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Abstract: In this work we present a quantum algorithm for exact string matching that relies on
Grover’s algorithm. Grover’s algorithm, commonly used for unsorted data search, can be adapted to
solve the problem and find a pattern’s location within a string. This work contains the demonstration
of Grover’s algorithm for one and multiple target. It also presents the principles of quantum string
matching, how to tackle this type of problem using Grover’s algorithm and the detailed steps to
construct the query. The quantum string matching algorithm is then implemented in Qibo, an
open-source full stack API for quantum simulation and quantum hardware control. We explicitly
expose an example for a string of length N = 8 and a pattern of length M = 2.

I. INTRODUCTION

String search in databases is a widely used resource
these days and can be applied to many fields such as
bioinformatics and DNA sequencing, spelling checking,
plagiarism detection among others. It consists in finding
the location of a pattern of length M within a longer
string of length N such that M ≤ N . Usually, the string
length is very large and the pattern is not frequent in
the text, so it involves large time complexity to find the
position where the match occurs.

Kunth-Morris-Pratt and Boyer Moore algorithms [1]
are the most common classical algorithms used for ex-
act string matching. They check the characters from
left to right until there is a match, thus, they will re-
quire at worst a processing time of O(N +M). In this
new era, where the quantum computation paradigm is in
the ascendant, many problems that until now had been
addressed with classical algorithms are being solved us-
ing quantum algorithms in order to reduce the number
of queries. With the concern of improving the running
time, we shall here explore the possibility to tackle the
string matching problem using a quantum computer that
takes advantage of quantum mechanics laws such as su-
perposition, entanglement, and interference, to perform
calculations.

String matching problem can be reformulated as a
problem to search for the solution (the position in the
string that matches the target) in a general database
formed by all string positions.The best-known quantum
algorithm for unsorted data search was proposed by Lov
K. Grover in 1996 and offers a quadratic speed-up in
query complexity O(

√
N) [2]. The strength of this algo-

rithm lies within Grover’s oracle which is able to find if
the solution is in the given database by employing reflec-
tion (a phase flip of eiπ) to mark the target. The diffusion
operator, which is the second component of Grover’s al-
gorithm, is based on amplitude amplification, a method
that provides to measure the solution with the highest
probability among all the other elements’ probabilities.

The motivation of this work is to demonstrate and ex-

tend the method used by P.Mateus and Y.Omar in [3] for
quantum pattern matching. With the purpose of under-
standing the principles of Grover’s algorithm in-depth,
we will construct the query function for this type of prob-
lem and the diffusion operator. The number of qubits
needed to solve the string matching problem escalates as
N + M + s · M , with s = ⌈log2N −M⌉ to define the
qubits needed to represent each index.
The work is structured as follows. Section II is de-

voted to explaining Grover’s algorithm for one and mul-
tiple targets and the optimal number of iterations needed
to find the target state with the highest probability. In
section III, we introduce the quantum string matching
algorithm, the detailed steps to construct the oracle and
the diffusion operator. In the next section, we imple-
ment the full quantum algorithm, using quantum logic
gates and in section IV we show and discuss the results
obtained for general quantum string search, using N = 8
and M = 2. Finally, we present the main conclusions
based on the results obtained.

II. GROVER’S ALGORITHM

In this section, we present a general version of Grover’s
algorithm for finding one and multiple target states on
an unsorted database following Ref. [4].
Let us consider a Hilbert subspace of dimension N =

2n, where n is the number of qubits. From the possible 2n

states, assume |w⟩ is the one that needs to be found. The
algorithm will act as follows. It starts with the uniform
superposition of all possible basis states:

|ψ0⟩ =
1√
N

N−1∑
x=0

|x⟩, (1)

where |w⟩ will be one of them. We assume that these
computational basis states are orthogonal, implying that
⟨w′|w⟩ = 0 if w′ ̸= w and ⟨w′|w⟩ = 1 if w′ = w. In the
beginning we don’t know that |w⟩ is the solution so the
probabilities to measure any state of this basis will be
equal for all of them.
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Grover’s relies on an oracle, a unitary operation that
marks those states that represent the solution of the
problem. This oracle is applied after the superposition
and performs a reflection of |w⟩ as:

O = I − 2|w⟩⟨w|, (2)

which acts like:{
O|x⟩ = −|x⟩ for x = w
O|x⟩ = |x⟩ for x ̸= w

Notice that, the states still have the same probabil-
ity, we only have performed a reflection. The state after
applying the oracle becomes:

|ψ⟩ = O|ψ⟩ = (I − 2|w⟩⟨w|) |ψ⟩ = |ψ⟩ − 2√
N

|w⟩. (3)

This oracle is specific for every computational problem
and its explicit form requires to be found for each case.

After the reflection operator we apply the diffusion op-
erator, also named the amplification operator. It per-
forms a reflection about the average amplitude,

H⊗n(2|0⟩⟨0| − I)H⊗n = 2|ψ⟩⟨ψ| − I. (4)

Applying it to the resulting state from Eq.(3), it be-
comes

(2|s⟩⟨s| − I) |s′⟩ = 1√
N3

(N − 4)
∑
x ̸=w

|x⟩+ (3N − 4)|w⟩

 .

(5)

The coefficient of |w⟩ is greater than the other states from
the basis, which means that the probability of measuring
|w⟩ will be greater than the others. In particular, the
probability becomes

P (|w⟩) =
(
3N − 4

N
√
N

)2

. (6)

This algorithm can be extrapolated to search for more
than one element of a list. Considering that the num-
ber of solutions is M, the space, for this case, would be
spanned by the following orthogonal vectors:

|α⟩ = 1√
N −M

∑
x′′

|x⟩ and |β⟩ = 1√
M

∑
x′

|x⟩,

where x′ are all the states x that are solution of the prob-
lem, and x′′ the rest.

Proceeding in the same way as before, the target ele-
ments would be found with a probability of

P (|w⟩) = 1

N

(
3− 4M

N

)2

. (7)

The optimal number of iterations to measure the target
state with the highest probability can be computed by

considering the two orthogonal vectors used before: |α⟩
and |β⟩. The initial state |ψ⟩ can also be expressed as:

|ψ0⟩ = cos
θ

2
|α⟩+ sin

θ

2
|β⟩, (8)

with cos θ
2 =

√
N−M

N and sin θ
2 =

√
M
N . If we apply

Grover’s iterator, G = (2|ψ⟩⟨ψ|−I)O, k times to |ψ⟩, the
wave function results into the following superposition:

Gk|ψ0⟩ = cos
2k + 1

2
θ|α⟩+ sin

2k + 1

2
θ|β⟩. (9)

We denote the optimal number of iterations as:

R = CI

(
arcsin

√
M/N

θ

)
, (10)

where CI stands for the closest integer to its argument. If

M ≪ N , θ ≈ sin θ ≈ 2
√

M
N . The maximum amplitude of

the target is obtained when the rotation angle is: θmax =
π
2 , hence, (2k+1)

√
M
N ≤ π

2 . Considering the Taylor series

of arcsinx ≃ x+O(x3) when N ≫M , the relation found
is

R ≤

⌈
π

4

√
N

M

⌉
. (11)

III. QUANTUM STRING MATCHING

The problem of finding the occurrence of a pattern
within another string can be solved using Grover’s algo-
rithm, as it is presented in [3].
Let us assume that we want to find where the pattern

|p⟩ of size M occurs within the string |w⟩ of size N. To
return the position |i⟩ ∈ N we have to encode it in a
unit vector of a Hilbert subspace of dimension N: |i⟩ =
{|1⟩, ..., |N⟩}. The second match will have to occur just
after the first one and so on as |i⟩⊗|i+1⟩⊗...|N−M+1⟩.
Consequently, the initial state for the indexes set consists
of a uniform superposition of all the possible solutions
expressed as

|ψ0⟩ =
1√

N −M + 1

N−M+1∑
i=0

(|i⟩⊗|i+1⟩⊗...⊗|i+M−1⟩).

(12)
We will use a decimal number to represent the index loca-
tion, which at the same time, can be expressed in binary.
Each zero and one of these binary numbers will be a qubit
in that state. For instance, the state |i⟩ = |7⟩ represents
the position 7 within the string |w⟩ which in binary be-
comes |111⟩. The minimum number of bits needed to
represent each index is given by s = ⌈log2N −M⌉. If
the pattern had more characters we should add s qubits
for each extra digit of the pattern. Thus, the total circuit
qubits will escalate as N +M + s ·M .
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A. The Oracle

Then, we need to implement Grover’s oracle. From
now on, the oracle will be expressed as Uσ to be con-
sistent with expressions in [3]. Thus, σ represents every
pattern’s symbol and we can express the set of σ’s as
Σ, which is named the alphabet of the problem. In our
case, the pattern will be in binary so σ = 0 or σ = 1 and
Σ = {0, 1}.

The oracle will mark the state when a match occurs.
Hence, the oracle will take the first string character and
identify if there is a match with the pattern’s symbol. If
they are equal, the state corresponding to the first index
will be flipped, otherwise, the oracle will leave the state
unchanged. Then, the following string character will be
compared with the symbol and the second index state will
be flipped if they match. At the end of this process, the
initial state from Eq.(12) will have some states marked
corresponding to the locations where a string character
has matched the pattern’s symbol. More formally, we
can express this oracle as

Uσ(|i⟩ ⊗ |i+ 1⟩) = (−1)fσ(i)(|i⟩ ⊗ |i+ 1⟩), (13)

with, fσ(i) = 1 if the i-th character of |w⟩ is σ and fσ(i) =
0 otherwise. The oracle for each pattern’s symbol needs
to be applied as many times as the symbol occurs in the
pattern as

|ψ⟩ =
∏

σ∈|p⟩

Uσ|ψ0⟩. (14)

For example, if |p⟩ = |0110⟩ then, |ψ⟩ = U0U1U1U0|ψ0⟩.
The next step is to amplify the states that are solution

using the diffusion operator as shown in Eq.(4), where

|ψ⟩ =
∑N−M+1

i=0
1√
N
|i⟩ and I is the identity operator of

dimension N −M + 1.

B. Example, string with N = 8 and pattern M = 2

Let us assume that we are given a string |w⟩ =
|11100000⟩ of length N = 8 and we need to find the
location of a pattern |p⟩ = |10⟩ of length M .

The initial state for this case will be

|ψ0⟩ =
1

2
√
2
(|0, 1⟩+ |1, 2⟩+ |2, 3⟩+ |3, 4⟩+ |4, 5⟩+

+ |5, 6⟩+ |6, 7⟩+ |7, 0⟩). (15)

To simplify the notation we have written the position
states |i⟩ ⊗ |j⟩ as |i, j⟩. Thus, the state |0, 1⟩ stands for
the pattern’s sub-string 11, |2, 3⟩ for 10 and so on. Notice
that we have used Periodic Boundary Conditions for con-
venience to use Hadamard gates to generate the initial
state.

As our pattern is |p⟩ = |10⟩, we will need to apply U1

and U0 once. Starting with the first symbol,

U1|ψ0⟩ =
1

2
√
2
(−|0, 1⟩ − |1, 2⟩ − |2, 3⟩+ |3, 4⟩+ |4, 5⟩+

+ |5, 6⟩+ |6, 7⟩+ |7, 0⟩), (16)

since the |1⟩ state appears in position 0, 1 and 2. Then,
after applying the oracle for the second symbol:

|ψ⟩ = U0U1|ψ0⟩ =
1

2
√
2
(−|0, 1⟩−|1, 2⟩+ |2, 3⟩−|3, 4⟩−

− |4, 5⟩ − |5, 6⟩ − |6, 7⟩+ |7, 0⟩). (17)

States in Eq.(17) that are positive should be the prob-
lem’s solutions. Although the state |2, 3⟩ has a positive
sign and corresponds to the target, the last state is not
the solution and it is also positive. This state has been
marked with neither of the oracles and when DN is ap-
plied we will measure this state with the same probability
as the solution. This problem can be solved by applying
the diffusion operator (Eq.(4)) right after every oracle.
After implementing the first oracle, the diffusion opera-
tor will amplify the first three states. Then, when the U0

is applied, the target state will be more amplified than
the others, since its amplitude was already greater.

IV. IMPLEMENTATION

In this section, we show the explicit implementation
of the algorithm. We have programmed this example
in Qibo [5], an open-source full stack API for quantum
simulation and quantum hardware control.

A. Circuit initialization

Initially, all the qubits will be set to |0⟩ except the
string and pattern symbols that are in the state 1 which
will be set to |1⟩. To create the initial state from Eq. (12)
we need to proceed as follows. Firstly we create the index

state
∑N−M+1

i=0 |i⟩ ⊗ |i⟩. To do so, we apply Hadamard
gates to the first set of index qubits. A Hadamard gate
is expressed with the following matrix,

H =
1√
2

[
1 1
1 −1

]
, (18)

and is used to create a superposition of all the states with
equal amplitude. Once the H gate is applied, the state
obtained is

|ψ⟩ = 1√
N −M + 1

N−M+1∑
i=0

(|i⟩+...+|i+M−1⟩)⊗|0⟩.⊗s·(M−1)

(19)
Then, we need to entangle the first set of qubits, s1,
that represents the position of the first symbol with the

Treball de Fi de Grau 3 Barcelona, June 2022



Application of Grover’s quantum algorithm for string matching Júlia Barberà Rodŕıguez

remaining sets of s = s2, s3, ...sM that represent the other
indexes using CX (CNOT) gate, which is given by

CX =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (20)

These gates rotate the target qubit if the control qubit is
at state |1⟩. The s1 qubits will act as control qubits and
the second set as targets as it is represented in Fig. 1.

The resultant state is
∑N−M+1

i=0 |i⟩ ⊗ |i⟩.
Finally, we need to increment by 1 the second state which
can be achieved by implementing a series of MCX gates
over more than one qubit (as demonstrated in [6]), rotat-
ing the target if the controls are in state |1⟩.
An example of the initialization circuit for N = 8 and

M = 2 is shown in Fig.1.

s1

H

H

H

s2

X X

X X

X X

FIG. 1: Initial circuit to create state |ψ0⟩ for N = 8
and M = 2 given by Eq.(12), using quantum gates. The
first set s1 represents the first string’s position and the
second set s2 encodes the second position. If the pattern
had more symbols, we should add as many s sets to the
circuit as extra pattern symbols.

B. Grover’s oracle: Uσ

The oracles will be built up using X gates and MCZ
gates which are represented by the following matrices:

X =

[
1 0
0 1

]
and MCZ =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · −1

 . (21)

If the pattern’s symbol is in |0⟩, X gates will be applied
before and after the control to perform the transforma-
tion if the qubit is in |0⟩. For every symbol of the pattern,
the oracle acts as follows:

1. Checks if the symbol matches every string character
using controls.

2. Applies X gates to every set of s qubits if their
qubits are in |0⟩, bringing them to the last entry of
a MCZ matrix.

3. MCZ gate is implemented to flip the target qubit
using as controls the character qubit, the symbol
qubit, and the first two qubits of s. The last qubit
of the set s is the target.

4. If all controls are in the same state, the index state
is marked (eiπ phase).

If we consider the first symbol, the first set of s qubits
will be used for the process. To check the second symbol,
we need to use the second set of s qubits and so on.

Considering an arbitrary string of length N = 6 and
a pattern |p⟩ = |10⟩ (M = 2), we present an example in
Fig.2 where we compare if the first symbol of the string
matches the first pattern’s symbol that is in the state |1⟩
and if the second string’s symbol is in the state |0⟩ as the
second pattern’s symbol.

|w⟩

X X

|p⟩
X X

s1

X X

X Z X

s2

X X

Z

FIG. 2: Part of the oracle’s circuit that compares the
first two symbols of the string |w⟩ with the two symbols
of the pattern |p⟩, using quantum gates with N = 6 and
|p⟩ = |10⟩ (M = 2). If the symbol of the pattern is in the
state |0⟩, we have to apply X gates before and after the
target to do the comparison.

C. Diffusion operator: DN

Once the oracle for the first symbol is applied, the algo-
rithm applies the diffusion operator to achieve a highest
amplitude for the future solution. This operator, repre-
sented by Eq.(4), can be expressed using H, X, and MCZ
gates as:

DN = H⊗s·M ·X⊗s·M ·MCZ ·X⊗s·M ·H⊗s·M . (22)

The H gates bring |ψ⟩ to |000⟩. Then, X⊗s·M ·MCZ ·
X⊗s·M performs the reflection and the H gates at the
end place the states to their original state.
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V. RESULTS AND DISCUSSION

We show here the examples using two different strings:
|w1⟩ = |11100000⟩ and |w2⟩ = |10001000⟩, and one pat-
tern: |p⟩ = |10⟩. Thus, N = 8, M = 2 and the total
number of qubits used is 16. Using nshots = 10000 we
obtain the probabilities shown in Fig.3.

|000> |001> |010> |011> |100> |101> |110> |111>
States
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|w2> = |10001000>   |p> = |10>

FIG. 3: Results obtained after implementing the
quantum algorithm using N = 8 and M = 2, for
|w1⟩ (upper panel) and |w2⟩ (lower panel). States in
orange represent the solutions, found with the highest
amplitude. The error bars are given by 1/

√
nshots.

For the first case, only one Grover’s iteration has been
required to find the solution with a maximum probabil-
ity of 0.19. Although the solution can be distinguished
from the other states, this value is not high enough and
we will only obtain the target 20% of the times we do the
measurement. For the second case, the pattern has been
found twice along the string using two iterations. Nev-
ertheless, the amplitudes are almost indistinguishable.
The inaccuracy of these results could be associated to
the fact that we are searching for one/two solutions of

length M = 2 within a string of length N = 8, therefore,
is not satisfied that N ≫ M . To solve this problem we
could use a larger string but this solution would involve
more qubits.

VI. CONCLUSIONS

In this work, we have implemented a quantum search
algorithm as proposed in [3] using Grover’s algorithm
and presented the detailed steps to construct our ora-
cle. We have shown the explicit gate construction and
programmed it using Qibo language for N = 8 and
M = 2. While the classical algorithm takes at worst
N+M queries to find the solution, the index location has
been found with only one/two queries using the quantum
algorithm. This shows an improvement in the running
time and the advantage of using a quantum algorithm
over a classical one. However, the string and pattern
length involve a limitation on the algorithm (N ≫ M)
as has been discussed in the previous section due to the
inaccurate results.
Some proposals to continue this work could be to

generalize this algorithm to the fourth dimension to
search for codons, tripletes of the nitrogenous basis let-
ters (A,C,G,U), in a DNA sequence. We could use
ququarts, qudits of dimesion 4, to solve the problem. For
this case, we should have to change the alphabet to Σ =
{A,C,G,U} with A = |0⟩, C = |1⟩, G = |2⟩, U = |3⟩ and
while the diffusion operator would remain unchanged, we
should adapt the oracle to operate on ququarts.

Code Availability

The tutorials for the Grover’s algorithm and quantum
search algorithm can be found at:

Github: juliabarbera/TFG-quantum-string-matching
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