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Quantum Neural Networks (QNNs) have emerged as one promising Quan-
tum Machine Learning (QML) technique. While the models for single and
multi-qubit QNNs have been extensively studied, it remains unknown if using
higher-dimensional systems provide any advantage. In this work, we investi-
gate the theoretical foundation of the qubit model and we compare it with the
qutrit prototype. First, we show that a single qubit can reproduce a Fourier se-
ries, while a qutrit can fit a more complicated type of function, with additional
degrees of freedom that the model can adjust. Second, we explore the benefits
of the third extra level of the qutrit for the classification task. In addition,
we examine the two-qubit classifier and see that using a local cost function
on the training improves the results, according to recent studies. Beyond the
theoretical discussion, we provide numerical benchmarks of the models studied.
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1 Introduction
Quantum mechanics is a field of physics that describes the microscopic world we live in.
The basis of everything is quantum-mechanical. Even though we have a solid mathemat-
ical theory that describes quantum mechanics and it has many applications we use on a
daily basis, it still challenges our intuition. In 1980 it was first proposed to study quantum
systems with a quantum Turing machine, by Paul Benioff [Ben80]. At first, it was a theo-
retical idea that suggested that there could exist machines that operate under the laws of
quantum mechanics, performing universal computation and extending the limits of classical
computation. This idea gained importance when Feynman suggested that these computers
could be useful to simulate nature [Fey82]. Quantum systems grow exponentially with
the number of particles. Then, it is difficult to simulate big systems on a conventional
computer since it consumes an exponential amount of computational resources, such as
memory and time. The idea of a quantum computer enriched our understanding of quan-
tum mechanics: from studying quantum mechanical systems in nature to using nature to
design computers.

Quantum computers are more than a theoretical computational model or a machine
to simulate quantum mechanical systems. This was evidenced when Shor proposed in
1994 a quantum algorithm that enables efficiently factorizing numbers [Sho94]. Most of
the current cryptographic classical protocols, such as RSA [RSA78], rely on the fact that
factorization is a hard problem on conventional computers. The quantum algorithm version
provides an exponential speed-up compared with the most efficient classical algorithms,
being able to break present cryptography. Shor’s algorithm showed that this quantum
model of computation offered more possibilities beyond nature simulation. This algorithm
is an example of the computational extension that implies a quantum mechanical model of
computation. It belongs to the BQP complexity class, which includes the type of algorithms
that can be efficiently solved on a quantum computer. This class goes beyond classes like
P, where are included those algorithms efficiently solvable by classical computers. Since
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then, the field of quantum computation has quickly grown, and now we are witnessing its
biggest expansion with the construction of the first quantum computers.

By analogy to the classical bit, in quantum computation is used the qubit, which is
the minimal unit of quantum information. The classical bit can be in a well-defined state,
zero or one. The qubit can be in one of these states, or it can be in a superposition of both.
The general state of this system is expressed as:

|ψ⟩ = α |0⟩ + β |1⟩ , (1)

where α, β ∈ C are the amplitudes, |α|2+|β|2 = 1 and |0⟩ and |1⟩ are orthonormal states. If
the qubit is in this superposition state and we measure it, it will collapse in the state |0⟩ with
probability |α|2 and with probability |β|2 into the state |1⟩. Although the qubit is widely
used, there are higher-dimensional systems that can be used for quantum computation,
the qudits. These have dimension d and their general state is given by |ψ⟩ =

∑d−1
i=0 ci |i⟩

where
∑d−1

i=0 |ci|2 = 1 and {|0⟩ , |1⟩ , ..., |d− 1⟩} are the computational basis states of a qudit,
which are orthonormal, ⟨i|j⟩ = δij . The next high-dimensional state after qubits is the
qutrit, so they are becoming the first qudits to be studied in detail. There is evidence
that in some cases higher-dimensional systems such as qutrits can improve performance in
some algorithms [Gus22]. In the recent years, qutrits are becoming another experimental
quantum computational tool [BRS+21, YSK+20, RMP+21, BRS+21, CLKAGG22].

The state-of-the-art of quantum computing technology is in the so-called Noisy Intermediate-
Scale Quantum (NISQ) era [Pre18, KBKH+22], which refers to the fact that we only have
access to noisy devices with a limited number of qubits (currently 50-100 qubits) which are
not error corrected. For applying quantum error correction, we need thousands of physical
qubits for implementing the codes, which is beyond state-of-the-art. Several quantum algo-
rithms, such as Shor’s factorization algorithm, require an error-correcting scheme to work.
Because of the lack of fault-tolerant quantum computers, lots of efforts have been made
on developing algorithms that can be supported by current noisy quantum computers.

In this framework emerge the Variational Quantum Algorithms (VQA) [CAB+21].
They pertain to a family of quantum-classical hybrid algorithms. The quantum part com-
prises a parameterized quantum circuit (PQC), i.e., a quantum circuit that depends on
a series of parameters that can be fine-tuned and is used to compute an expected value.
The classical part is an optimization subroutine, used to find a better approach to the
parameters of the PCQ and update them variationally. VQA relies on the variational prin-
ciple, which states that, given a Hamiltonian H and an arbitrary quantum state |ψ⟩, the
expected value of H in this state is an upper bound to the ground state energy [HNPR86].
In VQA algorithms, we produce variational states, which give us an upper bound to the
solution of our problem. The first VQA algorithms proposed were the Variational Quan-
tum Eigensolver (VQE) [Per14], which finds an approximation to the ground state energy
of a given Hamiltonian, and the Quantum Approximate Optimization Algorithm (QAOA)
[FGG14], proposed to solve combinatorial optimization problems. The variational core of
the algorithms allows them to have a noise-resistance nature, because of the adaptability
of the parameters. These can adopt a value that cancels partially the noise present in the
quantum device, which makes the circuit more resilient to noise [FFR+21]. Hence, these
algorithms are appropriate for current NISQ devices.

Besides chemistry and optimization applications, represented by the VQE and QAOA
algorithms, the VQA have also applications in Quantum Machine Learning (QML). QML
is a research area that integrates Machine learning (ML) and quantum computation. Al-
though the quantum advantage of these algorithms has not been proved yet, the wide range
of possible applications and its hybridization with classical computational techniques have
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aroused great interest in the scientific community. QML includes classical algorithms that
process quantum data and quantum algorithms that process quantum or classical data
[BWP+17, CHI+18]. In the QML algorithms that process classical data in a quantum
computer, exist several strategies used to encode the data such as quantum kernel meth-
ods [SK19, HCT+19], or data re-uploading [PSCLGFL20].

Some QML algorithms, such as the ones that use data re-uploading, are inspired by the
structure of classical Neural Networks (NN). NN are widely used in ML and pertain to the
class of supervised learning models [JGR20]. In supervised models, we have two different
sets of data: the training and the testing set. The training consists of a set of data points,
and each one has assigned a label of the category it pertains to. When training the model
with this data, we will correct it when it makes a bad prediction and, by optimizing a cost
function that codifies the solution of our problem, we will go in the direction of correct
classification. Then, the testing set, which has to be different from the training, will be
passed to the model to see how it performs with unseen data. In this way, we can verify if
the model has learned the distribution. The quantum analog of NN are called Quantum
Neural Networks (QNN), and VQA are one possible implementation of these QNN.

In this work, we approach function fitting and classification problems using a QNN
trained as a VQA. We study these two problems as they are related because classification
consists in delimiting regions, which can be understood as drawing one or more functions
in order to separate regions. Our goal is to explore new directions in this field by studying
these problems with high-dimensional systems, in particular with qutrits. We will study the
type of functions we can generate with the qubit and the qutrit model and compare their
performance depending on the number of parameters and gates used in the model. We will
see that qutrits perform better than qubits under some figures of merit. All benchmarks
will be simulated classically since we aim to study the theoretical performance but, since
VQA algorithms are supported in NISQ devices, the algorithms could be tested in real
quantum computers.

The work is structured as follows: In the first section, we will introduce theoretical
concepts that later will be used in this work. In the second section, we will approach
function fitting. Depending on the choice of the PQC and the system used to encode the
data, we will generate different quantum models. We will study the functions generated
with a general quantum model. Later, we will discuss specific examples such as the single-
qubit, with which it has been proven universality [PSCLGFL20, YYLW22]. We also explore
the qutrit model, which, as far as we know, has never been used in this context. The third
section consists of the study of the classification problem. We will study the performance
of different classifiers, providing an intuition of what effects may be affecting the model.
Finally, in the conclusion and discussion section, we summarize the results obtained in the
work and we comment on further directions.

2 Theoretical background
In this section we will investigate the qutrit, the 3-level system that we use in this work.
Also, we explore some of the most relevant concepts about VQA and QML.

2.1 Qutrits
Most of the quantum algorithms and communication protocols are designed for qubits.
However, great efforts have been made in the last years in studying higher-dimensional
level systems, such as the qutrit. The qutrit has been explored in the context of quantum
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Figure 1: Schematic representation of a VQA. They are divided into two parts: The quantum part,
which consists in the generation of a variational state with a PQC which it is later measured. As a result,
we obtain a probability distribution, with which we build an expected value. This is used to construct a
cost function. At each iteration, a classical subroutine optimizes the cost function and the parameters
are introduced in the quantum circuit. The procedure is repeated until we converge on the solution to
our problem.

cryptographic protocols [GJV+06], and multipartite entanglement [CM00]. Moreover, it
has been demonstrated that, in some cases, for simulating dimensional systems greater
than two, qutrits are more tolerant to gate noise than qubits [Gus22].

One of the potential advantages of using a high-dimensional system such as the qutrit
is that we have an extra level, where we can encode information in. Because we are
in the NISQ era, it is crucial to use the minimum amount of resources, i.e., gates and
circuit depth, to perform calculations. The existence of this extra level could reduce the
resource requirements to achieve a similar exploration of the Hilbert space. Moreover, the
3-dimensional Hilbert space has more structure than the 2-dimensional, in the sense that
we have a wider variety of quantum gates, richer entanglement, and more parameters to
describe a general unitary transformation. This will be useful when using a PQC.

Let us explore some general properties of these systems such as the general state of a
qutrit:

|ψ⟩ = α |0⟩ + eiθβ |1⟩ + eiϕγ |2⟩ , (2)

where |α|2 + |β|2 + |γ|2 = 1 with α, β, γ ∈ C and θ, ϕ ∈ R. {|0⟩ , |1⟩ , |2⟩} form an or-
thonormal basis. The unitary operators of a qutrit pertain to the special unitary group of
dimension 3, SU(3). The 8 generators of this space are the Gell-Mann matrices λi. With
the exponentiation of these matrices, we can generate one-qutrit rotations on a two-level
subspace. For example, R(02)

y performs a Ry rotation on the subspace of the first and
third level, leaving the second untouched. Since we can act with these one-qutrit gates,
with a qutrit we can also simulate a qubit if we only operate on two of the levels. Then,
all the results that we prove for qubits, can also be applied with qutrits with the correct
implementation. We give more detail on Gell-Mann matrices and one-qutrit rotation gates
in Appendix A.

Since we have eight generators, we also would need the same number of parameters to
describe a general unitary transformation, while for qubits we only need 3 of them. One
possible decomposition of a unitary transformation for a single qutrit is given by [DW11]:

M = R(01)
y (β)R(02)

y (γ)R(01)
y (δ)R(01)

z (θ)R(02)
z (ρ)R(01)

y (β′)R(02)
y (γ′)R(01)

y (δ′), (3)
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2.2 Variational Quantum Algorithms
Here we examine VQA deeply and we present their main applications. The general struc-
ture of these algorithms is shown in Fig. 1. First, we will give details of the general
procedure, and later we will focus on the structure of the PQC.

The generic process on a VQA is the following: first, we prepare the initial state, which
is usually the zero state, because it is easy to prepare for a quantum computer: |0⟩⊗n,
where n is the number of qubits or qutrits used. Then, we apply the PQC, which can be
expressed as a unitary that depends on some parameters: U(θ⃗) = U(θ1, θ2, ...θk), where k is
the total number of parameters used. After this, we obtain a given state |ψ(θ⃗)⟩ = U(θ⃗) |0⟩
and we measure it to obtain a probability distribution. We post-process it, obtaining
another value, for instance, an expected value or fidelity, and we use it to build a cost
function. This must encode the solution of the problem we aim to solve. Then, the cost
function is optimized with some classical subroutine, such as gradient descent method,
direct search, or other techniques such as genetic algorithms. We find a better approach
to the parameters θ⃗ and these are updated again in the PQC, repeating the procedure
until we converge on a solution. Finally, we have a set of parameters ⃗θopt that generate
the unitary circuit that prepares the ground state of our problem cost-function.

Let’s take a closer look at the structure of the PQC. The strategy we use is to encode
the parameters in the angles of the rotations of qubit or qutrit gates. The design of the
circuit with the parameterized gates is called the ansatz. For designing the PQC ansatz,
we will use only one and two-qubit or qutrit gates, since any unitary of n-qubits or qutrits
has an approximate version, with arbitrarily small error, with only one and two-qubit or
qutrit gates. This is ensured by the Solovay–Kitaev theorem [DN05], which states that this
decomposition can be approximated by a circuit with polynomial depth with the number
of qubits or qutrits. This is a theorem of existence and, then, it does not provide the
exact decomposition of the unitary, but it provides a mathematical statement that justifies
the use of only one and two-qubit/qutrit gates. For qubits we will use the CNOT gate
and the rotation gates, Ri(x) = exp(ixσi/2), with i ∈ {x, y, z}. For qutrits, we can use
single-qutrit rotation gates such as R(02)

y , and one possible generalization of the CNOT
gate, the ternary controlled-X gate [DW11]. More details about these gates can be found
in Appendix A.

Ideally, we want to have the most general unitary transformation in order to explore
the majority of the Hilbert space. The reality is that when the number of qubits or qutrits
grows, the Hilbert space also grows exponentially. Thus, it is difficult to examine the
space. This is related to the expressibility of the PQC, which is the ability of this circuit to
generate diverse variational states. In VQA we also have to deal with the Barren-Plateaus
(BP) effect [MBS+18], which consists in a vanishing gradient effect on the cost function.
If the gradient becomes flat, the classical optimization methods are not capable to find
a solution or get trapped in local minima, an effect caused precisely for the exponential
size of the Hilbert space. In this work, we are not going to focus on this effect. However,
we will explore the recent evidence stating that with a local cost function we can avoid
partially the BP effect [UB21].

2.3 Quantum Machine Learning
We can classify classic and quantum ML algorithms with two criteria: depending on the
algorithm nature, quantum or classic, and depending on the data processed, which can
also be quantum or classic. In this work, we focus on quantum algorithms that process
classical data.
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(a) General procedure on a QML algorithm. (b) Example of the QML pro-
cedure for a single qubit.

Figure 2: In the figure on the left, we represent the basic procedure of a QML algorithm: the encoding,
the data processing, and the measurement. In figure (b), we show a diagrammatic example of this
procedure for a qubit. The action of the encoding gate S(x⃗) is represented by the blue line, and the
trainable gate W (θ⃗) action by the magenta line.

The general procedure of a QML algorithm is shown in Fig. 2a. First, we have to
encode the data into the circuit. We have different strategies for this. One approach is to
encode it in the amplitude of the state, i.e., |ψ⟩ =

∑M
i=1 xi |i⟩, with M the total number

of points. A more direct option is to encode it in the parameters of a unitary rotation.
For instance, to encode a given data point in one qubit we can use a rotational gate and
introduce it like |ψ⟩ = cos x

2 |0⟩ + sin x
2 |1⟩. Then, we encode the data in the circuit via

the parameters of the gates. To encode more than one data point, we can introduce them
into one qubit using more than one gate, e.g., for encoding x⃗ = (x1, x2) we can do it like
Rz(x1)Rz(x2). For the data processing, we can follow a similar strategy, already explored
in VQA algorithms: to use parameterized gates. Therefore, in a QML PQC of this kind,
we have two types of gates: the encoding gates S(x), which are the one that introduces the
data, and the trainable gates W (θ⃗), which contain the parameters that are optimized and
that process the data. Finally, we measure the output of the circuit and we post-process
it by introducing it to the optimization subroutine, which is the same as in the VQA
algorithm. A specific example of the encoding and the processing of the data is given in
2b, where we apply the procedure explained to a single qubit. We use the encoding gate
to introduce the data into the PQC and a trainable gate to process it.

Another strategy to encode the data in the circuit is the so-called data re-uploading
[PSCLGFL20]. This technique consists in repeatedly introducing the data into the system
via an encoding gate followed by a trainable gate, which process it, repeating this formula
several times. A representation of this procedure for one qutrit or qubit is shown in Fig.
3a. The combination of an encoding and a trainable gate forms a layer, except the layer 0,
which consists only of a trainable gate. We will use various layers, uploading the data and
processing it with the tunable parameters θ⃗i on the trainable gates. These parameters will
be different from layer to layer. Conversely, the data point will be the same at every layer.

As illustrated in Fig. 3b and 3c, the parameters of the gates are usually compared to
the weights and the biases of a NN because they play a similar role: they have to be trained
to solve a specific problem or task. Also, a layer of the data re-uploading model acts similar
to a single neuron in NN, because in both cases every unit is repeatedly fed with the data.
Once uploaded the data with the encoding gate, the trainable gate only offers a unitary
transformation. We have to repeatedly re-upload the data in the circuit, alternating it with
a processing gate. It was proven that, with this architecture, it was achieved universality
[PSCLGFL20]. It is not enough to upload the data once and then use only trainable gates,
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since all the parametric unitary operations can be grouped forming another single unitary.
Hence, we need to repeat the uploading of the data at each step. This is what introduces
the non-linearities needed to solve function fitting and classification problems.

(a) Schematic representation of data re-uploading.

(b) Neural network (c) Quantum neural networl using data re-uploading.

Figure 3: In the figure above, we have pictured the data re-uploading ansatz for a qubit or a qutrit. The
gates W (i) = W (θ⃗i), for i ∈ {0, .., L}, are the trainable gates and S(x) are the encoding gates. We
have an initial layer composed of a parameterized gate W (0). In addition to this layer, we have L layers
composed of one encoding gate with the same data point everywhere and another parameterized gate,
with different parameters in each layer. The two figures below show a comparison of a one-layer NN
with a one-qubit quantum model based on data re-uploading. We can see that at each layer of the NN
the data is passed as an input to each neuron of the layer. On the other hand with the quantum circuit,
we introduce the data at each step. Every pair of boxes on (c) represents a layer and we compare it
with a neuron of a NN.

3 Function fitting
In this section, we aim to solve function fitting with the data re-uploading procedure. We
present the general form of the model for a qubit or a qutrit. The results can also be
generalized to qudits. For the concrete case of one qubit, there is evidence that claims that
we can reproduce any arbitrary function [SSM21], [YYLW22]. We compare both qubit and
qutrit models and we observe that they do not generate the same type of functions, at
least with the ansatzs used.

The goal of function fitting is the following: given an arbitrary function g(x⃗), we train
our circuit ansatz to produce an output that, with the correct post-processing, approxi-
mates well the target function, i.e., fθ(x) (from now one we replace x⃗ = x and θ⃗ = θ).
The quantum model used in this section is given by

fθ(x) = ⟨0|U †(x,θ)OU(x,θ) |0⟩ , (4)

where U(x,θ) represents the PQC (we refer the reader to Fig. 3a for an example with one
qubit), O a given observable and x is the specific point for which we are computing the
function. Following Ref. [SSM21], we see that the quantum model can naturally represent
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a function of the type
fθ(x) =

∑
ω∈Ω

cω(θ)eiω·x, (5)

which is a Fourier series only if ω ∈ K. In this case, the function is a truncated Fourier
series. We provide the definition of a Fourier series and a Laurent Polynomial in Appendix
B.

We will study the case x ∈ R. For uploading the data in the general unitary U(x,θ),
we use an encoding gate of the form S(x) = e−ixH , where H is an arbitrary encoding
Hamiltonian. Let us consider the following general ansatz:

U(x,θ) = W (L)S(x)W (L−1)...W (1)S(x)W (0), (6)

where W (i) = W (θi), for i ∈ {0, ..., L}, are the gates that contain the trainable parameters,
and S(x) the encoding gates. A circuit example that implements this unitary transforma-
tion for one qubit or qutrit is the one in Fig. 3a. The Hamiltonian of the encoding blocks
S(x) = e−ixH is arbitrary and, in principle, does not have to be diagonal. However, if
singular value decomposition is performed H = V ΣV †, being V a unitary matrix and Σ a
matrix with diagonal entries only, we can write the encoding block as

S(x) = e−ixV ΣV † =
∞∑

m=0

1
m! (−ixV ΣV †)m = 1 +

∞∑
m=1

1
m!V (−ixΣ)mV † = V e−ixΣV †. (7)

For every m ≥ 1 we have the terms (−V ixΣV †)...(−V ixΣV †) in the sum and V †V = I.
Thus, we can express the encoding block as a diagonal matrix with a change of basis. With
the final term in Eq. (7), we can ‘absorb’ V and V † with the tunable gates in Eq. (6),
such that we define W ′(i) = V †W (i)V , except for W ′(0) = V †W (0) and W ′(L) = W (L)V ,
without loss of generality, because W are tunable parametric unitary gates and V , V † are
also unitary. For this reason, we can consider that the Hamiltonian of the encoding block
is diagonal H = diag(λ1, ..., λN ).

The quantum model from Eq. (4) can be expressed as ⟨ψ(x,θ)|O |ψ(x,θ)⟩, where the
state is given by |ψ(x,θ)⟩ = W (L)e−ixHW (L−1)...W (1)e−ixHW (0) |0⟩. The full derivation
of the final form of the quantum model in Eq. (4) can be found in Appendix C. Here we
present the result:

fθ(x) =
∑

k,j ∈[N ]L
ak,je

−ix(Λk−Λj). (8)

j and k are multi-indexes, defined as j⃗ ≡ {j1, ..., jL} ∈ [N ]L, being L the number of layers
and N = dn, with d the dimension of the qubit or the qutrit, and n how many of them
we use. Each j is a combination of L numbers that can go from 0 to N − 1. Then, we
have NL possible values. For example, for a single qutrit with 2 layers, we have N = 31

and j = {j1, j2}, where we have 3 possibles values of each ji, because each one runs from
0 to N − 1 = 2. Also, we have defined Λj = λj1 + ... + λjL , which is a multi-index sum
of L eigenvalues of H. This means that Λj has also NL possible values. Following the
previous example, Λj consists of the sum of L = 2 terms, and each ji can have 3 possible
eigenvalues: Λj = {λ0 + λ0, λ0 + λ1, ..., λ2 + λ2}.

Finally, the terms that pertain to the trainable gates and the observable are grouped
like:

ak,j =
∑
i,i′

(W ∗)(0)
i,k1

(W ∗)(1)
k1,k2

...(W ∗)(L)
kL,iOi,i′W

(L)
i′,jL

...W
(1)
j2,j1

W
(0)
j1,1, (9)

where we sum over i, i′ and the free indices are k = (k1, ..., kL) and j = (j1, ..., jL). Compar-
ing Eq. (33) with Eq. (5) we can see, by analogy, that the ‘frequency spectrum’ Ω′, which,
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in reality, it will only be a frequency spectrum if the model generate integer frequencies, is
given by

Ω′ ={Λk − Λj | k, j ∈ [N ]L} =
{λk1 + ...+ λkL

− (λj1 + ...+ λjL) | ji, ki ∈ {1, ..d} for i ∈ {1, ..., L}},
(10)

where each λji is a possible eigenvalue of the encoding Hamiltonian. The ‘spectrum’,
then, is given by all the NL sums of possible combinations of the eigenvalues λi minus
another possible sum of other NL eigenvalues. Therefore, the ‘frequency spectrum’ is fully
characterized by the eigenvalues of the encoding Hamiltonian. Regarding the coefficients
cω, they are given by

cω =
∑

k, j∈[d]L
Λk−Λj=ω

ak, j, (11)

Taking everything into consideration, we can conclude that the general quantum model
can generate a function like the one in Eq. (5), which is a truncated Fourier series if the
frequencies generated are integers. We remark that this will not be the case for all models
and, therefore, we may obtain a function like this but which is not a Fourier series. In all
cases, the ‘frequencies’ ω are determined by the eigenvalues of the encoding Hamiltonian,
and the coefficients are specified by the form of the trainable gates and the observable.
Hence, the ansatz used is very relevant, because it is going to shape the accessible ω and
the coefficients of the model. Another important remark is that in the derivation, there
is no specification of what system are we working on. Therefore, it works for one or more
qubits, qutrits or qudits. This is a significant theoretical result that helps us to understand
the relevance of the ingredients we use to build a quantum model.

If we want to shape our accessible ‘frequencies’, i.e., the values of ω in Eq. (33), we
can add a tunable parameter in our encoding gate, such that S(α, x) = eixαH/2, where α
is different in each layer. Now, the accessible ω are modified in the following way

Ω′
α = {α1(λk1 − λj1) + ...+ αL(λkL

− λjL)}. (12)

Hence, we have access to more ‘frequencies’ but we lose the possible structure of a Fourier
series.

3.1 One qubit function fitting
Here we show that, with one qubit, we always obtain an integer frequency spectrum Ω ∈ K,
if we use H = exp(iσi/2) on the encoding gate, being σi any of the Pauli matrices. The
eigenvalues of these Hamiltonians are 1

2 and −1
2 . Looking at Eq. (10), we can see that

the spectrum will be composed by the difference between L terms and other L terms,
with possible values 1

2 and −1
2 . This gives a set of integer numbers. For instance, let us

explore a simple case, such as a single qubit with L = 2. The accessible frequencies will
be Ωqub = { −2,−1, 0,+1,+2}. In general, we can say that with the one-qubit model we
obtain Fourier series or, equivalently, a Laurent polynomial of degree at least 2

The trainable gates and the observable determine the coefficient of the Fourier series,
and the eigenvalues of the encoding Hamiltonian shape the frequency spectrum. An illus-
tration of this is shown in Fig. 4. If we force the coefficients to be real,i.e., we use trainable
gates with only real entries, the quantum model will only be able to generate Fourier series
with real-valued coefficients. Having this in mind, we are going to choose trainable gates

10



Figure 4: Schematic diagram of a one-qubit QNN that learns Fourier series. The circuit architecture is
composed by the encoding blocks in pink and the trainable blocks in blue. The first ones shape the
accessible frequencies of the model and the second type determine the values of the coefficient. (Figure
inspired from [YYLW22]).

that have complex-valued entries, in order to have the most general possible model. Let
us consider the following ansatz:

UW ZW
θ,ϕ,x = W (θL, ϕL)Rz(x)W (θL−1, ϕL−1)...Rz(x)W (θ0, ϕ0), (13)

with W (θ, ϕ) = RY (θ)Rz(ϕ) and S(x) = Rz(x), since it contain the terms eix/2 and e−ix/2,
similar to exponentials of the Fourier series. The observable we chose is the Pauli Z-gate,
M = σz. The trainable blocks have the form:

W (θ, ϕ) =
[
cos(θ/2)e−iϕ/2 − sin(θ/2)eiϕ/2

sin(θ/2)e−iϕ/2 cos(θ/2)eiϕ/2

]
. (14)

With this choice, the model is able to reproduce functions with real and complex coefficients.
Therefore, it is important to have the RZ(ϕ) gate, because it is the one that introduces
complex phases.

Now, we are going to show that any the output of the quantum model can be expressed
as a Laurent polynomial with complex coefficients. The following lemma was inspired by
Ref. [YYLW22].

Lemma 3.1. There exists θ = (θ0, θ1, ...θL) ∈ RL+1 and ϕ = (ϕ0, ϕ1, ...ϕL) ∈ RL+1 such
that

UW ZW
θϕ,L =

[
P −Q
Q∗ P ∗

]
, (15)

where P , Q have the structure of a Laurent polynomial ∈ C[eix/2, e−ix/2] until degree L− 1.

Lemma 3.2. The output of the quantum model T is a Laurent polynomial of degree, at
most, L, given by

T = ⟨0|UW ZW †
θϕ,L σzU

W ZW
θϕ,L |0⟩ . (16)
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This lemma 3.2 states that with this ansatz, we can reproduce any Laurent polynomial
if we use enough layers. Since any square-integrable function can be approximated by
these functions, we can say that the quantum model can, consequently, approximate any
square-integrable function. The complete proof of these lemmas is in Appendix D.

Here we explore the single model with the real and complex coefficient ansatz and the
qutrit model. We show the results in Fig. 5. We have used the Nelder-Mead method as
a classical optimizer subroutine and 100 training and testing points. First, we present the
cost function that we use to encode the solution to our problem, which will be the same
for all the models used for function fitting:

C(θ) =
M∑

i=1
(g(x) − fθ(x))2, (17)

where M is the total number of training points and g(x) is the function we try to reproduce.
By minimizing the cost function, the model will be as similar as possible to the function for
all data points, x. We use as target function the Fourier series g(x) =

∑3
n=−3 cne

ixn with
c0 = 0.24 and c1 = c∗

2 = −c∗
3 = 0.09 + 0.09i. First, we study the performance of an ansatz

that contains only real-valued entries in the trainable gates, W (θ) = RY (θ). The encoding
gate we have chosen is RZ(x). Next, we study an ansatz with W (θ, ϕ) = RY (θ)RZ(ϕ) and
the same encoding gate. Secondly, we can appreciate in Fig. 5a that the model can not
approximate the full function, since the ansatz only has real coefficients and the function
is complex, but it can clearly approximate the real part of the function, also plotted in the
figure. On the other hand, in Fig. 5b we can see that the model achieves to fit the Fourier
series of degree 3 with only three layers. Lemma 3.2 states that with this ansatz we can
reproduce any Fourier series of degree, at most, L. In the case studied, this is accomplished.
Moreover, the model is not only able to fit testing points in the same domain that in the
testing, but it is also able to fit the function in any domain (see Fig. 5c). This evidence
supports the idea that this quantum model can fit naturally a Fourier series. Finally, we
can see that, in both cases, the use of more layers is directly related to the number of
harmonics combined to create the function. With only one layer, we can generate only one
harmonic, i.e., the combination of a trigonometric function with only one frequency. With
two layers, we achieve to generate the combination of two of them and so on.

3.2 The single-qutrit model
In this subsection, we use a qutrit quantum model and we study the type of functions
generated. We explore if, in this case, using a larger system to store quantum information,
the qutrit can improve the performance of the method. Lets take the ansatz

W (θ1, θ2, ϕ1, ϕ2) = R(01)
y (θ1)R(02)

z (ϕ1)R(02)
y (θ2)R(01)

z (ϕ1)
S3(x) = R(01)

z (x)R(02)
z (−x) = diag(1, eix/2, e−ix/2).

(18)

where we have used the single-qutrit rotation gate (explained in Appendix A. To construct
the quantum model in Eq. (4), the observable used is O = Uz, defined as Uz = (−λ3 +√

3λ8)/2 = diag(0, 1,−1). This encoding is inspired by the qubit ansatz used in the
previous section. There is no formal proof of this ansatz being better than another one.
Nevertheless, we argue that this could be a convenient one, following the ansatz used on the
one-qubit section. First of all, we have seen that the trainable gates for one qubit that are
sufficient to reproduce any Fourier series are RY (θ)RZ(ϕ). Therefore, we have decided to
use a similar encoding with qutrits. With higher dimensional systems, we can not rotate
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(a) One-qubit quantum model using Ry(θ) as trainable
gate.

(b) One-qubit quantum model using Ry(θ)RZ(ϕ)
as trainable gates.

(c) One-qutrit quantum model using
R

(01)
y (θ1)R(02)

z (ϕ1)R(02)
y (θ2)R(01)

z (ϕ1) as train-
able gates and S(x) = R

(01)
z (x)R(02)

z (−x) as
encoding gates.

(d) Test set for a not trained domain with the ansatz
used in Fig. (b).

Figure 5: Comparison of the quantum models for function fitting. The Fourier series represented in a solid
blue line is g(x) =

∑3
n=−3 cne

ixn, i.e., of degree 3 and with c0 = 0.24 and c1 = c∗
2 = −c∗

3 = 0.09+0.09i.
In the upper-left figure, we plot the results obtained with a model with real coefficients for the various
layers. The solid pink line in the first figure is the same Fourier series but with real coefficients:∑3

n=−3 |cn|eixn. In the upper-right figure, we show a model with complex tunable parameters and the
performance of the model. The lower-left figure is a model with qutrits. Finally, the lower-right figure is
the model with complex tunable gates extended to a domain different from the training.

along one axis. Actually, rotations are performed while maintaining a plane constant.
This makes the illusion of rotating along one single axis in 3-dimensiona. Now we are in
a bigger subspace, and we are going to rotate according to RY and RZ qubits gates in 2-
dimensional subspaces of the qutrit. According to what we have seen in previous sections,
we are interested in the eigenvalues of the Hamiltonian that generates this encoding gate
S3(x). The corresponding Hamiltonian is H = diag(0,+1/2,−1/2). The only difference
regarding the qubit encoding gate used in this work, which has eigenvalues +1/2 and −1/2,
is that now we have an extra eigenvalue: 0. If we go back to Eq. (10), we can see that
the ‘frequencies’ that the model has access to are given by the difference of all NL possible
eigenvalues. Let us study the possible values for qubits and qutrits, for example for L = 2
with the ansatz discussed for them:

Ωqub = { −2,−1, 0,+1,+2}
Ω′

qut = { −2,−3/2,−1,−1/2, 0,+1/2,+1,+3/2,+2},
(19)
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(a) Accuracy obtained with the qutrit (5 layers, 24
parameters): 69.22%, and with the qubit(10 layers,
24 parameters): 58.21%.

(b) Accuracy obtained with the qutrit (5 layers, 34
parameters): 98.21%, and with the qubit (10 layers,
32 parameters): 77.24%.

Figure 6: Comparison of the quantum models using different ansatz for fitting the spherical Bessel
function of second order. In the left, we have the ansatzs for the qutrit and the qubit without parameters
in the encoding gates. In the right, we include the parameters α in the encoding gates. The qutrit
encoding gate is R(01)

Z (ω1x)R(02)
Z (−ω2x) and for the qutrit we use S(x) = RZ(wx). The trainable gate

for both qutrit models is R(01)
Y (θ1)R(02)

Z (ϕ1)R(02)
Y (θ2)R(02)

Z (ϕ2), while for the qubit we have chosen
RY (θ)RZ(ϕ). We have used 200 samples for the training set and 200 for the test. The optimization
subroutine used is the Nelder-Mead method.

where we have combined the differences which contribute in each layer. With qubits, we
have 2 possibilities for each eigenvalue while with qutrits we have 3 different eigenvalues to
combine. Due to the extra eigenvalue, we have more accessible ‘frequencies’. To be precise,
with qubits we can achieve 2L + 1 different ω, while with qutrits 4L + 1. With enough
layers, with qutrits, we have access to double the frequencies.

As we can appreciate in Fig. 5c, it seems that the qutrit does not approximate the
Laurent polynomial as good as the qubit, at least with this specific ansatz. Therefore, this
is evidence that with this qutrit model, we do not generate directly Laurent polynomials,
in contrast with what happens with the qubit ansatz discussed before. This is because,
with this ansatz, we also have fractional ‘frequencies’ (see Eq. (19)) that are not allowed by
a Fourier series. Consequently, the model struggles to cancel these terms and it becomes
hard to fit a Fourier series. However, these extra terms will contribute to a better fitting
of another type of function, as we will explore.

3.3 Beyond Fourier Series
As we have seen, a single qubit can approximate any Fourier series, i.e., it can approximate
any continuous square-integrable function. However, the model has some difficulties when
approximating functions that have very different structures compared with Fourier. In
these cases, the model struggles to find the optimal parameters to reproduce properly the
function with few layers. One example of a family of functions where this occurs is the
Bessel functions. They are not periodic functions and usually, they are said to seem like
oscillating functions that decay proportionally to x−1/2. We test to approximate a Bessel

function of degree 2, i.e., g(x) =
(

3
x2 − 1

)
sin x

x − 3 cos x
x . We have used the Nelder-Mead

method as an optimization subroutine, using 200 points in the training and in the testing
set.

As we can appreciate in Fig. 6a, the qubit model discussed before does not approximate
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well the Bessel function of second order. We only achieve a 58.21% of accuracy. We would
need more layers, and, hence, more parameters to approximate correctly this function. On
the other hand, the qutrit model with the ansatz on Eq. (18), achieves a better fitting,
even though it is still struggling in some parts. We achieve an accuracy of 69, 22%, with
the same number of parameters as in the qubit model. The reason why we achieve to fit
better with the same number of parameters is that, as discussed before, with the qutrit
model we also have access to fractional ‘frequencies’ that seem to be more appropriated
to fit these type of functions. Note that with qutrits we have used 5 layers, instead of 10
used with qubits, in order to have the same number of parameters. Hence, even with less
layers, the semi-integer ω provides more flexibility for the function fitting problem.

Another option to access more frequencies consists in changing the encoding strategy
and introducing tunable parameters. We show in Fig 6b the results obtained for the qubit
and qutrit model using this encoding. On one hand, for the single-qubit, the possible
exponents that we will have now are given by Eq. (12). On the other hand, in the case of
the single-qutrit, the ’frequencies’ are slightly different, because we have used two encoding
gates. We parameterize the encoding gates like: R(01)

z (α(i)
1 x)R(02)

z (−α(i)
2 x), where i is the

layer where the encoding gate is applied and α1, α2 are the tunable parameters. In this case,
the accessible frequencies are given by Ω′

α = {
(
λ

(α(1))
k1

− λ
(α(1))
j1

)
+ ...+

(
λ

(α(L))
kL

− λ
(α(L))
jL

)
},

where each 3 eigenvalues on a layer i are given by λ(α(i))
ji

∈ {α1+α2
2 , α1

2 ,
α2
2 }. We have even

more freedom than with qubits, and this can be reflected in the high accuracy obtained
(almost 99%) when fitting the second order Bessel function.

To sum up, we can appreciate that the performance of qutrits is better in the two
studied cases for a Bessel function. Even when the number of layer used is less, with the
same number of parameters the qutrit fits better the function. Then, there exists a trade-
off: if the function has Fourier structure, qubits will be enough and will consume fewer
resources. On the other hand, if the fitting we want to perform has a different structure
from a Fourier series, then qutrits could be a better option, even using more resources.
These results are relevant, because in NISQ devices, we want to reduce the number of
resources, in order to avoid noise, decoherence and other source of errors. Using fewer
layers means using fewer gates, hence, less computational time and less source of errors.

4 Classification
In this section, we address the problem of classification. The goal is, having a M-dimensional
data set x⃗ = (x1, ..., xM ), classify it into k different categories. We follow the same strat-
egy as in the previous section: use a PQC and re-upload the data into it, assisted with an
optimization classical subroutine. We aim to classify unseen data according to the criteria
imposed once the optimal parameters are obtained after the training.

The criteria decided for classification is the following: each data point xi pertains to
a given category yi, which is represented by a quantum state |yi⟩. The PQC generates
an output quantum state |ψ(θ,xi)⟩. Our cost function will compute the distance between
this state and |yi⟩. The criteria for assigning a certain category k to xi is to chose among
all the fidelities Fk(xi,θ) = | ⟨ψ(θ,xi)| |yk⟩ |2, the greatest one, say F ′

k. Then, assign the
category k′ from y′

k to the data point xi. The cost function that codifies the classification
problem with this criteria is the following

f(θ) =
M∑

i=1

(
1 − |⟨yk |ψ(θ, xi)⟩ |2

)
, (20)
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(a) Classification criteria for a qubit. (b) Maximally orthogonal states of a qubit.

Figure 7: In the left figure we show a schematic representation of the classification into two categories
{|yk⟩} = {|0⟩ , |1⟩} using a one-qubit classifier. The states located on the surface of the northern
hemisphere are classified as points inside the circle. Otherwise, the states on the surface of the southern
hemisphere, are classified as pertaining outside the circle. In the right figure we show the maximally
orthogonal set of 3 and 4 states on the Bloch sphere. The purple points indicate the exact point on the
surface of the Bloch sphere where the states are situated.

whereM is the total number of training points, |yk⟩ is the known reference state assigned to
each training point, θ the set of parameters and |ψ(θ, x⃗i)⟩ the state after the parameterized
circuit. Our goal is to maximize the fidelity between the reference state and the output
state, or, in other words, minimize the infidelity, i.e., one minus the fidelity.

For the specific case of a qubit, we can divide the Bloch sphere according to the cat-
egories |yk⟩ we have. A schematic representation is shown in Fig. 7a. As an example,
imagine we have two categories to classify, for instance, the points inside or outside a cir-
cle. We may assign to each category the reference states |0⟩ and |1⟩, respectively. Then,
if the final state |ψ(θ, x)⟩ is closer to the zero-state, i.e., is it located in the northern
hemisphere of the Bloch sphere, we will assign the data point x to the first category. The
analogous reasoning applies if the state is closer to |1⟩. Then, the data point will be as-
signed to the second category. Because operations in quantum mechanics are unitary and,
therefore, reversible, we can not map more than one state into a single reference state.
Instead, what happens is that we assign a defined region of the Bloch sphere to a category.
If we had more than one category to classify, we would have to divide differently the regions
on the Bloch sphere. An example for 3 and 4 categories division is given in Fig. 7b. The
optimal strategy is to find a set of maximally orthogonal states. Then, we can assign to
each category one of these reference states. The output of the quantum circuit which is
closer to a specific target state will be associated with that category. Hence, the Bloch
sphere will be divided according to the distance to the reference states. Even though this
is a good strategy, it works better to use orthogonal states, as we will see.

We also study a 2-qubit classifier. Regarding the measurement strategy of this model,
we have two options: In the first place, we can measure both two qubits and compute
the cost function considering reference states of the Hilbert space of a two-qubit system.
This cost function is called the global cost function. With this strategy, we would have 4
orthogonal states to use in the classification, instead of only 2 with a single qubit. The other
strategy consists in focusing on the information contained in only one of the qubits. Then,
we can perform the classification according to one qubit, i.e., like the method discussed for
the single-qubit classifier. By building the cost function in this way, we are introducing local
information about the 2-qubit state. This is why it is called local cost function. This local
function is computed via measuring the two-qubit state, |ψ(θ, x)⟩ and, then, computing
the density matrix of one of the qubits, for instance, the second qubit. Therefore, we trace
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U(ϕ⃗1
0) U(x⃗) U(ϕ⃗1

1) • ... U(x⃗) U(ϕ⃗1
L) •

U(ϕ⃗2
0) U(x⃗) U(ϕ⃗2

1) ... U(x⃗) U(ϕ⃗2
L)

Figure 8: Representation of the circuit ansatz of the 2-qubit classifier.

out the information of the first system: ρ2 = Tr1 |ψ(θ, x)⟩ ⟨ψ(θ, x)|. With this reduced
density matrix, we can compute the fidelity between the reference states |yk⟩ and this, in
general, mixed state F (ψs, ρ2) = ⟨yk| ρ2 |yk⟩. Finally, for the qutrit, we take advantage of
the 3 orthonormal states and we use the three of them as reference states.

4.1 Ansatzs for the classifiers
Now that we have all the components, we can explore the single-qubit, 2-qubit, and qutrit
classifier. The ansatzs used with qutrits and qubits are very similar to the ones used in
the previous section. The ansatz used for one qubit will consist of the encoding gate given
by

S(x⃗) = U(x⃗) = Rz(x1)Ry(x2)Rz(x3), (21)

where U is a general rotation of a qubit. If the data is 2−dimensional, we simply set x3 to
zero. For the trainable gates we also use W (θ⃗) = U(θ⃗).

For the qutrit, we use the following blocks:

Wqut(θ⃗) = R(01)
y (θ1)R(02)

y (θ2)R(01)
z (θ3), Squt(x⃗) = R(01)

y (x1)R(02)
y (x2). (22)

The encoding and training gates are inspired by the general unitary of a qutrit, from Eq.
(3). However, we do not use the 8 parameters, we use only 3. In this case, we do not
use rotations on the z axis for the encoding gates. In principle, this does not affect the
performance of this problem. As we argued in Eq. (7), the only thing which contributes to
the frequency spectrum that the model has access to is the eigenvalues of the Hamiltonian
of the encoding gate. These values are the same for all single-qutrit gates we use. By using
this ansatz, we have the same number of trainable and encoding gates as in the single-qubit
model. Consequently, the two models use the same number of parameters per layer. This
allows us to compare the methods properly.

Finally, for the 2-qubit ansatz, we have to introduce entanglement, in order to have
more general unitary transformations. In Fig. 8 it is shown how we decided to introduce
entanglement via CNOT gates in the middle of each layer.

4.2 Benchmarks
In this subsection, we simulate the models with the ansatzs discussed previously. We have
used the ’L-BFGS-B’ method as a classical subroutine to optimize the cost function. First,
we present the results of the classification of a circle using the qubit classifier and the
two-qubit with a local and global cost function. Secondly, we compare the qubit and qutrit
classifier for the classification of two circles, with three different categories.

The results obtained for the classification of a circle are shown in In Fig. 9a. We
have included the testing accuracy obtained with a different number of layers for the three
models: one-qubit classifier and two-qubit classifier with local and global cost functions.
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(a) Circle classification (b) Two circle classification.

Figure 9: On the left, we plot the accuracy in front of the number of parameters used for the circle
classification problem with the single-qubit and the two-qubit with global and local cost function models.
On the right figure, we compare the single-qubit classifier and the qutrit classifier. Both models have
the same number of parameters per layer. The classical optimization method used is L-BFGS-B, with
100 training and testing data points.

Since we want to compare the efficiency of the model, we have represented the accuracy
in comparison to the total number of parameters used, because both two-qubit models
use double parameters and gates per layer compared with the single-qubit classifier. On
one hand, the model with a global cost function performs better for fewer numbers of
parameters. We can appreciate a big gap around 18 parameters. This may be caused
because in this regime, it gains more importance the fact of having 4 possible orthogonal
states for classification. On the other hand, for a greater number of parameters, the method
with a local cost function performs better. This could be because this method presents
two advantages: in the first place, there is evidence that using a local cost function avoids
partially the Barren-Plateaus (BP) effect [UB21], as we have argued before. This effect
may be manifesting for the two-qubit model with a large number of parameters and we may
be avoiding it partially with the local cost function. Secondly, gathering the information
of only one of the qubits will give us as a result, in general, a mixed state. Mixed states
live inside the Bloch sphere, then we can map points not only on the surface but also in
the interior. Hence, we have bigger regions on the Hilbert space which can be assigned to
a certain category. Regarding the entanglement introduced in the two-qubit models, there
is still not enough evidence to claim that it provides an advantage. However, we have seen
that local cost functions do provide a certain improvement and we need entanglement to
build such types of functions.

In Fig. 9b we compare the single-qubit and the qutrit classifiers for a classification
problem with 3 categories. For the qubit model, we have used the three maximally orthog-
onal states illustrated in Fig. 7b. On the contrary, for the qutrit model, we have used the
three orthogonal states of the computational basis: {|0⟩ , |1⟩ , |2⟩}. As we discussed in the
previous section, we have used the same number of parameters and gates per layer.

We can see that the qutrit model obtains better test accuracy results in almost all
regimes of layers. With the qutrit classifier, we are only using 3 parameters among the 8
possible parameters that have a general unitary transformation. This could mean that the
extra orthogonal state of the qutrit contributes to providing an advantage with respect to
the qubit model. Similar results are observed in the fitting function section: the qutrit
is able to reproduce function with more structure. The same applies to classification
because fitting more complicated functions is equivalent to delimiting regions with more
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(a) Qubit model (b) Qutrit model

Figure 10: In the figure on the left we have the results for the qubit model, where we have used 13
layers and we obtained an accuracy of 95.00%. The figure on the left, shows the results for the qutrit
model with 11 layers. The accuracy obtained was 94.80%.

structure. Despite the ansatzs used in both problems are not the same and, hence, we
can not establish a direct relation between both models, the general properties that we
have discussed still apply for this section. Moreover, with the qutrit classifier, we can
choose orthogonal reference states, while with the qubit we have to work with maximally
orthogonal states. This undoubtedly provides an advantage to the qutrit model, since the
space assigned to each category is larger in the qutrit Hilbert space.

Another interesting thing that we observe is that, with a similar accuracy obtained
in both qubit and qutrit models, the qubit model does not capture the frontiers of the
classification as well as the qutrit model. In Fig 10a it can be appreciated that there is a
region, marked with a red circumference, where points are not well classified. In principle,
it seems that the green points are assigned to the lower-left circle. However, there are some
points (x1, x2) that do not pertain to this circle but are classified as if they were. This may
be caused because of the division of the Bloch sphere, where two or more regions assigned
to a certain category may overlap. As we can see in Fig. 10b, with qutrits we do not
have this issue: the model captures well the structure of the problem. These results on the
qubit model may be because regions are better divided in this case or as a consequence of
having more coefficients in the exponentials, and thus more freedom to create delimiting
regions. It is reasonable that the model confuses a point on the border of the circle with a
point outside a circle. However, assigning categories to points that are far away from that
category may be a more significant error.

Code and data availability
All the code used in this work can be found on the GitHub repository https://github.
com/bertacasas/TFM_Berta_Casas.

5 Conclusions
In this work, we have studied a model of QNN based on the re-uploading of the data in the
quantum circuit. We have introduced the use of a higher-dimensional system, the qutrit,
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into these quantum models. We have explored the advantages and the drawbacks when we
use them. In particular, we have studied two problems: function fitting and classification.

For the function fitting problem, we have seen, on the one hand, that a qubit is able to
reproduce any Fourier series if we use enough layers. On the other hand, the qutrit model
with the specific ansatz used creates a function with fractional exponents. Because of the
semi-integer exponents, the function generated is not a Fourier series anymore. Despite
this, the extra accessible exponents enable to fit other functions with fewer layers. Since
we can simulate a qubit with a qutrit, choosing the appropriate ansatz that only operates
on a 2-level subspace of a qutrit, we will recover the results obtained for a qubit and we
will be able to generate Fourier series.

In the classification section, we also appreciate a better performance of the qutrit model
in comparison to the qubit model. With qutrits, we not only obtain better accuracy, but
we also appreciate better learnability even when the accuracy is the same in both qubit
and qutrit models. Moreover, we study the 2-qubit classifier, using both local and global
cost functions. We observe that the 2-qubit classifier with a local cost function obtains a
better accuracy, even compared with the single-qubit model.

We have seen that the use of the qutrit provides an advantage in simple QNN models.
This may indicate that, for more sophisticated models, it can also be beneficial to use high-
dimensional systems. Moreover, it is still not characterized if qutrit entanglement would
play a significant role when used in these models. This question remains unanswered and
more work has to be done in this direction. As we have argued, we believe that qutrits
may be useful for noisy and fault-tolerant current devices. Hence, another possible test for
our hypothesis is to try these models in a real quantum computer. If this was done, we
would have to think of a quantum tomography protocol to fully determine the state of the
qutrit. Other things that have not been considered are the training errors, caused by the
minimization subroutine. In the future, we should characterize this for knowing exactly
which errors come from the classical subroutine and which come from having noisy quantum
devices. In addition, we have seen the importance of the cost function for obtaining good
performance of the model. Then, more work can be done in characterizing the properties
of cost functions with distributions coming from a quantum computer.
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A Quantum gates
In this appendix, we show the quantum gates that we will be using in this work, both for
qubits and qutrits. First, for qubits, we introduce the Pauli matrices, which are a set of
2-dimensional Hermitian, unitary and traceless matrices. They are given by

σx =
[
0 1
1 0

]

σy =
[
0 −i
i 0

]

σz =
[
1 0
0 −1

]
.

(23)

The Pauli matrices are the generators of SU(2). By exponentiation, they generate the
rotations of a qubit:

Rx =eiθσx/2 =
[

cos θ
2 −i sin θ

2
−i sin θ

2 cos θ
2

]

Ry =eiθσy/2 =
[
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

]

Rz =eiθσz/2 =
[
e−iθ/2 0

0 eiθ/2

]
.

(24)

We also introduce the CNOT gate, a 2-qubit gate which is given by

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (25)

This gate acts on the qubits: the control qubit and the target qubit. If the control qubit
is in the 0 state, then the target qubit remains unchanged, while if the control qubit is in
the state 1, it is applied a X gate to the target qubit. A X gate is basically a swap gate.
Its summarized by X |0⟩ = |1⟩ and X |1⟩ = |0⟩. Then, another expression of this gate can
be:

CNOT = |0⟩ ⟨0| ⊗ I + |0⟩ ⟨0| ⊗X. (26)

The CNOT gate is widely used to create entanglement. The graphic representation of
this gate is shown in Fig. 11.

•

Figure 11: Graphic representation of the symbol of a CNOT used in a quantum circuit.

Now we introduce the quantum gates for qutrits. First, we present the eight Gell-Mann
matrices, which are the generators of SU(3), the special unitary group of dimension 3. They
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are given by

λ1 =

0 1 0
1 0 0
0 0 0

 λ2 =

0 −i 0
i 0 0
0 0 0

 λ3 =

1 0 0
0 −1 0
0 0 0


λ4 =

0 1
0 0 0
1 0 0

 λ5 =

0 0 −i
0 0 0
i 0 0

 λ6 =

0 0 0
0 0 1
0 1 0


λ7 =

0 0 0
0 0 −i
0 i 0

 λ8 = 1√
3

1 0 0
0 1 0
0 0 −2

 .
(27)

Any 1-qutrit operation can be generated by U = exp(i
∑

j ajλj), where aj are arbitrary
real parameter. By combining Kronecker products of the generators we can obtain any
n−qutrit gate. By exponentiation, they generate the possible rotations of two levels on a
qutrit:

R(01)
x = eiθλ1/2 =

 cos θ
2 −i sin θ

2 0
−i sin θ

2 cos θ
2 0

0 0 1

 R(01)
y = eiθλ2/2 =

cos θ
2 − sin θ

2 0
sin θ

2 cos θ
2 0

0 0 1



R(01)
z = eiθλ3/2 =

e−i θ
2 0 0

0 e−i θ
2 0

0 0 1

 R(02)
x = eiθλ4/2 =

 cos θ
2 0 −i sin θ

2
0 1 0

−i sin θ
2 0 cos θ

2



R(02)
y = eiθλ5/2 =

cos θ
2 0 − sin θ

2
0 1 0

sin θ
2 0 cos θ

2

 R(02)
z = eiθ(λ3+

√
3λ8)/4 =

e−i θ
2 0 0

0 1 0
0 0 ei θ

2



R(12)
x = eiθλ6/2 =

1 0 0
0 cos θ

2 −i sin θ
2

0 −i sin θ
2 cos θ

2

 R(12)
y = eiθλ7/2 =

1 0 0
0 cos θ

2 − sin θ
2

0 sin θ
2 cos θ

2



R(02)
z = eiθ(−λ3+

√
3λ8)/4 =

1 0 0
0 e−i θ

2 0
0 0 ei θ

2


(28)

The superindices (ij) with i > j indicate that the rotation is made in the i and j energy
levels subspace. Essentially, what this means is that we are performing one-qubit rotations
but only on the subspace of the i and j levels (subspace that can be thought of as a qubit),
remaining the other level untouched.

There is a generalization of the CNOT gate for the qutrit, the ternary controlled-X
gate. First, we introduce the X-qutrit gates. They are different from the qubit X-gate
since with three levels we have to specify what is a swap. The three quantum X gates are
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given by

X(01) =

0 1 0
1 0 0
0 0 1


X(02) =

0 0 1
0 1 0
1 0 0


X(12) =

1 0 0
0 0 1
0 1 0

 .
(29)

These gates act on 2 subspaces of a qutrit and perform a swap between two of the levels.
We define the Ternary Controlled-X gate (TCX) as follows:

TCX = |0⟩ ⟨0| ⊗X(01) + |1⟩ ⟨1| ⊗X(02) + |2⟩ ⟨2| ⊗X(12). (30)

Hence, if the control qubit is in the zero state, we apply X(01) to the target qutrit, if it is
in the state 1 we apply X(12) and if it is in the state 2 we apply X(02).

B Fourier series and Laurent polynomial definition
Here we provide the definition of both the Fourier series and the Laurent polynomials.
First, let’s start with the Fourier series:

Definition 1. A truncated Fourier series is an expansion of a periodic real-valued function,
that can be expressed as a sum of sines and cosines. In the exponential form, it is given by:

g(x) =
M∑

l=−M

cle
i π

T
l, (31)

where T is half of a period of the function g(x) and l π
T are the multiples of the fundamental

frequency π
T . {l π

T }l form the frequency spectrum. The coefficients cl ∈ C, fulfill cl = c∗
−l.

A Fourier series with enough large degree can approximate any continuous and square-
integrable function.

A truncated Fourier series can also be expressed as a Laurent Polynomial:

Definition 2. Laurent Polynomial can be defined from a partial Fourier sum by substitution
z = ei π

T
x:

P (z) =
∑
l∈Ω

clz
l. (32)

We define the degree of the Laurent Polynomial as the maximal absolute value of all z
exponents. The parity of the polynomial is said to be 0 if we only have even coefficients,
and to be 1 if all the coefficients correspond to odd l.

C Effect of data encoding
In this section we derive how we can express a given quantum model, based on re-uploading
of the data, like

fθ(x) =
∑

k,j ∈[N ]L
ak,je

−ix(Λk−Λj), (33)
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which is a truncated Fourier series if all the frequencies in the spectrum are integers and
it is fulfilled that cn = c∗

−n. First of all, we recall that the general quantum model that we
are considering is given by

fθ(x) = ⟨0|U †(x,θ)OU(x,θ) |0⟩ = ⟨ψ(x,θ)|O |ψ(x,θ)⟩ (34)

where O is some arbitrary observable, and U(x,θ) an unitary operation given by

U(x,θ) = W (L)S(x)W (L−1)...W (1)S(x)W (0), (35)

where L is the number of layers, W (i) and S(x) = eixH are the trainable gate at the
layer i and the encoding gate, respectively. As we argued, we are free to consider a diagonal
Hamiltonian and this is why we are going to assume: H = diag(λ1, ..., λd). First of all, let
us consider the state after the parameterized quantum circuit

U(x) |0⟩ = |ψ(x,θ)⟩ = W (L)e−ixHW (L−1)...W (1)e−ixHW (0) |0⟩ , (36)

We consider the i component of this state vector

[
|ψ(x,θ)⟩

]
i

=
N∑

j1,...,jL=1
W

(L)
i,jL

e−ixλjLW
(L−1)
jL,jL−1

...W
(1)
j2,j1

e−ixλj1W
(0)
j1,j0

δj0,1︸︷︷︸
|0⟩

=

N∑
j1,...,jL=1

e−ix(λj1 +...+λjL
)W

(L)
i,jL

W
(L−1)
jL,jL−1

...W
(1)
j2,j1

W
(0)
j1,1,

(37)

where we have contracted the last trainable gate W (0) with the state |0⟩, which corre-
sponds to the index 1. The indices j1, ..., jL run from 1 the dimension of the encoding Hamil-
tonian, N = dn. Now we will introduce the multi-index notation j = {j1, ..., jL} ∈ [N ]L.
This means that each j is a possible combination of L numbers and each one can run from
1 to N . We can also define Λj = λj1 + ...+ λjL . This is a sum that has |j| = dL possible
values, given by all the possible combinations of λji . Then, we can re-express the i-vector
state:

[
|ψ(x,θ)⟩

]
i

=
∑

j⃗∈[d]L
e−ixΛjW

(L)
i,jL

|jL⟩ ⟨jL|W (L−1)
jL,jL−1

...W
(1)
j2,j1

|j1⟩ ⟨j1|W (0
j1,1. (38)

Finally, we can express the quantum model in Eq. (34):

fθ(x) =
∑
i,j

[
⟨ψ(x,θ)|

]
i
Mi,j

[
|ψ(x,θ)⟩

]
j

=

∑
k,j∈[d]L

e−ix(Λk−Λj)ak,j ,
(39)

where we have grouped

ak,j =
∑
i,i′

(W ∗)(0)
i,k1

(W ∗)(1)
k1,k2

...(W ∗)(L)
kL,iMi,i′W

(L)
i′,jL

...W
(1)
j2,j1

W
(0)
j1,1. (40)

Then, comparing Eq. (39) with the general structure of a Fourier series, we can see
that the frequency spectrum is given by
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Ω = {Λk − Λj | k, j ∈ [d]L}, (41)

Only if the frequencies obtained are integers. Now, if we group all the terms that have
the same frequency, i.e., ω = Λk − Λj we can re-express the quantum model

fθ(x) =
∑
ω∈Ω

cωe
−ixω, (42)

where we grouped the coefficients

cω =
∑

k, j∈[d]L
Λk−Λj=ω

ak, j. (43)

This is simply a way of expressing that we have added up all the coefficients which
have the same ‘frequency’ ω.

D Proof of Lemma 3.1 and 3.2
Lemma D.1. There exists θ = (θ0, θ1, ...θL) ∈ RL+1 such that

UW ZW
θϕ,L =

[
P −Q
Q∗ P ∗

]
, (44)

where P , Q have the structure of a Laurent polynomial ∈ R[eix/2, e−ix/2] until degree L− 1.

Proof: First, let us show that P , Q have the structure of a Laurent Polynomial until
degree L− 1, meaning that they fulfill the property of Laurent Polynomials cl = c∗

−l, with
exception of the case l = L. Let’s propose P,Q for L layers and then study the case for
L + 1 layers, without assuming anything in the form of the polynomials. We obtain the
following result[

P −Q
Q∗ P ∗

]
Rz(x)Ry (θL)

=
[
P −Q
Q∗ P ∗

] [
cos θL+1

2 e−i x
2 − sin θL+1

2 e−i L+1
2

sin θL+1
2 ei x

2 cos θL+1
2 ei x

2

]

=
[

cos θL+1
2 e−i x

2P − sin θL+1
2 ei x

2Q−in − sin θL+1
2 e−i x

2P − cos θL+1
2 ei x

2Q

cos θL+1
2 e−i

θL+1
2 e−i x

2Q∗ + sin θL+1
2 ei x

2P ∗ cos θL+1
2 ei

jL+1
2 ei x

2P ∗ − sin θL+1
2 e−i x

2Q∗

] .

(45)
Hence,

PL+1 = θL+1
2 e−i x

2P − sin θL+1
2 ei x

2Q

QL+1 = sin θL+1
2 e−i x

2P + cos θL+1
2 ei x

2Q.

(46)
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Assuming that P =
∑L

l=−L ple
ixl and Q =

∑L
l=L qle

ixl, we can write

PL+1 =
L+1

2∑
l=− L+1

2

p̄le
ixl, with


p̄− L+1

2
= cos θL+1

2 p−L/2

p̄l = cos θL+1
2 p 2l+1

2
− sin θL+1

2 q 2l−1
2

p̄L+1
2

= − sin θL+1
2 qL/2

QL+1 =
L+1

2∑
l=− L+1

2

q̄le
ixl, with


q̄− L+1

2
= sin θL+1

2 p−L/2

q̄l = sin θL+1
2 p 2l+1

2
+ cos θL+1

2 q 2l−1
2

q̄L+1
2

= − cos θL+1
2 qL/2.

(47)

Let us check if p̄l = ¯p∗
−l and q̄l = ¯q∗

−l for −L ≤ l ≤ L. We obtain the two equations

cos θL

2 p 2l+1
2

− sin θL

2 q 2l+1
2

= cos θL

2 p− 2l−1
2

− sin θL

2 q 2l+1
2

sin θL

2 p 2l+1
2

− cos θL

2 q 2l−1
2

= sin θL

2 p− 2l+1
2

− cos θL

2 q− 2l+1
2
.

(48)

With these two equations, we arrive at

cot(θL

2 + π

4 )
p 2l+1

2
− p 2l−1

2

q 2l−1
2

− q− 2l−1
2

= 0 (49)

This equation is fulfilled if θL = 1
2(4πn + π) with n ∈ Z or p 2l+1

2
= p 2l−1

2
. Then,

there is always a solution that fulfils pl = p∗
−l. For l = ±L/2 in Eq. (48), we arrive at

tan θL
2 = −

p
− L+1

2
q L−1

2

and cot θL
2 =

p
− L−1

2
q L−1

2

, which is an incompatible system. Then, we have

demonstrated that PL , QL are not Laurent polynomials but they fulfill the conditions of
a polynomial of this type until the last degree. We have demonstrated the real-coefficient
case. The case with complex coefficients is analogous and it can be demonstrated following
the same steps.

Lemma D.2. The output of the quantum model T is a Laurent polynomial of degree, at
most, L, given by

T = ⟨0|UW ZW †
θϕ,L σzU

W ZW
θϕ,L |0⟩ . (50)

Proof: We demonstrate that T is, indeed, a Laurent polynomial. With the Polynomials
defined in Eq. (47), we can write

D =|PL|2 − |QL|2 =
L/2∑

n,m=−L/2
(p̄np̄m

∗ − q̄nq̄m
∗)eix(n−m) =

L∑
ρ=−L

L/2∑
n=−L/2

(p̄n ¯pn−ρ
∗ − q̄n ¯qn−ρ

∗)eixρ ≡
L∑

ρ=L

dρe
ixρ,

(51)

where we defined ρ = n−m. Then, we have that dρ =
∑L/2

n=−L/2(p̄n ¯pn−ρ
∗ − q̄n ¯qn−ρ). Let

us see if dp = d∗
−p for all cases:
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1. Case n, n−ρ, n+ρ ̸= ±L/2. Solving the system for this case, we obtain two possible
solutions

p̄n(p̄∗
n−ρ − p̄n+ρ) = 0

q̄n(q̄∗
n−ρ − q̄n+ρ) = 0.

(52)

If p̄n = 0, then, tan θn
2 = −p(2n+1)/2

q(2n−1)/2
. Also, we can have p̄∗

n−ρ = p̄n+ρ, where there are
values of θ that allow this to happen. Hence, seems that in general there is always
possible to obtain dρ = d∗

−ρ. There are multiple solutions that allow it.

2. Case n = L/2 or n± ρ ̸= ±L/2.Then we have

p̄n = ¯pL/2 = − sin θL

2 qL−1
2

q̄n = ¯qL/2 = − cos θL

2 qL−1
2
.

(53)

As before, we have the same possible solutions. p̄L/2 = 0 or q∗
n−ρ = qn+ρ.

3. Case n− ρ = L/2 and n, ρ ̸= ±L/2. We can find a solution by imposing pn = 0 and
q̄n(cos θL

2 qL−1
2

− sin θn+ρ

2 pL−1
2

+ cos θn+ρ

2 qL−1
2

= 0. This can be fulfilled if the second
term of the multiplication is zero, which is it possible.

4. In the last case ρ = 0, all equations are fulfilled if p∗
n and q∗

n = qn

Then, we can say that it is satisfied for all cases since n− l = n+ l = L/2 only occurs
if ρ = 0, which is the fourth case. Hence, T is a Laurent polynomial, since all the relations
are fulfilled.
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