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We have studied the relaxation dynamics of a dilute assembly of ferromagnetic particles in

suspension.

A formalism based on the Smoluchowski equation, describing the evolution of the

probability density for the directions of the magnetic moment and of the axis of easy magnetization
of the particles, has been developed. We compute the rotational viscosity from a Green-Kubo
formula and give an expresion for the relaxation time of the particles which comes from the dynamic
equations of the correlation functions. Concerning the relaxation time for the particles, our results
agree quite well with experiments performed on different samples of ferromagnetic particles for
which the magnetic energy, associated with the interaction between the magnetic moments and the
external field, or the energy of anisotropy plays a dominant role.

PACS number(s): 62.10.+s, 83.80.Gv, 75.50.Mm, 05.40.+j

I. INTRODUCTION

Systems of single-domain ferromagnetic particles im-
mersed in a solid or liquid phase exhibit a number of in-
teresting relaxation phenomena which have been the sub-
ject matter of many experimental and theoretical analy-
ses [1,2]. These phenomena are essential in the study of
the dynamics of these particles, and have a clear influence
when determining the transport coefficients; in particu-
lar, the effective viscosity. One of the main peculiarities
of these systems is that their properties are greatly influ-
enced by the presence of an external magnetic field. It
is precisely this fact which has been the basis of many
practical applications [3].

The rotational dynamics of a ferromagnetic particle
embedded in a solid or liquid phase is the result of the
competition of three orientational mechanisms related to
the external field, the axis of easy magnetization, and
Brownian motion, which acts only when the particle is
suspended in a fluid phase. That is, whereas the magnetic
moment of the ferromagnetic particle relaxes towards the
direction of the magnetic field, the axis of easy magne-
tization tends to be aligned with the magnetic moment,
thus giving rise to different coupled relaxation phenom-
ena. Until recently, the most frequent case that has been
studied in the literature deals with rigid dipoles [4], for
which the anisotropy energy is dominant due to the large
value of the anisotropy constant, and because the radius
of the particle usually exceeds a critical value. Under
these conditions, the relaxation of the axis of easy mag-
netization towards the magnetic moment is inhibited and
both vectors relax together. However, there are materi-
als for which the anisotropy energy may be compara-
ble to the energy associated with the interaction with
the magnetic field, or even smaller. Therefore a general
theory encompassing such a wide variety of situations
and accounting for experimental results should be devel-
oped. The presence of different relaxation mechanisms
has implications in the form of the effective viscosity of
the system, which exhibits significant corrections when
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compared to the viscosity of a suspension of nonmagnetic
particles of the same shape. Another point of interest is
the appearance of relaxation times which can be mea-
sured by means of birefringence experiments.

The purpose of this paper is to present a theory capa-
ble of giving expressions for the relevant transport coef-
ficients of the system and of the characteristic relaxation
times. We will focus on the general situation in which
the magnetic and anisotropy energies of the particles may
have arbitrary values. The formalism we have developed
is based on the linear response theory where the correla-
tion dynamics comes from a Smoluchowski equation. As
we will show throughout the paper, our results for the
relaxation time of the rotation of the particle agree quite
well with birefringence experiments.

We have distributed the paper in the following way:
in Sec. II, we establish basic equations describing the
dynamics of the degrees of freedom. Of particular in-
terest is the Smoluchowski equation for the probability
density which is given in a general case (for unspecified
values of the magnetic and anisotropy energies), and can
be compared to another one previously obtained from a
different theoretical method. In Sec. III we deal with
the calculation of the rotational viscosity using a Green-
Kubo equation proposed from the linear response theory.
This method leads to an expression for this transport co-
efficient which is studied in particular situations of in-
terest. Section IV is devoted to the calculation of the
relaxation time of the particles, considering the different
orientational mechanisms. We have compared our re-
sults to experiments done when the magnetic energy or
the energy of anisotropy are dominant, obtaining a good
agreement in both situations. Finally, in the last section
we summarize our main results.

II. COUPLED DYNAMICS
OF THE DEGREES OF FREEDOM

We consider a dilute suspension of spherical single-
domain ferromagnetic particles under the action of an
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external magnetic field. The energy of each particle is
the sum of two contributions. These contributions origi-
nate from the externally imposed magnetic field and the
presence of an axis of easy magnetization (for uniaxial
crystals). Its expression is given by
U=—m -H—-K,\V,(a R)?, (2.1)
where M = mof? is the magnetic moment of the particles,
with mo the magnetic moment strength, H is the exter-
nal magnetic field, K, is the first anisotropy constant (as-
sumed positive), V}, is the volume of one of these spheres,
and 7 is the unit vector along the direction of the axis of
easy magnetization for uniaxial magnetic crystals. It is
clear from Eq. (2.1) that in the general case where both
contributions may take arbitrary values, the relaxation
mechanisms of the degrees of freedom, R and 7, of the
ferromagnetic spheres in suspension are coupled.

The deterministic dynamics of R is governed by the
Landau-Gilbert equation [5], proposed to study the re-
laxation of the magnetic moments of magnetic particles
embedded in a solid matrix

@___7_03UX~ a dR

= ~xR— ——""xR.
dt moaR

mo di (2.2)

From this equation, one may identify the two mecha-
nisms responsible for the variation of R: the effective
field Hefy o —%, which causes a Larmor precessional

motion of R, and the mean field, Hy « ~%’}, which in-
troduces a damping due to the collisions of the electrons
determining the magnetic moment of the domain in a
metal. In Eq. (2.2), o is the gyromagnetic ratio for an
electron, and the quantity o plays the role of a damping
coefficient.

The Landau-Gilbert equation can be rewritten such
that

@ = —hR x 6[{
dt

(2.3)

with &y = mggﬁeff as the Larmor frequency of the pre-
cessional motion, and where g = 2[1 + (;2)?]7! and
h=2R01+ (;2-)?]7* [1]. This equation is valid in a sta-
tionary frame of reference. If the ferromagnetic particle
is rotating itself with the angular velocity 0, we must
modify Eq. (2.3) by adding the corresponding contribu-
tion coming from the rotation on its right hand side. One
then has

dR

= @+ Q) x R.

(2.4)

Furthermore, the dynamics of 7 follows from the kine-
matic relation

dn
dt

This expression can be rewritten as

=0 x (2.5)

dn

= (2.6)

1 _
:(d)’o+—r?z><H)xﬁ,
&

with &, = 8mnoa® being the rotational friction coefficient
of the particles; 7 is the viscosity of the carrier fluid, a is
the hydrodynamic radius of the particles, and & the vor-
ticity of the carrier fluid. One arrives at this expression
after using the deterministic part of the balance equation
for the total angular momentum

g _
Id+01

D e (B — o)+ x H+TB, (2.7)
provided that we neglect the term accounting for the in-
ertial effects and the term coming from the angular mo-
mentum of the electrons determining the magnetic mo-
ment of the particles. Here TB is the Brownian torque
acting on the particle [6].

The evolution of the probability density, ¥(y,t), with

vy = (ﬁ!, ), is governed by the Smoluchowski equation.

When Q) = 0, which corresponds to the case of particles
embedded in a solid matrix, the Smoluchowski equation
was deduced by Brown [7] from the Landau-Gilbert equa-
tion introducing a stochastic Langevin source. Shliomis
and co-workers [8] obtained this equation for a suspension
of rigid dipoles. If we define the dimensionless parame-
ters p = m"H and o = I—,f—‘;.ﬂ, comparing magnetic and
amsotropy energles to thermal energy, respectively, this
last situation corresponds to the limit o > u. Raikher
and Shliomis [9] also proposed the Smoluchowski equa-
tion for the opposite limit ¢ < u, in which the dipoles
are rapidly oriented towards the field direction. As re-
gards the general case for arbitrary values of the ratio
u/o, Shliomis and co-workers also deduced the appro-
priate Smoluchowski equation from a model similar to
the itinerant oscillator model [10-12]. In such a general
situation, the Smoluchowski equation is given by

oY o
Y_“ . (p
ot Oy (“"

o oU
ge-vG). e
where D and b are the diffusion and the mobility matri-
ces, respectively, related through the Einstein relation,
D = kpTb. Taking into account Egs. (2.4) and (2.6), we
can obtain the expressions for the mobility matrix and
after some mathematical transformations, we can rewrite
the Smoluchowski equation as

Y = - - - U
Fri D, (Rz+Ra)- (1/1(RR + Ra) T
. LU .
+(Rz+Ra)y mRp - | YRa7—= + Ry
kT

2 (@) — (Rg + Ra) - (So¥), (2.9)
where R; = 7 x B%l and R = Rx % are rotational op-
erators, D, = *2T is the Brownian rotational diffusion

coefficient, and bm = kpTh can be interpreted as the
diffusion coefficient of the magnetic moment inside the
particles. These diffusion coefficients are related to two
relaxation times involved in the Smoluchowski equation,
namely 7o = (2D,,) ! related to the decay of 77 towards
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the effective field, and the Brownian time 75 = (2D,)~1.
The Smoluchowski equation (2.9) agrees with the cor-
responding one obtained in Ref. [10] by using a model
similar to the itinerant oscillator model and will be used
in our subsequent analysis.

III. GREEN-KUBO FORMULA
FOR THE ROTATIONAL VISCOSITY

In this section, we will focus on the determination of
the rotational viscosity from the corresponding Green-
Kubo formula. This formula gives this transport coef-
ficient in terms of the correlation function of the axial
vector, II,(DG), related to the antisymmetric part of the
contribution of the particles to the pressure tensor [6],

1 (o]
= (@) (4)I1()
VEeT /0 dt(I1{?) ()T (0))

s (3.1)

where V is the volume of the system.
In Ref. [6], we obtained a relationship between the par-

ticle contribution to the pressure tensor, II,, and the ex-
ternal torque experienced by the particle during its mo-
tion. As a result, if we consider the magnetic field point-
ing towards the z direction, it is found that the rotational
viscosity can be finally rewritten as

T = g¢noDru2 /0°° dt(R4(t)R2(0)), (3:2)

with ¢ = %ﬁ'ﬁ being the volume fraction of particles.
To proceed further, we need to know the expression

for the correlation function appearing in Eq. (3.2). This

correlation function follows from the general prescription

(R4 (t)R(0)) = / dRdR'dnd?/ R, RL (R, 7, t; R, 7 ,0),
(3-3)

with 1/)(1%, 7, t; ﬁ',ﬁ’,O) being the joint probability,
which, in the most general case, is a function of both the
magnetic moment orientation R and the particle orien-
tation nn. For a Markov process, this probability satisfies
the same Smoluchowski equation as the one governing
the evolution of the conditional probability. From the
Smoluchowski equation (2.9) we then obtain the evolu-
tion equation for the correlation (R, (t)R.(0)),

1d
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B 3 B OR-0) = (14 52 ) {-2(R(0) . 0)
—u((ReR.)(£)Ra (0)))
+g—jza{<[nmm - R))(t) R+ (0))

~([Rz(7 - R)*|(t)R2(0))}, (3.4)
where for the sake of simplicity, we have used the short-
hand notation (---)(¢) to indicate that each component
of the unitary vectors R and 7 inside the brackets is a
function of time. At this point, it is interesting to realize
that the right hand side of Eq. (3.4) involves other un-
known correlation functions, whose evolution equations
also come from the Smoluchowski equation (2.9). Instead
of a closed equation, we then obtain a hierarchy of differ-
ential equations for the correlation functions. To arrive
at an explicit solution, we must introduce decoupling ap-
proximations, as is usually done when dealing with the
dynamics of complex systems [14] or with stochastic pro-
cesses [12]. In our problem, the underlying idea to carry
out the different decouplings comes from the approxima-
tion of statistical independency of the fluctuation dynam-
ics of the quantities which vanish at equilibrium, when
averaged, and those which are different from zero. An-
other aspect that should be kept in mind when perform-
ing such decouplings is the invariance under reflections of
the easy axis of magnetization, 7, from which we cannot
separate (7i---7) into odd powers of 7. As an example,
the correlation ((R.R.)(t)R.(0)) may be approximated
by

(ReRo) (O Re(0) ~ (Re(ORa(O)Roeg:  (3.5)
This approximation may be justified from the fact
that in equilibrium both quantities are not correlated,
((RsR:))eq = 0; moreover, (R,)eq # 0, whereas (Rg)eq =
0. After perturbing the system we will assume that these
quantities remain uncorrelated. Furthermore, lineariza-
tion in time has been taken into account and conse-
quently (R,(t)) ~ (R.)eq is approximated to its equi-
librium value for small perturbations. In the Appendix,
we indicate all of these decouplings, as well as the appro-
priate linearizations. )

The quantity ([ns(7 - R)](t)R:(0)), appearing in
Eq. (3.4), cannot be directly decoupled and, therefore,
must be studied separately. Its corresponding evolution
equation can also be obtained from the Smoluchowski
equation (2.9). One has

D, q = R)](t)Rz(0)) = —u([Re (s (7 - R))](t)Ro(0)) — 2([ns (2 - R))(¢) R (0))

D

+

~2([na (- R)](t) Rz (0)) + 20 ({ns (7~ R)[1 — (7 - I?)z]}(t)Rm(O)))-

D. (u((nmnz)(t)Rx(OD = p{[na (Ra (7 - R))](t) R (0))

(3.6)

Following the same line of reasoning, we decouple some of the quantities appearing in this equation. However, the
correlation ((ngzn.)(t)R,(0)) cannot be approximated in the same way as we have done with the other quantities.

Thus we must also consider its dynamic equation
1 d (
D, dt

(nenz)(t)Re(0)) = p{[na (A - R)](t)Ra(0)) — u{(n?Rz)(t) Ra(0))
—p{(nznzR;)(t) R (0)) — 6((nzn.)(t)Rz(0)),

(3.7)
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whose correlations can be decoupled as indicated in the
Appendix.

The procedure that has been followed enables us to
write a closed system of just three differential equa-
tions for the correlation functions (R, (t)R:(0)), {[n.(7 -
R)|(t)R.(0)), and ((nzn.)(t)R(0)). These are the only
independent quantities in our approximation to the prob-
lem. After Laplace transforming, we can write the set of
differential equations (3.4), (3.6), and (3.7) in the follow-
ing way:

A-R=D'R°, (3.8)

where the components of the vector R = (R1,R2,R3)
are the three Laplace transforms of (R, (t)R.(0)), ([nm (-
R)](t)R=(0 )) and ((ngn,)(t)Rx(0)), respectively. R® =
(R9,RY,RY) is a vector whose components are the initial
values of these correlation functions
= ® ) =24, (39)

J

o + 2+ pl(p) + B2+ pl(n) + 20Q(0)]
HL(p)Q(o)
L)1 -3Q(0)] + 1Q(0)

(Aij) =
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£(

R = (el RO = “20Q(0),  (310)

RS = (neRans) O)) = 5 (1- 31)) (3(0) - 1),

(3.11)
where E(/l.) = cothu — % is the Langevin function and
Qo) = (fErfz(f)

determined after averaging with the equilibrium distri-
bution function

1). These initial values are

Ty = i Pla
€q = 875/2 sinh u Er fi(4/o) €XplH
[z Vo

R-H)+o(h-R)? .

(3.12)
The matrix 4 = (A4;;) is found to be
—28m0 0
b2t B a) + (gl — 9} B
—n B + 6+ pul(n)
(3.13)

whose diagonal elements characterize the decay of each correlation function in the absence of coupled dynamics, and
whose nondiagonal elements describe the coupling between the relaxation dynamics of such correlations.

The Laplace transform Rq(s) of the correlation (R, (t)R,

(0)) is defined as

Ra(s) = / dte™**(R.(t) Ra (0)). (3.14)
0
From Eq. (3.2), we then conclude that
—§¢D 2 lim R1(s) 3.15
e = 5¢noDrp” lim R (s). (3.15)
Consequently, after using Cramers’s rule in Eq. (3.8) the rotational viscosity of the suspension is given by
M _ 4% lim (A22Ass — A23A32)RY — A13A433RI + A12A423R Y , (3.16)
Tlsat s—0 ’( lJ)l

with 7,4t = 3/2m0¢ as the saturation value of the rota-
tional viscosity and |(A;;)| the determinant of the matrix.

We have obtained an analytic expression for the rota-
tional viscosity of a magnetic fluid in the general case
where p/0 may take arbitrary values and the orientation
of the vectors R and # is random. The different terms in
Eq. (3.16) are the matrix elements (A;;) characterizing
the coupled relaxation dynamics of the three independent
correlation functions (R, (t)R.(0)), ([n(7- R)](t)R(0)),
and ((nyn.)(t)R,(0)). Thus the rotational viscosity de-
pends on these three correlation functions due to their
coupled dynamics and, as we expected, it is not only a
function of the parameters p and o, but also of the ra-
tio D, /D,. This last dependence comes from the fact
that any departure of the magnetic moment of the parti-

[

cle from the equilibrium orientation is accompanied by a
precession of the vector R with the corresponding dissi-
pation of energy, as well as the dissipation due to the ro-
tation of the particle in the viscous fluid. Previously, we
have indicated that the parameter D,, = kgTh could be
interpreted as a diffusion coefficient of the magnetic mo-
ment inside each particle. Thus, for a given value of the
Brownian rotational diffusion coefficient D,, the smaller
the value of D,, the greater is the dissipation of energy
and consequently the rotational viscosity increases. This
is exactly what we observe in Figs. 1 and 2.

Moreover, from Eq. (3.16) we can rederive the rota-
tional viscosity of a magnetic fluid consisting of what
is commonly named rigid dipoles [4,6,8,13], for which
u <K o and D,, = 0. It turns out to be
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7 _ p—tanhp
Nsat um+ ta«nhﬂ )

(3.17)

In Ref. [6], we obtained this same result after perform-
ing just one decoupling, following the same criteria, in a
much simpler equation. But, exactly the same result was
derived phenomenologically by Shliomis [13]. He com-
pared this result to an experiment measuring the vis-
cosity of the magnetic fluid [15]. The result reproduced
these experimental data, and consequently this formula
has been extensively used in the literature. Later on,
Martsenyuk et al. [8] tried to solve this simple case using
the Smoluchowski equation formalism. They closed the
infinite system of coupled equations with an effective-field
approximation, and, although the result they obtained
was close to Eq. (3.17), the phenomenological approach
reproduced the experiments better. Based on this good
result, we have solved this general situation with two de-
grees of freedom whose dynamics is coupled, following
the same type of arguments. To our knowledge, there
are no other theories providing an analytic expression
for the viscosity, covering the whole range of values of
the parameters p and o.

In Fig. 1, we represent the rotational viscosity versus
the parameter p for the rigid-dipole limit, for different
values of the parameters o and D,,,/D,.. At this point, it
is interesting to discuss some limiting cases of Eq. (3.16)
which have also been considered in the literature, specif-
ically in Ref. [10]. For p <« 1, Eq. (3.16) reduces to

D _ %ZF(U), (3.18)

Tsat

where the function F'(o) has been defined as
L+ 38 (gl — 1) +20Q(0)]
{1+ 221+ 0Q(0)}1 + B2 (55 — V)]
(3.19)

i

F(o)

From expression (3.18), we conclude that for any value
of the parameter o, the rotational viscosity tends to zero
as a second order power of the magnetic field strength.
In particular, we can restrict ourselves to the cases where
o — 0 and 0 — oo. In these limits, we obtain

2
T P 1
=5 __ - (3.20)
Nsat 6 (1 + Dﬁr')
and
2
n"rt = %, (3.21)

respectively. These values agree quite well with the cor-
responding expressions given in Ref. [10], and with the
results collected in Refs. [6,8], for the rigid-dipole condi-
tions (o — 00).

In addition, from Fig. 1, we observe that the initial
slope of these curves depends on the ratio D,,/D,, in
such a way that the greater the ratio D,, /D, the greater
the value of u until reaching the saturation limit corre-
sponding to a given value of o.
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1.0 T T T

n/m,

FIG. 1. Reduced rotational viscosity versus the parameter
u for different values of the ratio Dy, /D, and of the anisotropy
parameter, as indicated in the plot. The dashed line corre-
sponds to the rigid-dipole limit.

Regarding the limit g > 1, Eq. (3.16) can also be
studied when 0 — 0 and 0 — co. We obtain
Mr 1

A= 3.22
TMsat (1 + %ﬁ") ( )

and
T
TMsat

=1, (3.23)
respectively, which also coincide with the results given in
Ref. [10]. Even in this case, with x> 1, if o takes moder-
ate or small values, the rotational viscosity does not reach
its saturation value any longer. In particular, if o — 0,

1.0 T T T

D, /D=1 p=100

8 -
0 D,/D=10 p=100
0.6

n/n,,

0.4

D,/D=10 p=10

0.2

0.0 1 1 1
0 S 10 15 20

(¢

FIG. 2. Rotational viscosity versus the parameter o for
different values of the ratio D,,/D, and of the parameter u.



this saturation value depends on the ratio D,,/D, as we
have pointed out in Eq. (3.22). That is, the dissipation
not only depends on the solvent viscosity, but also on the
damping constant a and the gyromagnetic factor vo. Ad-
ditionally, the rotational viscosity increases with o until
it reaches its saturation value when o — oo.

The behavior of 7, /n, as a function of o, and for differ-
ent values of p, is depicted in Fig. 2, from which we can
corroborate the main features of our previous analysis.
The ratio D,, /D, has been obtained after considering the
following values of the involved quantities: a/mg ~ 1072,
Yo ~ 107 G71 571, M, ~ 10% G, o ~ 1072 g/cm s, and
the fact that the magnetic volume is almost the same as
the hydrodynamic volume of the particles, with a = 10—¢
cm.

An alternative procedure used to calculate the viscos-
ity involves a rheological equation of state for the pres-
sure tensor. In this way, it is also possible to obtain
exactly the same expression for the rotational viscosity
(3.16), but now in the presence of a linear vorticity field
in stationary conditions.

IV. RELAXATION TIMES.
COMPARISON WITH EXPERIMENTS

The relaxation time associated with the orientation
mechanism of the particles, 7, has been measured re-
cently by Bacri et al. [16,17]. This quantity comes from
the relaxation time of the light intensity collected in a
photocell after crossing the sample in the presence of an
external magnetic field, and when applying additional
pulses of magnetic field to perturb the sample. These
experiments permit us to distinguish the different relax-
ation regimes occurring when the size and the nature
of the magnetic material of the particles are modified.
These regimes are determined by the parameters p and o,
comparing magnetic and anisotropy energies with ther-
mal energy, respectively.

In the experiments, it was observed that ferrofluid par-

ticles, prevented from moving by being quenched in a
|

1 d{(n=n,)(t)(n=n)(0))
D, dt
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tight gel network, do not exhibit birefringence although
they still show magnetization. Consequently, the bire-
fringence of the solution is closely related to a mechanical
alignment of the particles along the equilibrium orienta-
tion.

In Refs. [6,13,18], two opposite limits were considered,
one where o > p (rigid-dipole approximation) and an-
other for which ¢ <« pu. For the former limit, the relax-
ation time for the perpendicular component of the mag-
netization is discovered to be [6,13]

M2+ pl(pw)]

which, in the case when pg — oo, tends to ﬂ =
In the latter case, relaxation occurs in two steps, ﬁrst
a quick relaxation of R towards H, then a mechani-
cal rotation of the particle to the equilibrium orienta-
tion with the easy axis of magnetization parallel to R
and H. Under these conditions, the characteristic relax-
ation time could be obtained from the equation of mo-
tion of whatever component of the correlation function
((Rinz)(t)(f1n.)(0)) [18]. Performing the correspond-
ing decouplings in its evolution equation, we obtain the
relaxation time

T = (2D,)™ ! (U+ -ﬁ)—l =78 <<7+ 5(1‘0‘))—1’

(4.2)

T=D_ (4.1)

2'rB

which for o — oo tends to 2D1 S =2,

In the present analysis, we "consider the less stringent
case for which the ratio u/o may take arbitrary values.
Consequently, both parameters p and o are expected to
determine the relaxation time associated with the rota-
tional relaxation of the particles.

As for the limit ¢ <« p discussed previously, the ap-
propriate quantity for describing this mechanical relax-
ational motion is again a component of the correlation
function {(An;)(t)(”1n.)(0)). From the Smoluchowski
equation, we obtain its dynamic equation

= w{[ns (7 - R))(2)(nons) (0)) — u{(n3Rz)(8)(noms)(0))
—p{(nen; R;)(t)(n2n:)(0)) — 6{(nzn.)(t)(nen:)(0))-

(4.3)

Proceeding along the same lines as in the preceding section, we arrive at a closed set of three differential equations
for the correlation functions (R, (t)(n.n.)(0)), ([nm(n R)|(t)(nen.)(0)), and ((nyn.)(t)(nyn.)(0)). It is worthwhile
pointing out that the quantities at time ¢ appearing in the three independent correlation functions are the same as in
the preceding section. For the sake of simplicity, we will introduce the vector é = (@1, Q2, Q3), whose components
are the Laplace transforms of (R (t)(nzn.)(0)), ([nz (7 - R)](t)(nzn:)(0)), and ((nyn.)(t)(nsn.)(0)), respectively; and
the vector G° = (Q9, Q3, QY) representing the initial values of these correlation functions. These initial values can be
calculated with the equilibrium probability density at ¢ = 0. The system of differential equations can be written in
matrix notation as

A'Q:D:léov

with A the coefficient matrix (3.13). We are particularly interested in the relaxation dynamics of ((nzn.)(t)(nzn.)(0)).
From Eq. (4.4), we obtain its Laplace transform

_1(A21 423 — A31A42,)Q% +

(4.4)

(A12A31 — A11A23) Q3 + (A11A22 — A21 A12) Q)

() =D [] ’

(4.5)
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from which we can identify the relaxation time we are
interested in,

_ py—1r1: Qs(s)
TR =D, limy 05(0)

(4.6)

In Fig. 3, we have represented the relaxation time 7p
versus p for different ferromagnetic samples, but, in or-
der to compare with experimental data from Ref. [16],
we have also represented the relaxation time 7p versus
H~! in Fig. 4. The data correspond to two samples
of magnetic particles of the same mean size but made
of different magnetic materials, namely, CoFe;O,4 and
v — FezO3. The Co-ferrite sample has an anisotropy
constant K = 2 x 10° J/m?3, and the saturation value
of the magnetization is M, =~ 250 kA/m. For the
maghemite, the anisotropy constant is K = 4 x 103 J/m?
and M, ~ 270 kA/m. With these values, the Co-ferrite
sample can be considered as a rigid dipole (¢ > p). On
the other hand, the maghemite particles are such that
u > o. Regarding the values of the anisotropy constant
o and the ratio mo/kgT = oM,V /kpT , we have taken
o ~ 15, mo/kpT ~ 2.8 x 107% m/A for the maghemite
and o ~ 565, mo/kgT ~ 1.8 x 107* m/A for the Co-
ferrite. For both samples, the values of the remaining
quantities are 7 ~ 4.5 ms and D,,/D, ~ 1.

As it was observed in the experiments for the Co-ferrite
sample, Tp tends to zero when H — oco. Both R and
7 quickly relax towards the field direction due to the
rigidity of the dipoles. For the maghemite sample 7g
tends to a fixed, nonvanishing value (~ 0.3), which can
also be obtained from Eq. (4.2). Under these particular
conditions, the magnetic moments rapidly relax towards
the field direction, but due to the moderate value of o,
the relaxation of the easy axis of magnetization, 7, or in
other words, the mechanical relaxation of the particles,
takes place in a finite period of time.

Concerning the behavior of g when H — 0, we ob-

0 20 40 60 80 100

FIG. 3. Relaxation time of the particles as a function of u
for the Co-ferrite and maghemite samples.
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FIG. 4. Relaxation time of the particles as a function of
H ™! for the Co-ferrite and maghemite samples. Experimental
data of Ref. [16] correspond to the dots. The dashed line
corresponds to the limit x> 1 for the Co-ferrite, Ref. [19].

serve that 7p — & = T2 independently of the value
of the parameter o. This time corresponds to the well-
known characteristic relaxation time of the correlations
of the components of the second order tensor (A7 — %)
for a purely diffusive process [14].

In Fig. 4 we have also represented the extrapolation of
the relaxation time coming from rather simple consider-
ations made in Ref. [19] for the rigid-dipole limit under
the action of a very large external magnetic field. Our
results agree with the asymptotic behavior in its validity
range, but at the same time, they show the deviations
at intermediate and low magnetic field. These simple
arguments can also be proposed for the opposite case
u > o reproducing the asymptotic value 7 ~ 0.3 for
the maghemite sample, but they are not able to explain
the p dependence of the relaxation time for this material.

V. CONCLUSIONS

In this paper, we have presented a general formalism to
study the relaxation dynamics of ferromagnetic particles
with the main purpose of providing explicit expressions
for the viscosity and relaxation times which can be ap-
plied to different situations ranging from the rigid-dipole
limit to the limit where the anisotropy energy is domi-
nant. We have obtained the Smoluchowski equation de-
scribing the evolution of the probability density of the
relevant degrees of freedom of the particles. This equa-
tion allows us to obtain a hierarchy of dynamic equations
for the different correlation functions that can be closed
using appropriate decoupling approximations. The corre-
lation dynamics provides expressions for the characteris-
tic relaxation times and they constitute the starting point
to determine the transport coeflicients using the Green-
Kubo formulas. It is interesting to emphasize that the
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theory we have developed encompasses a wide number
of situations characterized by the values of the magnetic
and anisotropy energies of the ferromagnetic particles.

To check the validity of our formalism, we have com-
pared our results for the relaxation time of the particles
to birefringence experiments carried out in two opposite
limits: ¢ > p and p > o. The first case corresponds
to a rigid dipole, whereas in the second, the magnetic
moment relaxes towards the field very rapidly and inde-
pendently of the particle axis, which also relaxes towards
the magnetic moment in a larger time scale. In both
cases, we have obtained quite a good agreement with the
experiments.
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APPENDIX: DECOUPLING APPROXIMATIONS

In Sec. III, we have introduced decouplings of some
correlation functions appearing in the evolution equa-
tions for the correlations. The purpose of this appendix
is to give more details about the procedure followed to
carry out such decouplings. In Eq. (3.4), the approxi-
mated quantities are

((ReR:)(t) Rz (0)) ~ (R () Rz (0))(Rz)eq

= L(p)(R=(t)Rz(0)), (A1)
and
([Re (72 - R)?](£)Re(0)) ~ (R (t)Re(0))((7 - R)?)eq
= Q(0){(R:(t)R(0)),  (A2)

where linearizations in time have been performed. The
approximation (A1) was already discussed in the text
[see Eq. (3.5) and comments below]. For the correlation

(A2), we decouple the quantities R, and (7 - R)? because
they are not coupled in equilibrium conditions, (R, (7 -
R)?) g = 0, (Rz)eq = 0, and (A~ R)?)eq # 0. Thus, in a
situation not far from equilibrium, we will assume that
both quantities also remain decoupled.

By similar arguments, in Eq. (3.6) we have also per-
formed the following approximations:

([Ro(nz (7 - R))](8)Ra(0)) ~ (Ro(t)Ra (0)){[rx (- B)])eq
= L(1)Q(0)(Rx(t) Rz(0)),
(A3)

R)I()R(0)) ~ ([na(7 - R)|(t)Ra(0))(Rz)eq

= L(p){[n=(7 - R))(t)R:(0)),
(A4)

and
{neli- B = (- R} O R (0))
- A R)Y)eq
~ ([ R))(H)R2(0)) (1 - E(E——ﬁ%)—) . (A5)
In Eq. (3.7), we have used
(P2 Ra) (O Ra(0)) ~ (Ra(t) Ra(0))(n2)eq
- (*n-s00)+ )

X (Rq(t)R(0)), (A6)
((nen=R;)(t) Rz (0)) ~ ((nen:)(t) Rz (0))(Rz)eq
= L(p)((nen:)(t)R=(0)).  (AT)

Notice that the decoupling in the correlation ([nm(ﬁ .

R)?)(t)R= (0)) of Ba. (A5) is ([ne (- R))(£) Ra (0)) 250 0=

and not ([ng (7 - B)](£)Rx(0))((7 - R)?)eq, which leads to
divergencies of the rotational viscosity at small values of
p. As regards this fact, it is worthwhile to emphasize
that these approximations are more accurate for moder-
ate and higher values of parameters p and o. This type
of truncation was already proposed by Stratonovich in
the context of stochastic processes.
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