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Symmetries and fixed point stability of stochastic differential equations
modeling self-organized criticality

Álvaro Corral* and Albert Dı´az-Guilera†

Departament de Fı´sica Fonamental, Facultat de Fı´sica, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Spain
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A stochastic nonlinear partial differential equation is constructed for two different models exhibiting self-
organized criticality: the Bak-Tang-Wiesenfeld~BTW! sandpile model@Phys. Rev. Lett.59, 381~1987!; Phys.
Rev. A38, 364 ~1988!# and the Zhang model@Phys. Rev. Lett.63, 470 ~1989!#. The dynamic renormalization
group~DRG! enables one to compute the critical exponents. However, the nontrivial stable fixed point of the
DRG transformation is unreachable for the original parameters of the models. We introduce an alternative
regularization of the step function involved in the threshold condition, which breaks the symmetry of the BTW
model. Although the symmetry properties of the two models are different, it is shown that they both belong to
the same universality class. In this case the DRG procedure leads to a symmetric behavior for both models,
restoring the broken symmetry, and makes accessible the nontrivial fixed point. This technique could also be
applied to other problems with threshold dynamics.@S1063-651X~97!04603-5#

PACS number~s!: 64.60.Ak, 05.40.1j, 05.90.1m, 64.60.Lx
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I. INTRODUCTION

In the past decade much attention has been paid to
phenomenon known as self-organized criticality~SOC!. Bak,
Tang, and Wiesenfeld@1# studied a cellular automaton mod
as a paradigm for the explanation of two widely occurri
phenomena in nature: 1/f noise and fractal structures. Bot
have in common a lack of characteristic scales. Although
SOC models do not always show 1/f noise, they have no
characteristic scales either; this scale invariance suggests
these systems are critical in analogy with classical equi
rium critical phenomena; but in SOC one deals with dyna
cal nonequilibrium statistical properties. Moreover, the s
tem evolves naturally to the critical state without any tuni
of external parameters, that is, in a self-organized proce

Several cellular automata and coupled map lattices m
els exhibiting SOC have been reported in the literature
the original sandpile model of Baket al. @1#, the system is
perturbed externally by a random addition of sand gra
Once the slope between neighboring cells has reache
threshold value, sand is transferred between them in a fi
amount. Taking this model as a reference, different dyna
cal rules have been investigated, leading to a wide variet
universality classes. Continuous variables with a full trans
from a cell instead of a fixed discrete amount@2–5#; directed
flows @6#; a threshold condition imposed on the height,
the gradient, or even on the Laplacian@7#; and anisotropy@8#
are a few examples. These randomly driven models do
exhibit SOC when the interaction rules are not conserva
@9#. Later on, other deterministically driven models ha
been introduced where conservation is not a necessary
dition @10–15#. Much more recently, sandpile models wi
deterministic perturbations but intrinsic randomness in
threshold dynamics have been used to reproduce experim
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tal results on transport properties on rice piles@16#. The close
connection between these sandpile models and interface
pinning has been established in Ref.@17#.

Some authors have attempted to connect the rando
driven models to stochastic differential equations@18,19#.
These continuous descriptions are developed accordin
the symmetry rules obeyed by the discrete models in orde
achieve a generic scale-invariant condition@20#. Neverthe-
less, none of them either explicitly or implicitly includes th
threshold condition, which is one of the main characterist
of SOC models. On the other hand, anomalous diffus
equations with singularities in the diffusion coefficient ha
been considered in order to study the deterministic dynam
of the avalanches generated in the critical state@21,22#. A
different approach has been introduced by Pietronero
co-workers, using a real-space renormalization procedur
determine the dynamical exponent as well as the avalan
size exponent@23#.

In a previous paper@24# one of us studied two nonlinea
stochastic differential equations derived from the discrete
namical rules of two models with different symmetry pro
erties. In principle, one would expect, for this reason, diff
ent critical behavior. However, it was shown analytically,
means of the dynamic renormalization group~DRG! @25–
27#, that both models belong to the same universality cla
The threshold condition was kept, but the step function w
regularized in order to allow a power-series expansion. In
limit that recovers the threshold it was shown that the c
pling constants that distinguish both models become dec
pled from the common coupling constants; since the criti
exponents depend only on the latter constants, one obt
the same values for both models. Once this equivalence
established, the most symmetric model was conside
showing that an infinite number of coupling constants w
relevant below the upper critical dimensiondc54; by ex-
panding the number of nonlinearities, the DRG procedu
up to first order ine542d, gave an estimate of the dynam
cal exponent close to the value obtained by scaling ar
ments and in the numerical simulations@2,5#. This value of
2434 © 1997 The American Physical Society
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55 2435SYMMETRIES AND FIXED POINT STABILITY OF . . .
the dynamical exponent is obtained when the flow in para
eter space reaches the nontrivial stable fixed point; never
less, when taking into account the physical values of
parameters, they do not lie in the basin of attraction of
fixed point, thus making this computed value in some se
speculative since it cannot be ensured that the flow in par
eter space will be able to reach the attractor.

Our goal in this paper is to complement the previous w
in order to check the validity of the calculation of the critic
exponents at the stable fixed points and to analyze the
played by symmetries in randomly driven SOC models a
in general, in other models where an infinite hierarchy
nonlinear terms is required. Our procedure also illustrates
effect of symmetry breaking in DRG calculations as
mechanism to make the attractors in parameter space a
sible for the physical values of the parameters in the orig
equations. The continuum equation for the Bak-Tan
Wiesenfeld~BTW! and Zhang models is introduced in Se
II, as well as the alternative regularization that breaks
symmetry that distinguish both models. In Sec. III we d
velop the DRG procedure and show that this symmetry
irrelevant, in view of the fact that the nontrivial fixed point
not modified by this alternative approach. Moreover, the
fect of symmetry breaking allows the flow of the origin
parameters to reach the nontrivial fixed point, where
critical exponents can now be computed. Finally, we pres
our conclusions in Sec. IV.

II. MODELS AND SYMMETRIES

First, we describe briefly the dynamics of the two SO
models under consideration. The first model was origina
proposed by Zhang@2# and consists of ad-dimensional lat-
tice in which any site can store some continuously distr
uted variableE. This variable, which we will call energy, ca
have different physical interpretations@3#. The system is per-
turbed by adding a random amount of energydE.0 at a
randomly chosen site. Once a site reaches a value of
energy greater than the threshold valueEc , this site becomes
active and transfers all its energy to its nearest neighbors
this point the input of energy from the outside is turned o
The energy transferred to the neighboring sites can m
them active, giving rise to an activation cluster or avalanc
which ends when all the sites have reached a value of
energy smaller thanEc . It is only when the avalanche ha
stopped that energy is added again, otherwise the sys
remains quiescent. In this way there is a clear time-sc
separation in the dynamics. The external noise acts in a s
time scale, whereas the avalanches evolve infinitely fas
comparison. The second model differs from Zhang’s mo
only in the amount of energy an active site transfers to
neighbors, which is a fixed amountEc , instead of its whole
energy E. Therefore it is closer to the original sandpi
model of Baket al. @1#, but is continuous inE. WhendE is
not random but fixed this difference becomes irrelevant.
this reason, it will be referred to as BTW model. Notice th
both models are conservative in the sense that the ad
energy ~always positive! is only dissipated at the ope
boundaries.

The microscopic evolution rules can be written from tim
t ~on a fast time scale! to t11 for each sitei as
-
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Ei~ t11!5Ei~ t !2Ei~ t !Q„Ei~ t !2Ec…

1
1

q(NN ENN~ t !Q„ENN~ t !2Ec…1j i~ t ! ~1a!

and

Ei~ t11!5Ei~ t !2EcQ„Ei~ t !2Ec…

1
1

q(NN EcQ„ENN~ t !2Ec…1j i~ t ! ~1b!

for Zhang’s and the BTW model, respectively. The sum ru
over theq nearest neighbors of sitei , labeled NN, and the
threshold condition enters through the Heaviside step fu
tionQ, defined asQ(x,0)50 andQ(x.0)51. Due to the
continuous nature of the models the valueQ(x50) is irrel-
evant and we can keep it undefined, for now. For the exte
noisej i(t), which drives the system only when there are
active sites, one can formally write

j i~ t !5dEd i ,n~ t !)
; j

@12Q„Ej~ t !2Ec…#, ~2!

where d i ,n(t) is the Kronecker delta symbol andn(t) is a
random vector pointing towards the site of the lattice th
will be perturbed with a random amount of energydE ~in the
original BTW modeldE5Ec /q). The product runs over al
the lattice sites.

When applying the DRG one deals with infinite system
and then the important effect of dissipation at the op
boundaries is not taken into account. However, in SOC m
els a distribution of absorbing defects through the latt
plays the same role as the open~absorbing! boundaries@28#,
as we have verified through computer simulations@29#.
Then, we can redefine our models in an infinite lattice,
with a quenched distribution of defects. The results are
modified with this assumption. Another possibility is to co
sider that each site of an infinite lattice has a small proba
ity of dissipating an amount of energyEc /q when it topples,
instead of transferring it to a certain neighbor. This proc
dure, which represents the assumption of random bounda
accuracy implies that when a site receives a toppling fr
some neighbor, it has a small probability of not accepting
amount of energyEc /q, which is lost@30#. This dissipation
can be included as a new term in the noise, and Eq.~2! has to
be replaced by

j i~ t !5dEd i ,n~ t !)
; j

@12Q„Ej~ t !2Ec…#

2(
NN

zNNQ„ENN~ t !2Ec…, ~3!

wherezNN is a dichotomous noise, taking the value 0 with
large probability and the valueEc /q ~dissipation! with a
small one. IfzNN depends ont, i.e., zNN5zNN(t), we are
dealing with annealed random boundaries, whereas if it
pends only on the position, we have quenched rand
boundaries or absorbing defects.
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In terms of a rescaled energyE2Ec→E and introducing
a parameterZ to unify the description, we have for bot
models

Ei~ t11!2Ei~ t !5
1

q(NN $@ZENN~ t !1Ec#Q„ENN~ t !…

2@ZEi~ t !1Ec#Q„Ei~ t !…%1j i~ t !, ~4!

where Z51 for Zhang’s model andZ50 for the BTW
model. Equation~4! defines a stochastic coupled map lattic
Moreover, notice that the deterministic BTW equation d
plays invariance under a parity transformation of the or
parameterE→2E. This is the only symmetry that the BTW
model does not share with Zhang’s model. The comm
symmetries are invariance under spatial translations, r
tions, and reflections, as well as conservation of the or
parameter.

Equation~4! can be coarse grained in order to obtain
continuum equation for the effectiveE(rW,t). Then, by using
the prescriptions for the temporal derivative and for t
Laplace operator

]E~rW,t !

]t
5a¹2$@ZE~rW,t !1Ec#Q„E~rW,t !…%1h~rW,t !, ~5!

wherea is a coefficient that depends on the lattice spaci
the unit time step, and the coordination numberq. The noise
h(rW,t) accounts for the effective external noise as well as
the internal noise that appears due to the elimination of
croscopic degrees of freedom.

Up to this point, Eq.~5! truly describes the coarse-graine
evolution of the system, but we have not yet characteri
the noiseh(rW,t), which derives fromj i(t). The product in
Eq. ~3! makesh(rW,t) a multiplicative noise that depends o
the whole lattice state, and the problem is intractable. We
going to ignore the restrictions imposed by the step functi
in Eq. ~5!, thus breaking the time-scale separation. Then
noiseh(rW,t) acts continuously in time and can provoke av
lanches to overlap. However, for small enough noise thi
very unlikely, and one can still identify avalanches in co
puter simulations. Moreover, the dynamical exponent d
not change with this assumption@5# because the added nois
is orders of magnitude smaller than the energy transferre
the avalanche and thus its dynamics is not affected. In
case we still have two time scales, although they overlap
what followsh(rW,t) will be considered as an additive ran
dom process including two effects: the external driving,
ways positive, and the dissipation at the~random! bound-
aries, always negative. In the statistical stationary state
random input of energy must equal, on average, the outp
the boundaries. Then we assume that

^h~rW,t !&50. ~6!

In fact, this is the same assumption made in all the studie
SOC by means of DRG@18,19# and it is somehow equivalen
to the stationary condition used in Ref.@23#.

Moreover, we are mainly interested in the spatiotempo
propagation of a perturbation through the system, that is
.
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measuring the value of the dynamical exponent. For this p
pose we have to look at the system on a fast time scale,
the scale of the evolution of the avalanches. In Ref.@5# it was
argued that in this case one can understand the noise
quenched Gaussian process uncorrelated in space, and
its correlation function is given by

^h~rW,t !h~r 8W ,t8!&52Gdd~rW2r 8W !. ~7!

When looking at the system on a slow time scale one can
use this prescription for the noise, which has to be unco
lated in time too, i.e., ^h(rW,t)h(r 8W ,t8)&
52Gdd(rW2r 8W )d(t2t8), and this prescription is mainly re
lated to the interface roughness between avalanches@31#.

Equations~5!–~7!, together with the fact that the noise
a Gaussian process, completely define our model. Howe
the presence of the step function in Eq.~5! gives rise to a
strong nonlinearity. A perturbative expansion of this equ
tion can be performed if one regularizes the step function

Q~E!5 lim
b→`

f ~bE! ~8!

and makes a series expansion off (bE) in powers ofE
@22,24#. The functionf (x) must be monotonical increasin
with f (2`)50 and f (`)51. Moreover, we choose
f (x)21/2 as an odd function, sof (0)51/2. Several func-
tions of this type have been used in the literature, but t
coming from the error function as

f ~x!5
11erf~x!

2
5

1

Ap
E

2`

x

e2y2dy ~9!

allows a power expansion that has an infinite radius of c
vergence, in contrast with previous choices@22,24#. In any
case, the relevant results do not depend on the partic
form of f (x).

The regularization given by Eq.~8! keeps the symmetry
of the step function and therefore the invariance unde
parity transformation in the BTW model. As an alternati
regularization that breaks this invariance we propose

Q~E!5 lim
b→`

f ~bE1K !, ~10!

with K an arbitrary constant. Although in the limitb→` we
recover the step function, we do not recover its symme
anymore becauseQ(E50)5 f (K)Þ1/2 if KÞ0, and this is
the reason for the breaking of the symmetry in the BT
model. Now we perform a series expansion of the regula
ing function f (bE) in powers ofE, obtaining

Q~E!5 lim
b→`

(
n50

`

an~b,K !En, ~11!

where the coefficientsan(b,K) are given by

an~b,K !5
f ~n!~K !bn

n!
, ~12!
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55 2437SYMMETRIES AND FIXED POINT STABILITY OF . . .
with f (n)(K) being the nth-order derivative of f (x) at
x5K. Substituting the expansion~11! into Eq. ~5!, we can
write

]E~rW,t !

]t
5D¹2E~rW,t !1 (

n52

`

ln¹
2En~rW,t !1h~rW,t !, ~13!

where the effective diffusion constantD and the coupling
constantsln ~which make the equation nonlinear! take dif-
ferent values depending on the model:

D5 lim
b→`

a„Ecf
~1!~K !b1Z f~K !…, ~14!

ln5 lim
b→`

abn

n! SEcf
~n!~K !1Z

n f ~n21!~K !

b D ,
n52,3,. . . ,`. ~15!

On the one hand, forK50, since all the even derivative
verify f (2n12)(0)50, all even coupling constants vanish f
the BTW model, whereas they do not for the Zhang mod
Using Eq.~13!, this allows one to verify the symmetry of th
BTW model under the parity transformation of the ord
parameterE. On the other hand, forKÞ0, the even coupling
constants do not vanish in any case and this constitutes
symmetry breaking for the BTW model. Then, under th
condition, the only difference between both models is t
the constants depend onb in a different way; however, it is
easy to see that in the limitb→` both sets of constants ar
identical and then the Zhang model and the brok
symmetry BTW model have to belong to the same univ
sality class. This can only be shown forKÞ0. Nevertheless
consideringK50 only introduces a difference in the value
Q(0), which is irrelevant in a continuous model, and th
one can include the~symmetric! BTW model in this univer-
sality class too.

At this point it is worth noting that we have transformed
stochastic coupled map lattice, which involves a thresh
condition and presents a clear separation of time scales,
a nonlinear stochastic partial differential equation, where
nonlinearity of the threshold is described by an infinite ser
of powers and the randomness enters via a Gaussian pro
with zero mean to account for the dissipation at the bou
aries. During this transformation, and due to the approxim
tions we have performed concerning the noise correlat
we have broken the time-scale separation since the noise
constantly in time. Nevertheless, we expect that such
equation explains the dynamical properties of the sys
within the fast time scale of the propagation of the av
lanches. As we have mentioned before and as discusse
@31#, to deal with the slow time scale, where the avalanc
are instantaneous, another noise correlation is more appr
ate.

III. DYNAMIC RENORMALIZATION-GROUP
PROCEDURE

The model to be studied by the DRG is defined by
nonlinear partial differential equation~13! and the Gaussian
noise given by Eqs.~6! and~7!. As a first step we can chec
l.
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the relevance of the different coupling constants in this eq
tion by naive dimensional analysis: a change of sc
b5el.1,

r 8W5e2 l rW, t85e2zlt, E85e2x lE, ~16!

is performed in Eqs.~13! and~7!, with x being the roughness
exponent, which is related to the hydrodynamic expone
and z the dynamical exponent. Then one obtains that
parameters transform as

D→bz22D, G→b2~z2x!2dG, ln→bz1~n21!x22ln .
~17!

Under this scaling transformation,z and x are chosen to
keep the linear model scale invariant, i.e., the parameterD
and G have not to be modified. This choice givesz52,
x5(42d)/2, and

ln→b~42d!~n21!/2ln . ~18!

Then one can see that when we apply iteratively the tra
formation (b→`) for d.4 all the nonlinear terms vanis
and are irrelevant. However, all the coupling constants go
infinity for d,4 and hence all nonlinear terms become r
evant; this implies that the upper critical dimension
dc54 and nontrivial values of the exponents are expec
below it.

The relevance of all the terms makes our problem mu
more complicated than, for instance, the Kardar-Par
Zhang model of interface growth, where only the first no
linear term is relevant@32#. The appropriate treatment of Eq
~13! would be to renormalize the infinite number of releva
coupling constants that are involved. Of course this is imp
sible to do in practice. In@24# an expansion in the number o
coupling constants for the BTW model was performed w
only odd terms, i.e., without symmetry breaking (K50).
The critical exponents where obtained as a function of
highest coupling constant, up tol9. Fortunately, the dynami-
cal exponent was well behaved and could be extrapolate
to l` . However, keeping the symmetry of the step functio
the nontrivial fixed point of the DRG is unreachable usi
the parameters given by Eqs.~14! and ~15!, even for the
Zhang model. We want to show that with the proposed
ternative regularization of the step function, which breaks
symmetry of the BTW model and allows the existence
even coupling constants, the DRG fixed points are
changed, but now they are accessible to the flow when
parameters take their real values. For this reason, and a
initial attempt to justify our hypothesis as well as the co
clusions of Ref.@24#, we will focus on Eq.~13! with only its
first two nonlinear terms, i.e.,l2 andl3, and see how they
behave under a DRG transformation,

]E~rW,t !

]t
5D¹2E~rW,t !1l2¹

2E2~rW,t !

1l3¹
2E3~rW,t !1h~rW,t !. ~19!

The DRG procedure consists of the removal of the f
modes~large wave numberk) in the momentum space, fol
lowed by a rescaling of a factorel in order to recover the
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2438 55ÁLVARO CORRAL AND ALBERT DÍAZ-GUILERA
FIG. 1. Diagrammatic expressions for Eqs.~21! and ~25!, defined in the range 0,k,L. The double bar with the cross3 at its end is
the order parameterE, the single bar with the cross representsG0h, whereas the single bar alone isG0. A vertex withn branches (n52 or
3 in the figure! represents a convolution product ofn elements, including a prefactor2lnk

2/(2p)(n21)(d11). The circles correspond to th
average over the noise.
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original Brillouin zone @25–27#. After this transformation,
one obtains an equation that is equivalent to the original o
but with different ~effective or renormalized! coefficients.
Successive iterations of this transformation give the flow
the coefficients in the parameter space. If this flow conver
towards a fixed point, the system presents ‘‘scale inv
ance’’ in the hydrodynamic limit~large-distance and long
time behavior!. Then, the fluctuations of the order parame
verify the scaling equation

^@E~rW0 ,t0!2E~rW01rW,t01t !#2&1/2;r xF~ t/r z!, ~20!

where the critical exponentsx andz are those that ensure th
existence of the fixed point. However, it is worth mentioni
that with this procedure the scaling functionF(x) remains
unknown@33#.

We now outline the DRG calculation. First of all we writ
Eq. ~19! in Fourier space

E5G0h2G0

l2k
2

~2p!d11E*E2G0

l3k
2

~2p!2~d11! E*E*E.

~21!

HereE(kW ,v) andh(kW ,v) are defined as the Fourier tran
forms ofE(rW,t) andh(rW,t), i.e.,

E~kW ,v!5E ddr dt ei ~vt2kW•rW !E~rW,t !, ~22!

whereas

G0~k,v!5
1

2 iv1Dk2
~23!

is called the bare propagator. The symbol* represents the
convolution product, defined as
e,

f
s
i-

r

~E*E!~kW ,v!5E ddq dV E~qW ,V!E~kW2qW ,v2V!.

~24!

Figure 1~a! shows the expression of Eq.~21! in terms of
Feynman diagrams. As the intensity of the noiseG has also
to be renormalized by the DRG transformation, we need
consider the equation for the correlation function of t
transformed energŷE(kW ,v)E(k8W ,v8)&, which, up to one-
loop order, is

^EE8&5G0G08^hh8&1
l2
2k2k82G0G08

~2p!2~d11! ^~E*E!~E*E!8&,

~25!

where the prime denotes a dependence onkW8,v8 instead of
the dependence onkW ,v. The diagrammatic representation
this equation is shown in Fig. 1~b!. Equations~21! and~25!,
which are the ones that we are going to renormalize, hold
0,k,L, whereL is the wave-number cutoff due to th
underlying discrete structure. The transformed no
h(kW ,v) turns out to be also a Gaussian process with z
mean, but with a correlation

^h~kW ,v!h~kW8,v8!&52~2p!d12Gdd~kW1kW8!d~v!d~v8!.
~26!

The first step of the DRG transformation consists in sp
ting the Fourier space in two shells: an inner shell, wh
contains the slow modes, i.e., 0,k,e2 lL, and an outer
shell, containing the fast modes,e2 lL,k,L. Both modes
are coupled through the convolution products in Eqs.~21!
and~25!. We consider the diagrams for the slow modes a
perform a perturbative expansion of the fast ones up to
lowest order in the intensity of the noise~see the Appendix
for more details!. Then we integrate out these modes by
average over the noise in the outer shell. After this trans
mation the resultant equations are shown diagrammatic
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FIG. 2. Diagrams obtained after the first step of the DRG transformation. Now continuous lines correspond to the inner shell, w
dashed lines correspond to the outer shell. A comparison with Fig. 1 allows one to define new coefficients. Observe that the new
affect only the outer shell. The notation has been simplified with respect to Fig. 1, suppressing the symbol3 at the end of the vertices and
also the arrows.
ar
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to

hell
gi-
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in Fig. 2. It is clear that we can obtain new equations that
formally equivalent to the initial ones, Eqs.~21! and ~25!,
defining the new coefficients as the original ones plus
corresponding integrals over the outer shell. With the no
correlation~26! these integrals can be easily computed in
hydrodynamic limit (kW→0, v→0), as it is shown in the
Appendix, and then the coefficients transform according

G→G, ~27a!

D→DF113
I dGl3

D3 24
I dGl2

2

D4 G , ~27b!

l2→l2F1218
I dGl3

D3 112
I dGl2

2

D4 G , ~27c!
e

e
e
e

l3→l3F1218
I dGl3

D3 172
I dGl2

2

D4 232
I dGl2

4

D5l3
G , ~27d!

where

I d~ l !5
2Sd

~2p!d
12e2 l ~d24!

d24
Ld24 ~28!

andSd is the complete solid angle ind dimensions. How-
ever, the new equations are only defined in the inner s
0,k,e2 lL. The second step allows us to recover the ori
nal Brillouin zone 0,k,L by rescaling the equations usin
transformation~16!, which in Fourier space writes

k8W5elkW , v85ezlv, E85e2~x1z1d!lE. ~29!
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The combined effect of both transformations, in the lim
l→0, constitutes an infinitesimal DRG transformatio
which gives the flow equations of the parameters in para
eter space. In these flow equations instead ofl2 andl3 it is
suitable to use the dimensionless coupling constantsl̄2 and
l̄3, given by

l̄2
25

I d
~1!Gl2

2

D4 , l̄35
I d

~1!Gl3

D3 , ~30!

whereI d
(1)5(dId /dl) l505@2Sd /(2p)d#Ld24. Then

dG

dl
5G@2z22x2d#, ~31a!

dD

dl
5D@z2224l̄2

213l̄3#, ~31b!

dl̄2
dl

5l̄2F42d

2
120l̄2

2224l̄3G , ~31c!

dl̄3
dl

5l̄3F42d184l̄2
2227l̄3232

l̄2
4

l̄3
G . ~31d!

We are interested in the invariance of the parameters u
DRG transformations. This means that we have to look
the fixed points of the flow equations; if we write Eqs.~31!
as da i /dl5gi(•••a j•••), wherea j represents any coeffi
cient, then the fixed points verifygi(•••a j* •••)50 ; i .
ConsideringDÞ0 andGÞ0, we obtain four algebraic equa
tions with four unknownsx, z, l̄2, and l̄3; their solutions
will give us the fixed points of the transformation,l̄2* and
l̄3* , as well as the values of the exponentsz and x that
guarantee that the DRG transformation leads to a scale
behavior. Notice that the particular values ofG andD play
no role in the existence and location of the fixed points. W
can also find the stability of the fixed points under sm
perturbations using a linear stability analysis: the fixed po
$a j* % is stable~i.e., an attractor! if all the eigenvalues~or
their real parts! of the matrix]gi /]a j evaluated at this fixed
point are negative.

The results are the following: ford.4 one obtains six
different fixed points, but the only stable one correspond

x5
e

2
, z52, l̄2*5l̄3*50, ~32!

where as usuale is defined ase5dc2d542d. This is the
trivial or Gaussian fixed point, which gives a normal~or
Brownian! diffusive behavior because of the vanishing of t
coupling constants. The values of the exponents do not
respond with those of the Edwards-Wilkinson model, used
the study of surface growth, because the noise correlatio
different @34#. For d,4 this fixed point becomes unstab
and the only stable one is

x5
7

18
e, z522

e

9
, l̄2*50, l̄3*5

e

27
, ~33!
t
,
-

er
r

ee

e
l
t

to

r-
n
is

which was unstable ford.4. In this case the diffusion is
anomalous; to be more precise, the fact thatz,2 gives a
superdiffusive behavior in the hydrodynamic limit. Note th
the one-loop expansion in the intensity of the noiseG gives a
nontrivial fixed point that is expressed as a perturbation
the Gaussian one in a first-ordere expansion. Observe als
that the breaking of symmetry does not modify the value
the fixed point obtained without taking into account the ev
coupling constantl2 @24#. Moreover, the fact that the non
trivial fixed point is an attractor of the dynamics contras
with equilibrium critical phenomena, where this point
stable only along one direction. In this fact lies the differen
between fine tuning of parameters for equilibrium system
the critical point and self-organization towards criticality f
nonequilibrium processes.

Now we know the attractors in the parameter space,
this is not enough in our case; since our stochastic equa
~13! is derived directly from the discrete rules of the BTW
and Zhang models, we also need to know the basins o
traction of the stable fixed points and whether our init
conditions, that is, the initial values of the coefficients co
responding to our physical problem, are inside these bas
These values for the dimensionless coupling constants~30!
can be calculated from Eqs.~14! and ~15! and they are

~ l̄2
0!25

1

4

I d
~1!G0

a2Ec
2

f ~2!~K !2

f ~1!~K !4
, l̄3

05
1

6

I d
~1!G0

a2Ec
2

f ~3!~K !

f ~1!~K !3
,

~34!

result that also holds forK50, where we obtainl̄2
050 even

for the Zhang model. The superscript 0 indicates the ini
value of the coefficient, that is, its value before any ren
malization. As we have no restriction forG0 ~except that it
has to be small! andK can take any arbitrary real value, th
implies that the initial dimensionless coupling constants w
be defined in the region

l̄3
0,

2

3
~ l̄2

0!2, ~35!

having used forf (x) the explicit form given by Eq.~9!.
Clearly, the stable fixed point ford,4 @Eq. ~33!# is out-

side the region of initial conditions defined by Eq.~35!. It
will be of maximum interest, however, to know whether
not these conditions will drive the system towards the n
trivial fixed point. We first considerK50, which implies
l̄2
050, corresponding to the case studied in Ref.@24#. For
d,4 one gets a different behavior depending on the sign
l̄3
0. Figure 3 shows that whenl̄3

0 is positive it flows towards
the stable fixed pointl̄3*5e/27, giving a dynamical exponen
z522e/9. A negativel̄3

0, which is our case of physical in
terest, flows away. An exact solution of Eq.~31d! with
l̄250 gives thatl̄3 would reach2` in a finite l and then
would reappear asl̄35`, then being under the attraction o
the nontrivial fixed point. However, our one-loop calculatio
forces the flow of the coupling constant along the parame
space to stay of ordere, and one cannot sustain the validi
of the preceding description. Then it is not possible to pred
the renormalization ofl̄3. It will be either renormalized to
l̄3* or other fixed points will appear along the flow~corre-
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sponding to strong coupling and not given by the one-loo
e expansion!. Therefore, the fixed point given by Eq.~33!,
although it is an attractor, is unreachable from our initia
conditions (l̄3

0,0). For that reason the conclusions of Ref
@24# were incomplete. On the other hand, above the upp
critical dimension the system evolves towards the trivia
fixed pointl̄3*50 giving a diffusive behavior withz52 pro-
vided thatl̄3

0 is not too negative~see Fig. 3!. This behavior
of the fixed pointl̄3* as a function ofe corresponds to a
transcritical bifurcation.

Now, by introducing the alternative regularization (K
Þ0), we will see the effect of the symmetry breaking. Firs

FIG. 3. Flow inl̄3 space when only this nonlinear term is taken
into account. The squares correspond to the stable (S) and unstable
(U) fixed points and the arrows show the flow under DRG trans
formations.
p

l
.
er
l

t

of all, we insist that the stable fixed points are the same as
K50, due to the fact thatl̄2 renormalizes to zero. Moreove
as can be seen in Fig. 4, where we have plotted the flow l
of Eq. ~31! obtained by numerical integration, the basin
attraction of the nontrivial fixed point is delimited by th
parabola

l̄35
4

7
l̄2
2 , ~36!

which is also a particular solution of the flow equation
regardless of the value ofd. This parabola is inside the re
gion defined by Eq.~35!, and this fact implies that the new
regularization makes it possible to reach the attractor
d,4 starting in the region of physical meaning. Using Eq
~34! and ~36! together with Eq.~9!, one gets that the condi
tion to converge towards the nontrivial fixed point

K2. 7
2. Then, the parameter that breaks the symmetry in

regularization of the step function, which, in principle, w
arbitrary, determines the behavior of the system in the
drodynamic limit.

For d.4 the flow is more complex because of the s
fixed points, but the result is that convergence towards
Gaussian one also happens for our initial conditions, as
5 shows. The linear stability analysis of the fixed poin
gives the same results as the numerical integration show
the figure. However, this linear analysis fails ford54, where
all the fixed points collapse towards the Gaussian one.
by means of the numerical integration that we verify that it
an attractor for the region above the parabola given by
~35!, but for the region below it is a repeller. This stran
behavior appears because ind54 we are at the bifurcation
point.

-

n

s
-

-

-
.
e
r
s

FIG. 4. Flow in (l̄2, l̄3) space
for d53 when both nonlinear
terms are taken into account. I
general, for anyd,4 the results
are qualitatively the same. Dot
correspond to the numerical inte
gration of Eqs.~31c! and ~31d!
and the thin line is Eq.~36!, which
clearly delimits the basin of at-
traction of the nontrivial fixed
point, as it is seen in the plot. Be
low the continuous thick line the
values of the parameters corre
spond to our physical situation Eq
~35!. Squares correspond to th
fixed points. Observe that fo
l̄250 we obtain the same result
as in Fig. 3.
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FIG. 5. Same as Fig. 4, but fo
d55. The results hold ford.4.
Only four of the six fixed points
are shown because of the symm
try of the flow lines. In this case

the curvel̄352
8
3 l̄2

2, represented
by another thin line, is the repul
sive branch of the saddle point.
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In Ref. @24# it was shown for the BTW model andK50
thatl2n50, whereas for the Zhang model, although the ev
coupling constants do not vanish, it was argued that th
flow equations became decoupled from the odd ones in
limit b→`. This fact enabled us to establish the same u
versality class for both models and to deal with only o
terms in Eq.~13!. Then, an expansion in the number of co
pling constants was performed, whose extrapolation co
pares well with the results of the simulations@2,5#. Note that
in the simulations one computes the dynamical exponen
lating the characteristic length and lifetime of the avalanch
whereas within the DRG framework one computes the
namical exponent from the fluctuations of the order para
eter@35#. The agreement between these calculations confi
the basic scaling hypothesis that in both cases length
time are related by means of the same exponent. Howe
the problem of this calculation was that the nontrivial fix
point was unreachable for the original equation.

In our approach, due to the symmetry breaking, we h
to consider also the effect of even coupling constants. In
present work we have dealt with a restricted problem w
only the lower-order even and odd coupling constantsl2 and
l3, showing thatl2 renormalizes to zero, supporting th
calculation of Ref.@24#. Then the stable fixed points are n
modified by the presence of an even coupling constant in
model, but due to the symmetry breaking that we have in
duced, the nontrivial one is an attractor in the parame
space when the parameters corresponding to the real m
are taken into account. This behavior should be the same
any even coupling constant; actually, preliminary calcu
tions includingl4 andl5 in Eq. ~19! make us suspect that a
even coupling constants renormalize to zero. This fact me
that in the hydrodynamic limit the solution of both mode
has to be symmetric under parity transformations of the or
n
ir
he
i-

-

e-
s,
-
-
s
nd
er,

e
e
h

e
-
r
del
or
-

ns

er

parameter; then, for the BTW model the DRG restores
broken symmetry, whereas for the Zhang model we concl
that its asymmetric nature is irrelevant in the behavior
large distances and long times. Therefore, this validates
extrapolation performed in@24# since now we have show tha
the symmetry breaking makes the stable fixed points rea
able, when starting in the region of physical interest in t
space of parameters. Let us finally mention that in a rec
work, Ghaffari and Jensen@36# performed a different ex-
trapolation of the same results, which show better agreem
with large-scale simulations and with real-space renormal
tion calculations for the dynamical exponent@23#. It is no-
ticeable than the same technique has been applied to
study of the effect of dissipation in a uniformly driven BTW
model @37#.

IV. CONCLUSION

We have studied analytically two models that show se
organized criticality. The difference between them is that
second one~BTW! is symmetric under a parity transforma
tion, whereas the first~Zhang! model is not. From the micro-
scopic rules one writes a effective long-wavelength equa
involving the threshold condition, which enters into th
equation through a step function, making the equation un
proachable under this form. We have introduced a regu
ization of the step function that breaks the symmetry of
BTW model. After a power-series expansion, the equatio
suitable for the application of the dynamic renormalizati
group, although it contains an infinite number of releva
coupling constants. As a consequence, one has to trunca
some point the expansion in the coupling constants. The
sults only make sense if it is possible to extrapolate the v
ues of the exponents up to an infinite number of coupl
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constants. We obtain the fixed points of the transformatio
parameter space and study carefully their stability and ba
of attraction. Then we find that with this regularization it
possible to reach the nontrivial fixed point ford,4, which
was unreachable in a previous work, where symmetry w
not broken. This means that in the hydrodynamic limit t
models display scale invariance. Moreover, in this limit w
obtain a symmetric behavior under parity transformations
both models and therefore the recovery of the broken s
metry for the BTW model and the irrelevance of this sy
metry for Zhang’s model. Although we have dealt with
simplified version of the problem, we expect this behavior
be the same for the complete problem in the sense tha
even coupling constants renormalize to zero, validating
calculation of Ref.@24#. The application of this techniqu
should also be useful for other kinds of problems in wh
one deals with thresholds or with an infinite number of no
linear terms, for instance, interface dynamics. Moreover,
DRG calculation performed is interesting because it provi
an example showing how important it is to know not only t
stable fixed points of a DRG transformation but also th
basins of attraction. It is remarkable that a simple symme
breaking can solve the problem of the inaccessibility of
attractors in parameter space.

The fact that the parameter that breaks the symmetry
termines the behavior in the hydrodynamic limit is difficu
to understand and we believe that it is an artificiality intr
duced in the calculation by the truncation in the couplin
constant expansion. We expect that higher orders in this
pansion will give a behavior independent of theK value.
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APPENDIX

Here we present further details about the derivation
Eqs. ~27!, which give the transformation of the paramete
after the first step of the DRG. Our starting points are E
~21! and ~25!, i.e., the equations forE(kW ,v) and

^E(kW ,v)E(kW8,v8)&. As we have already mentioned, the
equations are only defined for 0,k,L. The DRG procedure
consists in splitting the momentum space into two shells:
inner one, with 0,k,Le2 l , and an outer one, with
Le2 l,k,L. Then the magnitudes that depend onkW , like
the energyE, split as

E~kW ,v!5E,~kW ,v!1E.~kW ,v!

5E~kW ,v!Q~Le2 l2k!1E~kW ,v!Q~k2Le2 l !, ~A1!

whereQ(x) is again the Heaviside step function. This equ
ity definesE,(kW ,v) as the corresponding part of the ener
in the inner shell, whereasE.(kW ,v) is the same, but define
in the outer shell. This separation also holds for the b
propagatorG0 and the noiseh.
in
ns

s

r
-
-

o
all
e

-
e
s

r
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e

e-
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,

h

f

.

n

-

e

The DRG procedure eliminates the modes of the out
shell, within the same philosophy as the Kadanoff transfo
mation in real space. Then one is only interested i
E,(kW ,v) and ^E,(kW ,v)E,(kW8,v8)&, whose equations turn
out to be equivalent to Eqs.~21! and~25!, but with additional
terms due to the coupling between the two shells, via th
convolution products. The fact thatE.(kW ,v) appears in the
inner-shell equations allows a perturbative expansion in th
form E.(kW ,v)5G0

.(kW ,v)h.(kW ,v)1••• @using the equiva-
lent of Eq.~21!, but in the outer shell#. Then the noise in the
outer shell enters into the equation forE,(kW ,v). A similar
perturbative expansion is done for^E,(kW ,v)E,(kW8,v8)&.
By averaging overh.(kW ,v), the contribution of the fast
modes is eliminated from the inner shell. This is done up t
one-loop order in the perturbative expansion, that is, the low
est order in the intensity of the noiseG, which implies that it
has to be small enough. This tedious calculation becom
more appealing using the diagrams of Fig. 1 instead of th
corresponding equations. After this process, the relevant d
grams that survive the averaging are shown in Fig. 2.

As an example let us consider one of them, shown in Fi
6 and denoted byV(kW ,v):

V~kW ,v!5K 2l2k
2

~2p!d11G0
,~kW ,v!E ddq dVG0

.~kW2qW ,v2V!

3G0
.~qW ,V!h.~qW ,V!

2l2~kW2qW !2

~2p!d11

3E ddq8dV8G0
.~kW2qW 2q8W ,v2V2V8!

3E,~q8W ,V8!
2l2~kW2qW 2q8W !2

~2p!d11

3E ddq9dV9G0
.~kW2qW 2q8W2q9W ,v2V2V8

2V9!h.~kW2qW 2q8W2q9W ,v2V2V82V9!

3E,~q9W ,V9!L
.

, ~A2!

where the symbol̂ &. stands for an average over the oute
shell. Using the noise correlation given by Eq.~26!, we can
integrate overV, V9, andq9W , and then we have

FIG. 6. Diagram computed in the Appendix as an example. Th
angular brackets stand for an average over the outer shell.
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V~kW ,v!52
2l2

3G

~2p!2d11 k
2G0

,~kW ,v!E ddq8dV8

3E,~q8W ,V8!E,~kW2q8W ,v2V8!E ddq

3G0
.~kW2qW ,v!G0

.~qW ,0!~kW2qW !2

3G0
.~kW2qW 2q8W ,v2V8!~kW2qW 2q8W !2G0

.~qW ,0!.

~A3!

As the bare propagator is a known function, given by E
~23!, we are also able to perform the integral overqW , that is,

E ddq@ #5E ddq G0
.~kW2qW ,v!G0

.2~qW ,0!~kW2qW !2

3G0
.~kW2qW 2q8W ,v2V8!~kW2qW 2q8W !2.

~A4!

This integral is a function ofkW ,v,q8W , andV8. However, we
are going to evaluate it in the hydrodynamic limit by takin
kW ,q8W→0 andv,V8→0. Then

E ddq@ #5E ddqq4G0
.2~2qW ,0!G0

.2~qW ,0!

5
Sd
D4E

Le2 l

L

qd25dq5
Sd
D4

Ld24

d24
~12e2 l ~d24!!.

~A5!

It is easy to check that this result is also valid ford54. We
have used the explicit form of the bare propagator~23! and
also thatddq5Sdq

d21dq, with Sd the complete solid angle
in d dimensions, that is, the area of a unit (d) sphere. Then,
by making use of Eq.~28!, we obtain

E ddq@ #5
~2p!dI d~ l !

2D4 , ~A6!

and substituting into Eq.~A3!,

V~kW→0,v→0!→2
l2k

2

~2p!d11G0
,~kW ,v!

3~E,*E,!~kW ,v!I d~ l !
l2
2G

D4 . ~A7!

It is clear from Fig. 2 that after the first step of the DR
we have the same diagrams as at the beginning~Fig. 1!, but
defined only in the inner shell, plus many diagrams of
same type as the one in Fig. 6. These diagrams, which
tain integrals over the outer shell, renormalize the other d
grams that are only defined in the inner shell. For instanc
we consider the diagram
.

e
n-
-
if

52
l2k

2

~2p!d11G0
,~kW ,v!~E,*E,!~kW ,v! ~A8!

and compare it with Eq.~A7!, we observe only an additiona
term I d( l )l2

2G/D4 that comes from the outer-shell integr
tion. So the diagram shown in Fig. 6 contributes to the ren
malization of Eq.~A8!, that is, it renormalizes the couplin
constantl2. As Fig. 2~a! shows, the diagram in Fig. 6 ap
pears eight times in the perturbative expansion and the
l2, after the first step of the transformation, will be modifie
by

l2→l2S 118I d~ l !
l2
2G

D4 1••• D . ~A9!

In the same way one can perform the outer-shell integ
of the rest of diagrams in Fig. 2~a!. A general result for its
contribution to the renormalization of any coupling consta
ln or to the diffusion coefficientD ~which will be referred to
here also as2l1) is given by

~21!v21I d~ l !
G

Dv11

)
m51

v

lb~m!

lB
, ~A10!

wherev is the number of vertices each diagram has,@3 for
our example~since the dashed line in Fig. 6 forms a tr
angle!#, b(m) is the number of branches of themth vertex~2
for each one in the example!, and B is the number of
branches of the diagram that is renormalized~2 in the ex-
ample! and fulfills B5(m51

v b(m)2v21. Note that the
magnitude in Eq.~A10! is dimensionless. Using this equa
tion and Fig. 2~a! the derivation of Eqs.~27b!–~27d! is then
straightforward.

For the renormalization of the intensity of the noiseG we
have only one diagram, the dashed one in Fig. 2~b!. It is
immediate to see that the integral over the outer shell~the
value does not matter! is multiplied by a factork2k82. Then

G→GS 11Ak2k82
l2
2G

D4 1••• D , ~A11!

whereA is simply a numeric factor, and hence, in the hydr
dynamic limit and up to one-loop order, the intensity of t
noise is not renormalized after the first step of the DRG,
Eq. ~27a! states.
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