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Continuous-time random-walk model for financial distributions
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We apply the formalism of the continuous-time random walk to the study of financial data. The entire
distribution of prices can be obtained once two auxiliary densities are known. These are the probability
densities for the pausing time between successive jumps and the corresponding probability density for the
magnitude of a jump. We have applied the formalism to data on the U.S. dollar–deutsche mark future ex-
change, finding good agreement between theory and the observed data.
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I. INTRODUCTION

The continuous-time random walk~CTRW!, introduced
by Montroll and Weiss in 1965,@1#, has a large number o
applications to the modeling of many physical phenome
particularly in the field of transport in disordered med
@2,3#. In contrast to the standard random walk in which ste
are made periodic, the CTRW is based on the assump
that the time between steps is random. The CTRW has b
applied in many different fields. These range from transp
in amorphous materials@4#, transport in turbid media@5,6#,
random networks@7#, self-organized criticality@8#, liquids
@9#, electron tunneling@10#, theoretical mechanics@11#, time
series analysis@12#, and earthquake modeling@13#, just to
name a few.

In this paper, we apply the CTRW formalism to a ph
nomenon more related to social sciences than to natural
ences: the distribution of speculative prices. The first anal
cal approach to this class of problems was proposed
analyzed by Bachelier, who in 1900 modeled stock pr
movements as an ordinary random walk where prices ca
up and down, at fixed times, due to a variety of many in
pendent random causes. This approach necessarily lea
the conclusion that the probability distribution of speculat
prices is Gaussian@14#. In 1959, Osborne realized that, sinc
stock prices are necessarily positive, it would be more c
venient to consider returns instead of market values@15#.
Thus, if S(t) is an speculative price~or the value of an in-
dex! at time t and

Z~ t !5 ln@S~ t !/S~0!# ~1!

is the return up to timet @16#. Then Z(t) is a Gaussian
variable andS(t) is a log-normal process. Nevertheless,
Kendall first noticed in 1953@17#, the normal density fits
financial data very poorly in the tails of the distribution. A
an example, the probability of an event corresponding to
or more standard deviations is up to 104 times larger than the
one predicted by the Gaussian distribution. Therefore,
pirical price distributions are highly leptokurtic. The exi
tence of these ‘‘fat tails’’ was precisely what led to Mande
brot in 1963 to propose the Le´vy distribution for stock
1063-651X/2003/67~2!/021112~10!/$20.00 67 0211
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market prices@18#. There is, however, a drawback to th
approach: no finite moments exist beyond the first and thi
certainly a severe limitation of the model. Moreover, t
Lévy distribution has been tested against data in many s
ations, always with the same conclusion: the tails are far
long compared with actual data. In any case, as Mante
and Stanley have recently shown@19#, the Lévy distribution
fits very well to the center of empirical distributions—
surprisingly much better than the Gaussian density—an
also shares the scaling behavior that appears in data.

Recently, a new market model was proposed to fill the g
between Gaussian and Le´vy distributions@20#. The model,
which was based on a continuous superposition of jump p
cesses, explains the appearance of fat tails and self-sc
but still keeps all moments finite. It reproduces price dis
butions quite exactly, particularly those of tic-by-tic data.
this paper, we want to address the problem from a differ
point of view. Thus, we assume that the evolution of pric
can be modeled by a CTRW. This allows us to calculate
distribution of speculative prices. The paper is organized
follows. In Secs. II and III, we set the general formalism a
derive the exact distribution of prices and volatility. In Se
IV, we derive some asymptotic results mostly valid for lon
times. In Sec. V, we apply the model to real data, namely,
U.S. dollar–deutsche mark future market. Conclusions
drawn in Sec. VI.

II. GENERAL FORMALISM: THE DISTRIBUTION
OF PRICES

We define the zero-mean returnX(t) by

X~ t !5Z~ t !2^Z~ t !&, ~2!

whereZ(t) is given by Eq.~1! and^Z(t)& is its average. We
now suppose thatX(t) can be described in terms of a CTRW
In this picture X(t) changes at random time
t0 ,t1 ,t2 , . . . ,tn , . . . and we assume that the intervals b
tween successive steps~which we call ‘‘sojourns’’! Tn5tn
2tn21 (n51,2,3, . . . ) areindependent and identically dis
tributed random variables with a probability density functi
given byc(t), i.e.,
©2003 The American Physical Society12-1
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c~ t !dt5Prob$t,Tn<t1dt%.

At a given sojourn the zero-mean returnX(t) undergoes a
random change giving rise to the random variableDXn
5X(tn)2X(tn21), which is described by a probability den
sity function defined by

h~x!dx5Prob$x,DXn<x1dx%.

In this formulation of the problem, we choose a functi
r(x,t) to be the fundamental function, wherer(x,t)dxdt is
the joint probability that an increment in return,X(t), is
added whose magnitude is betweenx andx1dx and that the
time between successive turns is betweent and t1dt. The
condition that there is no net drift will be assured by requ
ing that r(x,t) is an even function ofx. We can form two
marginal densities out ofr(x,t): the pausing-time density
c(t) for the time between successive pulses

c~ t !5E
2`

`

r~x,t !dx, ~3!

and the probability density function~pdf! for the changes in
a single jump,h(x), where

h~x!5E
0

`

r~x,t !dt. ~4!

The value of the returnX(t) at time t will by given by the
random value of the height att ~see Fig. 1!. We are interested
in the probability density function of this variablep(x,t).

We also assume that between successive steps the
evolution of X(t) is linear ~see Fig. 1!. The assumption of
linearity between jumps is arbitrary. We could have used s
functions instead, in such a case the return would evo
discontinuously and during any sojourn the value of the
turn ~and hence the price! is that of the last jump. On the
other hand, the linear choice for the returnX(t) implies an
exponential growth in priceS(t) @cf. Eq. ~1!#. This exponen-
tial behavior is an inherent feature of any financial marke

FIG. 1. Schematic representation of the return process. The
mark the valueX(tn) of the return after each sojourn.Tn5tn

2tn21 is the time increment of thenth sojourn.
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Apparently the choice of linearity is against causality b
cause one has to know future return valuesX(tn) in order to
draw the segment joiningX(tn21) and X(tn). Fortunately,
for the soundness of our model this is not true. Indeed, no
that our process is completely equivalent to a random p
cess evolving linearly with a slope changing at the rand
times tn (n51,2,3, . . . ) @21#. If the slope of the segmen
joining X(tn21) with X(tn) is independent ontn ,tn11 , . . . ,
then the random process is causal. Moreover, if the slop
independent of its previous values then the process is
Markovian.

Let us calculate the form ofp(x,t) prior to the first jump.
This function will be denoted byp0(x,t) and, due to the
linear evolution ofX(t) between steps, it reads

p0~x,t !5E
t

`

dTE
2`

`

r~y,T!dS x2
yt

T Ddy, ~5!

where we have assumed that the initial jump occurredt
50. In terms ofp0 andr, we have that the pdfp(x,t) for
the return at timet is given by

p~x,t !5p0~x,t !1E
0

t

dt8E
2`

`

r~x8,t8!p~x2x8,t2t8!.

~6!

This equation has been derived from the consideration tha
time t, the process is either within the very first sojourn, th
given by the first term on the right-hand side~rhs! of Eq. ~6!,
or else the first sojourn ended at timet8,t, at that time the
return had valuex8, and from (x8,t8) the process was re
newed.

It is possible to solve Eq.~6! by means of a joint Fourier-
Laplace transform. To this end let us denote by

p̂~v,s!5E
0

`

dte2stE
2`

`

dxeivxp~x,t !,

the joint Fourier-Laplace transform ofp(x,t). Then the con-
volution theorems applied to Eq.~6! yield

p̂~v,s!5
p̂0~v,s!

12 r̂~v,s!
, ~7!

where p̂0(v,s) and r̂(v,s) are, respectively, the join
Fourier-Laplace transforms of functionsp0(x,t) andr(x,t).
Recall thatp0(x,t) only depends onr(x,t), thus, the return
pdf p(x,t) is exclusively determined by the form ofr(x,t).

Unfortunately, the form ofr(x,t) is very difficult to de-
termine from the available data. More easily accessible
the marginal densities ofr(x,t) in Eqs. ~3! and ~4!. It is
therefore essential to assume a functional relation betw
r(x,t) and its marginal densitiesc(t) and h(x). The sim-
plest choice would be based on the assumption that re
increments and their duration time are independent rand
variables. In this case,

r~x,t !5h~x!c~ t !. ~8!

ts
2-2
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However, this assumption does not seem to be realistic s
one certainly expects some degree of correlation betw
return increments and their duration, while Eq.~8! implies
complete independence between increments and soj
times. Following that intuition, for the rest of the paper, w
will mostly assume that the densityr(x,t) is such that its
characteristic functionr̃(v,t) has the functional form:

r̃~v,t !5cF t

h̃~v!
G , ~9!

wherec(t) is the pausing-time density, which we assume
be a decreasing function of time,@22#, andh̃(v) is the char-
acteristic function ofh(x). Notice that Eq.~9! has been cho-
sen to satisfy Eqs.~3! and ~4!.

As we have mentioned, assumption given by Eq.~9! is at
least intuitively plausible because it implies that one m
wait for a long time in order a large variation of return
occur. In other words, major increments of the return
very infrequent. We will prove this by showing that sojou
time T5tn2tn21 and return quadratic incrementsDX2

5@X(tn)2X(tn21)#2 have a positive correlation, then in
creasing return variations imply increasing sojourn times
vice versa. In effect, we define the correlation function b
tweenDX2 andT by

r 5^DX2T&2^DX2&^DT&.

We can easily evaluate the cross average^DX2T& using the
joint characteristic functionr̃(v,t). Thus

^DX2T&52
]2

]v2E0

`

t r̃~v,t !dtuv50 ,

which after using Eq.~9! yields

^DX2T&52^DX2&^DT&.

Hence

r 5^DX2&^DT&.0,

as we meant to prove.
Observe that assumption~9! allows us to write the joint

Fourier-Laplace transform ofr(x,t) in the form

r̂~v,s!5h̃~v!ĉ@sh̃~v!#, ~10!

where ĉ(s) is the Laplace transform of the pausing-tim
densityc(t). Likewise, from Eq.~5! we see that the trans
formed densityp̂0(v,s) can be written as

p̂0~v,s!52
]

]sE0

1dz

z
r̂~vz,sz!, ~11!

which, after using Eq.~10!, reads

p̂0~v,s!52E
0

1

h̃2~vz!ĉ8@szh̃~vz!#dz, ~12!
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where the prime denotes a derivative. In terms of the tra
formed densitiesĉ(s) and h̃(v) the formal solution to the
problem given by Eq.~7! can be written in the following
more explicit form:

p̂~v,s!5

2E
0

1

h̃2~vz!ĉ8@szh̃~vz!#dz

12h̃~v!ĉ@sh̃~v!#
. ~13!

Subject to the assumption in Eq.~9!, Eq. ~13! furnishes a
complete solution to the problem and it can be a conven
starting point for numerical methods when further analyti
insight is unavailable.

We finish this section with an example. Suppose that
random timest0 ,t1 ,t2 , . . . in which the return suffers ran
dom increments form a Poisson set of events, suppose
that these random increments are distributed according
Laplace density. Then densitiesc(t) and h(x) are, respec-
tively, given by

c~ t !5le2lt, h~x!5
g

2
e2guxu , ~14!

wherel215^T& is the mean sojourn time andg.0 is such
that ^DX2&52/g2 is the jump variance. In this case,h̃(v)
51/(11v2/g2) and the characteristic function of the join
densityr(x,t) is given by

r̃~v,t !5l exp$2l~11v2/g2!t%, ~15!

which is the convolution of a Poissonian densityle2lt and a
Gaussian density with zero mean and variance 2lt/g2. Fi-
nally, the inverse Laplace transform of the formal solution
Eq. ~13! now results in an explicit expression for the chara
teristic function of the problem given by the time convol
tion:

p̃~v,t !5 p̃0~v,t !1lE
0

t

e2lv2t8/g2
p̃0~v,t2t8!dt8 ,

~16!

where

p̃0~v,t !5lE
t

`

expH 2lS t1
v2t2

g2t
D J dt. ~17!

Note that numerical analyzing Eqs.~16! and~17! is straight-
forward.

III. THE VOLATILITY

Besides the pdfp(x,t), which provides all possible infor-
mation about the problem, there is another quantity of c
siderable practical interest: the return variance. In our an
sis this quantity, called ‘‘volatility’’ in the terminology of
finance, has the advantage that it does not require the kn
edge of the entire jump distributionh(x). It suffices to know
the pdfc(t) and the first two moments ofh(x).
2-3
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Let ^Xn(t)& be thenth moment of the entire return pro
cess

^Xn~ t !&5E
2`

`

xnp~x,t !dx,

and let us denote bŷX̂n(s)& its Laplace transform

^X̂n~s!&[E
0

`

e2st^Xn~ t !&dt.

This can be written in terms of the joint Fourier-Lapla
transform ofp(x,t) by

^X̂n~s!&5 i 2n
]np̂~v,s!

]vn U
v50

. ~18!

Closely related tô Xn(t)& there are the moments of the r
turn increments which we denote by^Rn(t)& and define by

^Rn~ t !&[E
2`

`

xnr~x,t !dx. ~19!

Since we assume that there is no net drift in the evolution
the process, i.e.,r(2x,t)5r(x,t), this means that all odd
moments associated withr(x,t) are zero. That is,

^R2n21~ t !&50 ~n51,2,3, . . . !. ~20!

All of this means that random jumps during any sojourn
unbiased and, in particular, that their average is zero. N
that since the jump densityh(x) is a marginal density of
r(x,t), condition~20! implies that

h̃(2n21)~0!50 and mn[~21!nh̃(2n)~0! ~21!

(n51,2,3, . . . ), whereh̃(m)(0) is themth derivative of the
characteristic functionh̃(v) of the jump density. Notice tha
another direct consequence of the unbiased assumption g
by Eq. ~20! is that all odd moments of the return proce
vanish:

^X2n21~ t !&50 ~n51,2,3, . . . !. ~22!

Starting from Eq.~18! and using Eq.~7! and Eqs.~19! and
~20!, we obtain

^X̂2~s!&5
^X̂0

2~s!&1^R̂2~s!&

12ĉ~s!
, ~23!

where ^R̂2(s)& and ĉ(t) are the Laplace transforms o
^R2(t)& andc(t), respectively, and

^X̂0
2~s!&52

]2p̂0~v,s!

]v2 U
v50

. ~24!

The substitution of Eq.~11! into Eq. ~24! and some simple
manipulations finally yield
02111
f
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^X̂0
2~s!&52

1

s
^R̂2~s!&1

2

sE0

1

z^R̂2~sz!&dz,

and Eq.~23! implies

^X̂2~s!&5
2/s

12ĉ~s!
E

0

1

z^R̂2~sz!&dz. ~25!

As we have mentioned, the independent model given
Eq. ~8! cannot be used for describing actual markets, but
the sake of completeness we will also give the general
pression of the volatility associated with the model. Th
result will serve to illustrate an important point regarding t
asymptotic behavior of the volatility which will be discusse
nearly at the end of the following section.

Using Eq.~8!, we have

^R̂2~s!&5m2ĉ~s!

and

^X̂2~s!&5
2m2 /s

12ĉ~s!
E

0

1

zĉ~sz!dz, ~26!

while for the dependent model exemplified by Eq.~9! and
after using Eq.~10!, we have

^R̂2~s!&5m2

d

ds
@sĉ~s!#.

Then

^X̂2~s!&5
2m2 /s

12ĉ~s!
F ĉ~s!2E

0

1

zĉ~sz!dzG . ~27!

Observe that both Eqs.~26! and ~27! depend only on the
pausing-time density and the second moment of the ju
m2. In this case and for the example given in Eqs.~14!–~17!,
we can explicitly write

^X2~ t !&52
2

3g2
1

2lt

g2
2

2

3g2
~2112lt1l2t2!e2lt

1
2

g2
l2t2~11lt/3!E1~lt !, ~28!

where E1(lt) is the exponential integral. Using both th
short-time behavior and the asymptotic behavior of E1(lt)
@23#, we can easily see that

^X2~ t !&;2~2/g2!l2t2 ln lt ~ t!l21!

and

^X2~ t !&;~2l/g2!t ~ t@l21!.

In this particular case, we thus observe an anomalous d
sionlike behavior at short times and a diffusionlike behav
2-4
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at long times. We will see next that this is a general feat
of the model rather than a peculiarity of the example giv
by Eq. ~14!.

IV. ASYMPTOTIC RESULTS

In this section, we obtain some approximate results
garding the characteristic function and the volatility of t
process. These results will mostly refer to the behavior of
probability distribution for larget and largex. To this end,
we will assume that the Laplace transform of the pausi
time densityĉ(s) has the following series expansion:

ĉ~s!511 (
n51

`

ansn1 (
n50

`

bnsa1n21, ~29!

wherea.1 is a noninteger number. Note that Eq.~29! is a
fairly general assumption, because whenbn[0 for all n
then all momentŝ Tn& of c(t) exist. In such a casean
5(21)n^Tn&/n!. On the other hand, ifc(t) only pos-
sesses N>1 moments, thenN11,a,N12 and an
5(21)n^Tn&/n! only for n<N. Using Eq.~29!, we see that
r̂(v,s) given by Eq.~10! reads

r̂~v,s!5h̃~v!F11 (
n51

`

ansnh̃n~v!

1 (
n50

`

bnsa1n21h̃a1n21~v!G , ~30!
ll

.

02111
e
n

-

e

-

while p̂0(v,s) is @cf. Eq. ~12!#

p̂0~v,s!52 (
n51

`

ansn21fn~v!

2 (
n50

`

~a1n!bnsa1n22fa1n21~v!, ~31!

where

fk~v![E
0

1

zk21h̃k~vz!dz. ~32!

We want to obtain an asymptotic expansion of the p
p(x,t) valid for larget anduxu. As is well known, the larget
behavior is equivalent to the smalls behavior of the Laplace
transform. Similarly the largeuxu behavior correspond to th
smallv behavior in the Fourier domain. Having this in min
from Eq. ~30!, we have fora.3,

1

12 r̂~v,s!
5

1

12h̃~v!2a1h̃2~v!s1O~s2!
,

or equivalently,
1

12 r̂~v,s!
5

21

a1h̃2~v!s$12@12h̃~v!#/@a1h̃2~v!s#1O~s!%
. ~33!
e

res-
Recall thatv is also small and in this caseh̃(v).1. We
now assume that, in spite ofs being small, the range of sma
values ofv that we will consider is such that

u12h̃~v!u

ua1h̃2~v!su
!1.

We can thus expand the rhs of Eq.~33! with the result

1

12 r̂~v,s!
.

21

a1h̃2~v!s
F11

12 r̂~v,s!

a1h̃2~v!s
1O~s!G .

~34!

On the other hand, from Eq.~31! we can write

p̂0~v,s!52a1f1~v!1O~s!, ~35!

wheref1(v) is given by Eq.~32!. The substitution of Eqs
~34! and ~35! into Eq. ~7! yields
p̂~v,s!.
f1~v!

h̃2~v!s
F11

12ĥ~v!

a1h̃2~v!s
1O~s!G , ~36!

up to the leading order, Eq.~36! yields

p̂~v,s!.
Ñ~v!

a1s2
1OS 1

sD , ~37!

wherea152^T& is equal to the negative of the mean tim
between successive jumps and

Ñ~v![
@12ĥ~v!#f1~v!

h̃4~v!
. ~38!

Thus, by virtue of Tauberian theorems the asymptotic exp
sion for larget of the characteristic functionp̃(v,t) will be
given by the Laplace inversion of Eq.~37!,
2-5
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MASOLIVER, MONTERO, AND WEISS PHYSICAL REVIEW E67, 021112 ~2003!
p̃~v,t !;2Ñ~v!
t

^T&
~ t→`!. ~39!

In this asymptotic case the market volatility could be eva
ated starting from Eq.~27! and then following the procedur
just described which involves the use of Eq.~29!. Neverthe-
less, it turns out to be much simpler to directly evalua

^X2(t)& using the asymptotic expression forp̃(v,t) given by
Eq. ~39!. We thus have

^X2~ t !&;m2t/^T& ~ t→`!. ~40!

Therefore, in this regime the volatility grows linearly wit
time, which suggests a diffusionlike behavior of the mode
long times.

It is also interesting to calculate the behavior of volatil
at short times. To this end, we first note that ast→0 no shift
in return has occurred with high probability. Consequen
the probability density functionp(x,t) of the process is ap
proximately given byp0(x,t):

p~x,t !.p0~x,t ! ~ t→0!,

and the approximate expression of the volatility is

^X2~ t !&.E
2`

`

x2p0~x,t !dx ~ t→0!,

which, after using Eq.~5! yields

^X2~ t !&.t2E
t

`

^R2~t!&
dt

t2
~ t→0!, ~41!

where^R2(t)&, the second moment ofr(x,t), is defined by
Eq. ~19!. In terms of the characteristic functionr̃(v,t) we
have

^R2~ t !&52
]2r̃~v,t !

]v2 U
v50

,

and from Eq.~9!, we get@see Eq.~21!#

^R2~ t !&52m2tc8~ t !.

Substituting this equation into Eq.~41! yields

^X2~ t !&.2m2t2E
t/^T&

` c8~j^T&!

j
dj ~ t→0!,

where we have used dimensionless units in writing the in
gral. An integration by parts yields

E
t/^T&

` c8~j^T&!

j
dj52c8~ t !ln~ t/^T&!

2^T&E
t/^T&

`

djc9~j^T&!ln j,
02111
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where we have assumed thatc8(t) decreases fast enough
infinity. It is easy to convince oneself that ast→0 the domi-
nant term on the right-hand side of this equation is the fi
one. Hence,

E
t/^T&

` c8~j^T&!

j
dj;2c8~ t !ln~ t/^T&!.

Finally,

^X2~ t !&;m2c8~0!t2 ln~ t/^T&! ~ t!^T&!. ~42!

Since t2u ln(t/^T&)u,t when t!^T&, the volatility grows
slower than normal diffusion at short times. Therefore,
model exhibits an anomalous diffusionlike behavior at sh
times. This peculiar behavior of the volatility, i.e., anomalo
diffusion at short times and ordinary diffusion at long time
is a characteristic feature of the model, and we will see n
that there seems to be empirical evidence of such a beha
in real markets.

It could be argued that the anomalous behavior of
volatility at short times is a spurious consequence of
form of p0(x,t) which, in turn, is the result of the arbitrar
assumption that the time evolution of^X2(t)& between suc-
cessive steps is linear@cf. Eq. ~5! and Fig. 1#. We will prove
that this is not the case and that the anomalous behavio
volatility is, at least, a direct consequence of assumption~9!
which relates return increments with their duration. In effe
suppose that the expression forp0(x,t) given by Eq.~5! is
valid but that return increments and time intervals are in
pendent random variables. Then from Eq.~8!, we have

r̃~v,t !5h̃~v!c~ t !. ~43!

Therefore,̂ R2(t)&5m2c(t) and Eq.~41! reads

^X2~ t !&.m2tE
1

` c~ tt!

t2
dt ~ t→0!.

For t sufficiently small we may write

^X2~ t !&.m2c~0!t ~ t→0!,

and the model presents a diffusionlike behavior at short-t
scales. Hence, it is the dependence between return in
ments and their duration the reason for the anomalous be
ior of the model at short times. We finally note that th
provides a test for the validity of assumption in Eq.~8!, since
if actual data do not support diffusionlike behavior at sh
times then the assumption of independence between in
ments and their duration is inaccurate.

We finish this section obtaining the asymptotic long-tim
behavior of the volatility for the independent model given
Eq. ~8!. In this casê X̂2(s)& is given by Eq.~26! which, for
small s and after using the expansion~29!, reads

^X̂2~s!&.
2m2 /^T&

s2 F1

2
2

1

3
^T&s1O~s2!G .
2-6
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Whence

^X2~ t !&.m2t/^T& ~ t→`!,

and, for the independent model, the volatility also has
same diffusionlike behavior at long time as that of the d
pendent model@cf. Eq. ~40!#.

V. SPECIFIC RESULTS

We will now apply the formalism presented in the prece
ing sections to analyze the distribution of returns correspo
ing to the future U.S. dollar–deutsche mark exchange~tic-
by-tic data from 1993 to 1997! @24,25#.

Before proceeding further, we need to comment on a
point regarding the nature of markets. In a majority of wor
on the subject it is implicitly assumed that statistical prop
ties of the economy are stationary all over the time. This
certainly inaccurate, for one does not expect current beha
of the market to be that of the market in, say, 1930. Here,
presuppose a less restrictive assumption than that of c
plete stationarity: we suppose that markets are station
over shorter periods of time, say one or two decades. S
we work on high frequency data and these data are o
available since the early 1990’s, our assumption of ‘‘local~in
time! stationarity’’ seems to be consistent with the data.

As explained above, our first task is to infer from the
data which forms forc(t) andh(x) are plausible. In Fig. 2,
we plot the experimental pausing-time densityc(t). We can
see there that an excellent fit to the data is provided by
following pdf:

c~ t !5
l~a21!

~11lt !a
~3,a,4!, ~44!

wherea53.47 andl52.7331022 s21. Since 3,a,4 the
first two moments ofc(t) are finite while the rest of mo

FIG. 2. Empirical distribution of the time between transactio
corresponding to the operative of the closest-to-maturity deuts
mark future ~in the U.S. market!. The analyzed data range from
January, 1993 to December, 1997. The pdf of the sojourn tim
c(t), clearly follows a power law. The solid curve represents the
we propose in the main text.
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ments do not exist. The Laplace transform ofc(t) is there-
fore of the class given by Eq.~29!. The mean sojourn time
and the second moment are

^T&5
l21

a22
, ^T2&5

2l22

~a22!~a23!
. ~45!

For the dollar–mark future market the experimental me
sojourn time evaluated from data is^T&exp523.65s, in sat-
isfactory agreement with the theoretical prediction of^T&
524.85 s evaluated from Eq.~45! and based on ansatz~44!.

In Fig. 3, we plot the experimental jump densityh(x). We
see there that the experimentalh(x) can be considered a
symmetric function of the return incrementsx. A good fit is
also given by a power law with a greater exponent than t
of c(t):

h~x!5
~b21!

2g~11uxu/g!b
~5,b,6!, ~46!

where b55.52 andg52.6431024. Again, the pdf in Eq.
~46! has its four first moments finite and the rest are infini

Power-law densities like~44! and~46! have been recently
suggested for describing several market models such a
dividual companies@26# or market indices@27,28#.

We now have all the ingredients to obtain a comple
analysis of the dollar–mark exchange market. Unfortunat
the densities given by Eqs.~44! and ~46! make very prob-
lematic the exact evaluation ofp(x,t) by means of the
Fourier-Laplace inversion of Eq.~13!. We will use instead
the approximate results obtained in Sec. IV, and, in parti
lar, the asymptotic expression~39! for the characteristic
function p̃(v,t) valid for larget. To this end we must have
an expression for the jump characteristic function,

,
he

s,
t

FIG. 3. Empirical distribution of the logarithmic changes b
tween transactions, in the deutsche mark–U.S. dollar futures m
ket. Positive variations~increments! and negative variations~decre-
ments! exhibit approximately the same behavior, thereby support
our assumption of the symmetry ofh(x). The plot also suggests th
presence of a power law, and it includes a graph showing the sh
of h(x) in Eq. ~46!, using the parameters reported there.
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h̃~v!52E
0

`

h~x!cosvxdx. ~47!

Substituting Eq.~46! into this equation enables us to obta
the exacth̃(v) in terms of a combination of incomplet
gamma functions of imaginary arguments. However, that
pression is clumsy for practical purposes and, since we
mainly interested in the behavior of the tails ofp(x,t), we
will use a simpler expression forh̃(v) valid when v is
small.

We therefore define

g̃~v!512h̃~v!.

Then, using Eqs.~46!–~47! and taking into account both nor
malization and symmetry ofh(x), we write

g̃~v!52E
0

`

@12h~x!#cosvxdx.

Substituting Eq.~46! into this equation and recalling that
,b,6, after successive integrations by parts we find

g̃~v!5
G~b23!

G~b21!
~gv!22

G~b25!

G~b21!
~gv!4

1
G~b25!

G~b21!
~gv!b21E

0

` sinx

xb25~11vg/x!b25
dx.

As v→0, we make the approximation

E
0

` sinx

xb25~11vg/x!b25
dx.E

0

` sinx

xb25
dx

5
p

2G~b25!sinp~b25!/2
.

Hence,

h̃~v!.12
G~b23!

G~b21!
~gv!21

G~b25!

G~b21!
~gv!4

2
p

2G~b21!sinp~b25!/2
~gv!b21. ~48!

The Fourier inversion of this approximation will give us th
behavior ofh(x) as x→6`. Then, neglectingd function
terms~which obviously do not contribute for large values
uxu), we have

h~x!;2
1

2G~b21!sinp~b25!/2
gb21E

0

`

vb21cosvxdv

(x→6`). The integral appearing on the right-hand side
this equation is convergent in the sense of generalized fu
tions and reads@29#
02111
-
re

f
c-

E
0

`

vb21 cosvxdv52
G~b!sinp~b25!/2

uxub
. ~49!

Therefore,

h~x!;
b21

2

gb21

uxub
~ uxu→`!, ~50!

and the tails of the jump distribution follow a power law wit
exponentb. This is consistent with Eq.~46! which in turn
proves the soundness of the approximation in Eq.~48!.

Let us now prove that the tails of the entire distributio
p(x,t) also obey a power law with thesame exponentb for
any time t sufficiently large. Indeed, the substitution of E
~48! into Eq. ~38! yields

Ñ~v!.M ~gv!b21, ~51!

where

M5
p

2G~b21!sinp~b25!/2
. ~52!

In writing Eq. ~51!, we have taken into account the fact me
tioned above that integer powers ofv do not affect the be-
havior at the tails. In this situation the asymptotic express
of p̃(v,t) given by Eq.~39! can be written as

p̃~v,t !;2Mt~gv!b21/^T&, ~53!

and the Fourier inversion of Eq.~53! finally reads@29#

p~x,t !;
~b21!t

2^T&

gb21

uxub
~ uxu→`!. ~54!

Hence, tails ofp(x,t) decay following the same power law
as that of the return increment distributionh(x). This pre-
diction of the theoretical model is confirmed by actual da
In Fig. 4, we show the empiricalp(x,t) for the dollar–mark
future exchange and for different values of timet, ranging
from 15 s to 2 min. The empirical distribution clearly show
for all these times, a power-law decay with exponentb
'5.5, which coincides with the decaying exponent ofh(x)
thus confirming the predictions of the CTRW model. Mor
over, Eq.~54! predicts the linear growth of tails with time
This linear growth is indeed observed in Fig. 4 where diff
ent times correspond to properly spaced curves.

Let us finally and briefly comment on the volatility. I
Fig. 5, we plot the volatility^X2(t)& for the dollar–mark
future market. We can see there that the experimental v
tility clearly shows two different regimes: at short times w
observe a subdiffusionlike behavior, while at long times t
volatility clearly appears to have a diffusionlike behavio
Both regimes are consistent with the CTRW depend
model. We also note from Fig. 5 that the transition betwe
these two regimes occurs att.25 s, which is approximately
equal to the mean sojourn timêT&. Again this transition
from subdiffusion to diffusion around timet.^T& has been
predicted by the dependent model.
2-8
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VI. CONCLUSIONS

In this paper, we have applied formalism based on
CTRW to the random movement of market prices. The f
malism depends on the conjecture from data of two densi
the pausing-time densityc(t) and the jump densityh(x).
The assumption that both densities are independent nece
ily leads to the conclusion that the volatility of the retu
process has a diffusionlike behavior, i.e., grows linearly w
time, at any time scale. The hypothesis of independenc
perhaps the simplest assumption one can make. Howev
does not seem to be realistic since return variations and
duration are certainly correlated, at least in many mark
We have therefore proposed a dependent model in w
large return increments are infrequent. With this assump
the model predicts that the volatility should behave in
anomalous diffusive way at short times, something tha
seen in some markets.

The CTRW formalism allows us to obtain a closed e
pression for the joint Fourier-Laplace of the entire proc
which constitutes a convenient starting point for numeri
analysis when no further analytical manipulations can
made. We have also obtain an asymptotic long-time exp
sion for the characteristic function of the return process,

FIG. 4. Empirical probability density functionp(x,t) for a set of
time lags t, ranging from 15 s to 2 min. The model leads to
power-law decay, governed by an exponentb, in all cases. This
exponent is precisely the one appearing in the power law for
jump densityh(x). Since we have chosen exponentially growi
values fort, different times correspond to equally spaced tails a
this indicates a linear growth with time. We only show tails f
positive increments; tails for negative increments behave in
same way.
alk
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expression is valid as long as the pausing-time density p
sesses a finite first moment^T&.

We have applied the formalism in a study of the U.
dollar–deutsche mark future exchange market. We have u
tic-by-tic data from 1993 to 1997. Data show thatc(t) and
h(x) are very well described by power-law densities@cf. Eqs.
~44! and~46!#. We have showed that~i! the tails of the return
distribution follow a power law with the same exponent
that ofh(x). ~ii ! The volatility has a diffusionlike behavior a
long times and an anomalous diffusionlike behavior at sh
times. Both conclusions agree with experimental data.

Let us finally mention that we have not been able to ap
the CTRW formalism to market indices, such as the S
500, since any index is an average of many prices and
indices are recorded at fixed times. This contradicts the
derlying assumption of the CTRW, i.e., that the time betwe
successive changes is random. Therefore, the formalism
sented herein is valid and applicable to single compan
currency exchange and commodities, while for market in
ces other formalisms, like the one presented in Ref.@20#, are
necessary.
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FIG. 5. The experimental volatility~dots! shows two different
regimes. At short times there is a subdiffusionlike behavior~dotted
line! while at long time the volatility grows linearly with time~solid
line!. Transition between regimes occurs approximately at timt
.^T&. These facts are in agreement with theoretical prediction
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