic function oh(x). Notice that Eq(9) has been cho- We finish this section with an example. Suppose that the
sen to satisfy Eq9.3) and (4). random timed,,t;,t,, ... in which the return suffers ran-

As we have mentioned, assumption given by &j.is at  dom increments form a Poisson set of events, suppose also
least intuitively plausible because it implies that one musthat these random increments are distributed according to a
wait for a long time in order a large variation of return to Laplace density. Then densitiegt) andh(x) are, respec-
occur. In other words, major increments of the return araively, given by
very infrequent. We will prove this by showing that sojourn
time T=t,—t,_, and return quadratic increment&X?
=[X(t,)—X(t,_,)]? have a positive correlation, then in-
creasing return variations imply increasing sojourn times and
vice versa. In effect, we define the correlation function beawhere\ "1=(T) is the mean sojourn time ang>0 is such
tweenAX? and T by that (AX?)=2/y? is the jump variance. In this cask(w)

f= (AXZT)— (AXZ)(AT). =1/(1+ wz/yz) and the characteristic function of the joint
densityp(x,t) is given by

s=re ™M, h(x)= %e*lel , (14)

We can easily evaluate the cross averayX>T) using the

~ - — _ 21,2
joint characteristic functiop(w,t). Thus p(o,t)=\exp{— N1+ o7y}, (15

P2 [ which is the convolution of a Poissonian densi *' and a

(AX?T)=— _Zf t;(w,t)dﬂw:o, Gaussian density with zero mean and variana¢/2°. Fi-
dw*Jo nally, the inverse Laplace transform of the formal solution in
. . ) Eg. (13) now results in an explicit expression for the charac-
which after using Eq(9) yields teristic function of the problem given by the time convolu-

(AXZT)=2(AXZ)(AT). tion:
~ ~ t ’ )~
Hence p(w,t)=po(w,t)+xf e MU By t—t)dt,
0
r=(AX?){AT)>0, (16)
as we meant to prove. where
Observe that assumptig®) allows us to write the joint
Fourier-Laplace transform gf(x,t) in the form - % w?t?
po(w,t)=)\f expy —\| 7+ —; dr. (17
p(@,8)=h(w)ysh(w)], (10 ‘ v
where y(s) is the Laplace transform of the pausing-time EJ?\S\?atrZat numerical analyzing Eq4.6) and(17) is straight-
density ¢s(t). Likewise, from Eq.(5) we see that the trans- '
formed densitypy(w,s) can be written as lIL. THE VOLATILITY
- J (idz. ; ; ; Hle infar.
Po(w,8)=— s —p(wz,52), (11) Besides the pdp(x,t), which provides all possible infor
0Z mation about the problem, there is another quantity of con-

_ _ siderable practical interest: the return variance. In our analy-
which, after using Eq(10), reads sis this quantity, called “volatility” in the terminology of
finance, has the advantage that it does not require the knowl-

Po(®,8)=— jlﬁz(wz)z}’[sz~r(wz)]dz (12) edge of the entire jump distributidn(x). It suffices to know
’ 0 ’ the pdfy(t) and the first two moments df(x).
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Let (X"(t)) be thenth moment of the entire return pro- - 1., 2 (1 .,
cess (Xa(8))=— S (R%()+ gfo z(R%(s2))dz,
<X”(t))=f X"p(x,t)dx, and Eq.(23) implies
A ) oo 2/s oA,
and let us denote byX"(s)) its Laplace transform (X(s))= 1= 08 Jo z(R*(s2)dz (25)
(X”(s))zf e SYX"(t))dt. As we have mentioned, the independent model given by
0

Eq. (8) cannot be used for describing actual markets, but for
the sake of completeness we will also give the general ex-
pression of the volatility associated with the model. This
result will serve to illustrate an important point regarding the
asymptotic behavior of the volatility which will be discussed

This can be written in terms of the joint Fourier-Laplace
transform ofp(x,t) by

$ - ﬁn[?J(w,s) . .
(X"(s))=i"—">T— (18  nearly at the end of the following section.
do" | Using Eq.(8), we have
Closely related tgX"(t)) there are the moments of the re- (R?(8))= poih(s)
turn increments which we denote BR"(t)) and define by
and
(R”(t))zfﬁmx”p(x,t)dx. (29 i 2uyls (1.
(X%(8))y=— f zi(s2)dz, (26)
1-y(s)Jo

Since we assume that there is no net drift in the evolution of

the process, i.ep(—x,t)=p(x,t), this means that all odd \hjle for the dependent model exemplified by E§) and
moments associated wiis(x,t) are zero. That is, after using Eq(10), we have

(R L(t))=0 (n=1,23...). (20

. d .
R2(8))=po<[S¥(S)].
All of this means that random jumps during any sojourn are < ) 2ds

unbiased and, in particular, that their average is zero. Notef_h
that since the jump densitli(x) is a marginal density of en
p(x,t), condition(20) implies that 210a ]S L
~ M2 ~ ~
~ ~ X3(s)y=——= - f dz|. 2
h(2n*1)(0)zo and ,unE(—l)"h(Z”)(O) (21) < (S)> 1_¢(S)[¢(S) OZlﬁ(SZ) z ( 7)

(n=1,2,3...), whereh(™(0) is themth derivative of the Observe that both Eqg¢26) and (27) depend only on the
characteristic functiofi(w) of the jump density. Notice that Pausing-time density and the second moment of the jump
another direct consequence of the unbiased assumption givéfe: I this case and for the example given in EGs)—(17),

by Eq. (20) is that all odd moments of the return processWe can explicitly write

vanish:
2n-1 (XA(t)y=——+ ﬂ——(—l+2>\t+>\2t2)e‘M
(X" Yt))=0 (n=1,23...). (22 392 42 3,2
Starting from Eq(18) and using Eq(7) and Eqs(19) and >
(20), we obtain + N1+ NI E (M), (28)
Y

(X5()+(R(s)) . . .
= , (23)  where E(\t) is the exponential integral. Using both the
1-y(s) short-time behavior and the asymptotic behavior gfNE)
[23], we can easily see that

(X2(s))=

where (R%(s)) and (t) are the Laplace transforms of

(R%(t)) and y(t), respectively, and (X2(1))~—(2ly*)N?t?Inrt - (t<\ D)
. po(w, and
(5 (5)) = — P2 (24)
d0” 1,20 ()~ (2Nt (=N,

The substitution of Eq(11) into Eq. (24) and some simple In this particular case, we thus observe an anomalous diffu-
manipulations finally yield sionlike behavior at short times and a diffusionlike behavior
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at long times. We will see next that this is a general featuryhile p,(w,s) is [cf. Eq. (12)]
of the model rather than a peculiarity of the example given
by Eq. (14). .
- _ n—1
IV. ASYMPTOTIC RESULTS Po(w,s)= nzl aps" “p(w)
In this section, we obtain some approximate results re-
garding the characteristic function and the volatility of the
process. These results will mostly refer to the behavior of the
probability distribution for large and largex. To this end,
we will assume that the Laplace transform of the anSingWhere

—ngo<a+n>bnsa+“*2¢a+nfl<w>, (31)

time densityy(s) has the following series expansion:

#(s)=1+ >, a,s"+ >, b,s* "1, (29)
n=1 n=0

wherea>1 is a noninteger number. Note that Eg9) is a

fairly general assumption, because whign=0 for all n

then all momentgT") of (t) exist. In such a case,

=(—1)XT")/n!. On the other hand, ifis(t) only pos-
sessesN=1 moments, thenN+1<a<N+2 and a,

=(—1)XT")/n! only for n=<N. Using Eq.(29), we see that
p(w,s) given by Eq.(10) reads

p(w,5)=h(w) 1+n§:‘,1 a,s"h"(w)

+_§5 bnsa+n—Iﬁa+n—1(w) , (30)
n=0

1

dr(w)= folzk—lﬁk(wz)dz. (32

We want to obtain an asymptotic expansion of the pdf
p(x,t) valid for larget and|x|. As is well known, the largé
behavior is equivalent to the smalbehavior of the Laplace
transform. Similarly the largéx| behavior correspond to the
smallw behavior in the Fourier domain. Having this in mind
from Eg. (30), we have fora>3,

1 1
1-p(@,5) 1-h(w)—ah3(w)s+0(s?)’

or equivalently,

1-p(@,5)  ah2(w)s{1—[1—h(w)]/[ah%(w)s]+O(s)}

Recall thatw is also small and in this cad®(w)=1. We

now assume that, in spite ebeing small, the range of small

values ofw that we will consider is such that

1-h
|~—(w)|<1.
lath?(w)s|

We can thus expand the rhs of E83) with the result

1 -1 1-p(w,s)

1-p(ws) ah¥(w)s

+0(s) |.
(34)

a;h?(w)s

On the other hand, from E@31) we can write

Po(®,5)=—a,¢1(w)+0(s), (35)

where ¢,(w) is given by Eq.(32). The substitution of Egs.
(34) and (35) into Eq. (7) yields

-1
(33
|

. $i(w) | 1-h(w)
Pl = sl awys O] @9

up to the leading order, E@36) yields

- N(w) 1
p(w,s)= > +0 g), (37

a;s

wherea,;=—(T) is equal to the negative of the mean time
between successive jumps and

[1-h(w)]¢i(w)

M T )

(39

Thus, by virtue of Tauberian theorems the asymptotic expres-

sion for larget of the characteristic functiop(w,t) will be
given by the Laplace inversion of E¢37),
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~ - t where we have assumed that(t) decreases fast enough at
p(w,t)~—N(w) ™ (t—0). (39 infinity. It is easy to convince oneself that &s-0 the domi-
nant term on the right-hand side of this equation is the first

In this asymptotic case the market volatility could be evalu-°ne. Hence,
ated starting from Eq27) and then following the procedure

just described which involves the use of Eg9). Neverthe- = YET) dé~— o' (D)IN(tI(T)).
less, it turns out to be much simpler to directly evaluate ti(T) £
(X2(t)) using the asymptotic expression fofw,t) given by ,
Eq. (39). We thus have Finally,
(X))~ ot (TY (1), (40) (XA(0)~ p2y (O INIT))  (t<(T)). (42

. 2 oy

Therefore, in this regime the volatility grows linearly with Since t*[In(t(T))|<t when t<(T), the volatility grows
time, which suggests a diffusionlike behavior of the model aSlower than normal diffusion at short times. Therefore, the
long times. model exhibits an anomalous diffusionlike behavior at short

It is also interesting to calculate the behavior of volatility imes. This peculiar behavior of the volatility, i.e., anomalous
at short times. To this end, we first note thatas0 no shift  diffusion at short times and ordinary diffusion at long times,
in return has occurred with high probability. Consequentlyis a characteristic feature of the model, and we will see next
the probability density functiop(x,t) of the process is ap- that there seems to be empirical evidence of such a behavior

proximately given bypg(x,t): in real markets. _
It could be argued that the anomalous behavior of the
P(X,t)=po(x,t) (t—0), volatility at short times is a spurious consequence of the
form of pg(x,t) which, in turn, is the result of the arbitrary
and the approximate expression of the volatility is assumption that the time evolution ¢K?(t)) between suc-

cessive steps is linegcf. Eq. (5) and Fig. 1. We will prove

5 z that this is not the case and that the anomalous behavior of
(X5()= X Po(x,t)dx  (t=0), volatility is, at least, a direct consequence of assump@n
which relates return increments with their duration. In effect,
which, after using Eq(5) yields suppose that the expression fog(x,t) given by Eq.(5) is

valid but that return increments and time intervals are inde-
" dr pendent random variables. Then from E8), we have
(Xz(t)>zt2f (R¥(m)—  (t—0), (41) B B
{ T plo,t)=h(w)§(t). (43

where(R?(t)), the second moment gf(x,t), is defined by  Therefore (R2(t)) = u,y(t) and Eq.(41) reads
Eqg. (19). In terms of the characteristic functign w,t) we

have < Utr
<x2(t)>zM2tf d/(z)dr (t—0).
<R2(t)>_ ﬁzz)(wvt) ' T
dw? w:O’ For t sufficiently small we may write
and from Eq.(9), we get[see Eq.(21)] (X2(1))=p(0O)t  (t—0),
(R(t))=— uot ' (). and the model presents a diffusionlike behavior at short-time
scales. Hence, it is the dependence between return incre-
Substituting this equation into E¢41) yields ments and their duration the reason for the anomalous behav-
ior of the model at short times. We finally note that this
) . [ ' (ET)) provides a test for the validity of assumption in E8), since
(XE(t)) = — pat J’Um £ d¢ (t—0), if actual data do not support diffusionlike behavior at short

times then the assumption of independence between incre-

where we have used dimensionless units in writing the inte[nents qnd the!r dura.tlon IS magcurate. . .

gral. An integration by parts yields We_f|n|sh this section obtalnl_ng the asymptotic Iong-tlme
behavior of the volatility for the independent model given by

= o (&T)) Eq. (8). In this casg X?(s)) is given by Eq.(26) which, for
Udeé: — ¢ (O)In(t/(T)) smalls and after using the expansi¢29), reads
o ) 2u(TH[1 1
_ " 201\ — - 2
], dewimine (Re(e)= T2 5 - S(Ms+ () .
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FIG. 2. Empirical distribution of the time between transactions, FIG. 3. Empirical distribution of the logarithmic changes be-
corresponding to the operative of the closest-to-maturity deutschgveen transactions, in the deutsche mark—U.S. dollar futures mar-
mark future(in the U.S. market The analyzed data range from ket. Positive variation§ncrementsand negative variationglecre-
January, 1993 to December, 1997. The pdf of the sojourn timesnents exhibit approximately the same behavior, thereby supporting
(1), clearly follows a power law. The solid curve represents the fitour assumption of the symmetry bfx). The plot also suggests the
we propose in the main text. presence of a power law, and it includes a graph showing the shape

of h(x) in Eqg. (46), using the parameters reported there.
Whence

20 ments do not exist. The Laplace transformygt) is there-
(XA =pot(T)  (t—e2), fore of the class given by Eq29). The mean sojourn time

and, for the independent model, the volatility also has thé’@‘nd the second moment are

same diffusionlike behavior at long time as that of the de-
pendent mode]cf. Eq. (40)]. (T)= A

-1 A2
2\ _
a—2’ (T >_(0(—2)(01—3)'

(45)

V. SPECIFIC RESULTS
] ) ) For the dollar—mark future market the experimental mean

We will now apply the formalism presented in the preced—sojOurn time evaluated from data (%)= 23.65s, in sat-
ing sections to analyze the distribution of returns correspondrsfactory agreement with the theoretic%l prediction (@
ing to the future U.S. dollar—deutsche mark exchaftge =24.85 s evaluated from E¢45) and based on ansaté4).
by-tic data from 1993 to 199724,29. In Fig. 3, we plot the experimental jump denditfx). We

Before proceeding further, we need to comment on a ke\..o there that the experimenta(x) can be considered a
point regarding the nature of markets. In a majority of Workssymmetric function of the return incrementsA good fit is
on the subject it is implicitly assumed that statistical proper-igq given by a power law with a greater exponent than that
ties of the economy are stationary all over the time. This isOf w(t):
certainly inaccurate, for one does not expect current behavior
of the market to be that of the market in, say, 1930. Here, we (B—1)
presuppose a less restrictive assumption than that of com- h(x)=
plete stationarity: we suppose that markets are stationary 2y(1+ x|/ y)?
over shorter periods of time, say one or two decades. Since
we work on high frequency data and these data are onlyhere 3=5.52 andy=2.64<10 *. Again, the pdf in Eq.
available since the early 1990’s, our assumption of “Id@al  (46) has its four first moments finite and the rest are infinite.
time) stationarity” seems to be consistent with the data. Power-law densities liké44) and(46) have been recently

As explained above, our first task is to infer from thesesuggested for describing several market models such as in-
data which forms fors(t) andh(x) are plausible. In Fig. 2, dividual companie$26] or market indice$27,28.

(5<B<6), (46)

we plot the experimental pausing-time densiift). We can We now have all the ingredients to obtain a complete

see there that an excellent fit to the data is provided by thanalysis of the dollar—mark exchange market. Unfortunately,
following pdf: the densities given by Eq$44) and (46) make very prob-
lematic the exact evaluation gf(x,t) by means of the
AMa—1) Fourier-Laplace inversion of Eq13). We will use instead

= e (8<a<4), @4 the approximate results obtained in Sec. IV, and, in particu-

T (1+AD)® , : ar
lar, the asymptotic expressio(89) for the characteristic

wherea=3.47 and\=2.73x10 2 s *. Since 3<a<4 the functionp(w,t) valid for larget. To this end we must have
first two moments ofy(t) are finite while the rest of mo- an expression for the jump characteristic function,

021112-7
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o0

(47)

h(x)coswxdx.

E(w)=2j

0

Substituting Eq(46) into this equation enables us to obtain
the exacth(w) in terms of a combination of incomplete

gamma functions of imaginary arguments. However, that ex-
pression is clumsy for practical purposes and, since we are

mainly interested in the behavior of the tails pfx,t), we

will use a simpler expression fdn(w) valid when w is
small.
We therefore define

g(w)=1-h(w).

Then, using Eq946)—(47) and taking into account both nor-
malization and symmetry di(x), we write

9(w)= ZJ’:[l— h(x)]coswxdx.

Substituting Eq(46) into this equation and recalling that 5
<B<6, after successive integrations by parts we find

- I'(g—3) I'(g—5)
g(w)ZW(Yw)z—m(vw)A
r(g-5) o sinx

B-1
Trig-n ) fo NI E

As w—0, we make the approximation
fw fw sinx d
0 0o xP7°
a

T 2T(B—5)sinm(B—5)/2°

sinx

X_
X731+ wylx)P~°

X

Hence,

I'(B—3)

( I'(B—5)
I'(p-1)

hlo)=1- D

yw)?+ yo)!

ks

“arB-Dsnm =5 Y’

(48)

The Fourier inversion of this approximation will give us the
behavior ofh(x) asx— *=o. Then, neglectings function
terms(which obviously do not contribute for large values of
[x]), we have

1

OO~ = SR = Dsnm(B=5)12 7

o0
1f wP lcoswxdw
0
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J'wwﬁ1cos(uxdco=—F(B)Slnw(ﬁ_s)/2 (49)
° [x|#
Therefore,
B—1y71
h(x)~—— "G (x| =22, (50)

and the tails of the jump distribution follow a power law with
exponentB. This is consistent with Eq46) which in turn
proves the soundness of the approximation in #8).

Let us now prove that the tails of the entire distribution
p(x,t) also obey a power law with theame exponeng for
any timet sufficiently large. Indeed, the substitution of Eq.
(48) into Eq. (38) yields

N(w)=M(yw)P 1, (52)

where

w

T 2T(B-1)sinm(B—5)/2’

M (52

In writing Eq. (51), we have taken into account the fact men-
tioned above that integer powers ©fdo not affect the be-
havior at the tails. In this situation the asymptotic expression

of p(w,t) given by Eq.(39) can be written as

Pw,t)~—=Mt(yw)? (T), (53)
and the Fourier inversion of E@53) finally reads[29]
(B—1)t y*71
PO~ gy qp (M=) (54

Hence, tails ofp(x,t) decay following the same power law
as that of the return increment distributitiix). This pre-
diction of the theoretical model is confirmed by actual data.
In Fig. 4, we show the empiricad(x,t) for the dollar—mark
future exchange and for different values of timeanging
from 15 s to 2 min. The empirical distribution clearly shows,
for all these times, a power-law decay with exponght
~5.5, which coincides with the decaying exponenth¢xk)
thus confirming the predictions of the CTRW model. More-
over, Eq.(54) predicts the linear growth of tails with time.
This linear growth is indeed observed in Fig. 4 where differ-
ent times correspond to properly spaced curves.

Let us finally and briefly comment on the volatility. In
Fig. 5, we plot the volatility(X?(t)) for the dollar—mark
future market. We can see there that the experimental vola-
tility clearly shows two different regimes: at short times we
observe a subdiffusionlike behavior, while at long times the
volatility clearly appears to have a diffusionlike behavior.
Both regimes are consistent with the CTRW dependent
model. We also note from Fig. 5 that the transition between
these two regimes occurstat 25 s, which is approximately

(x— £). The integral appearing on the right-hand side ofequal to the mean sojourn tim@). Again this transition
this equation is convergent in the sense of generalized fundrom subdiffusion to diffusion around time=(T) has been

tions and readf29]

predicted by the dependent model.
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FIG. 5. The experimental volatilitydot9 shows two different
regimes. At short times there is a subdiffusionlike behatimtted
line) while at long time the volatility grows linearly with timeolid
éine). Transition between regimes occurs approximately at time
=(T). These facts are in agreement with theoretical predictions.

FIG. 4. Empirical probability density functiom(x,t) for a set of
time lagst, ranging from 15 s to 2 min. The model leads to a
power-law decay, governed by an exponghtin all cases. This
exponent is precisely the one appearing in the power law for th
jump densityh(x). Since we have chosen exponentially growing
values fort, different times correspond to equally spaced tails andexpression is valid as long as the pausing-time density pos-
this indicates a linear growth with time. We only show tails for gagseg 3 finite first mome(it).
positive increments; tails for negative increments behave in the We have applied the formalism in a study of the U.S.
same way. dollar—deutsche mark future exchange market. We have used

tic-by-tic data from 1993 to 1997. Data show thgit) and
VI. CONCLUSIONS h(x) are very well described by power-law densitiet Egs.
444) and(46)]. We have showed théi) the tails of the return

In this paper, we have applied formalism based on th distribution follow a power law with the same exponent as
CTRW to the random movement of market prices. The for o u v i) The volatility has a diffusionlike behavior at

malism depends on the conjecture from data of two densities. . e )
the pausing-time density(t) and the jump densityi(x) ong times and an anomalous diffusionlike behavior at short

The assumption that both densities are independent necessgmfst' Bo]Eh cltl)nclu5|tc_)ns t:?]grtee Wr:th expirlt)mental):ja;ca. |
ily leads to the conclusion that the volatility of the return et us finally mention that we have not been ablé to apply

process has a diffusionlike behavior, i.e., grows linearly withthe CTRW formalism to market indices, such as the S&P

time, at any time scale. The hypothesis of independence gOO, since any index is an average of many prices and thus

perhaps the simplest assumption one can make. However,I d||c_es are reco;_ded ?ig'x?Tgrc\/esf TThS g?ﬁtr?d":tz t?e un-
does not seem to be realistic since return variations and theffc"Y'Ng assumption ortne  1.€., that the ime between

duration are certainly correlated, at least in many markets;UccessIve changes is random. Therefore, the formalism pre-

We have therefore proposed a dependent model in whicﬁemed herein is valid and applicable to single companies,

large return increments are infrequent. With this assumptior‘furrency exchange and commodities, while for market indi-

the model predicts that the volatility should behave in anc®s other formalisms, like the one presented in 4], are

anomalous diffusive way at short times, something that idrecessary.
seen in some markets.
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