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This paper contains a study of the synchronization by homogeneous nonlinear driving of systems that are
symmetric in phase space. The main consequence of this symmetry is the ability of the response to synchronize
in more than just one way to the driving systems. These different forms of synchronization are to be understood
as generalized synchronization states in which the motions of drive and response are in complete correlation,
but the phase space distance between them does not converge to zero. In this case the synchronization
phenomenon becomes enriched because there is multistability. As a consequence, there appear multiple basins
of attraction and special responses to external noise. It is shown, by means of a computer simulation of various
nonlinear systems, that:~i! the decay to the generalized synchronization states is exponential,~ii ! the basins of
attraction are symmetric, usually complicated, frequently fractal, and robust under the changes in the param-
eters, and~iii ! the effect of external noise is to weaken the synchronization, and in some cases to produce
jumps between the various synchronization states available.@S1063-651X~96!04806-4#

PACS number~s!: 05.45.1b, 47.52.1j, 84.30.2r

I. INTRODUCTION

It has been reported by Pecora and Carroll@1,2# that two
identical chaotic systems, characterized by exponential di-
vergence of trajectories in phase space, may be synchro-
nized. By synchronization they meant that the distance be-
tween the state points of both systems in phase space will
converge to zero as time increases. This is achieved by driv-
ing one of the systems, the response, with a convenient cha-
otic signal generated by the other system, the drive. The
possibility of realizing such synchronization has been suc-
cessfully tested by computer simulations@1–3# and experi-
ments on electronic circuits@4,5#. This phenomenon is
known as synchronization by homogeneous nonlinear driv-
ing. Besides its theoretical importance as a different phenom-
enon, there have been arguments on its possible practical
interest in fields such as communications@6–9#, control
@10,11#, and neural science@1,2,12#.

Recent work in this field has drawn attention to the exist-
ence of meaningful generalizations of the idea of synchroni-
zation @13,14#. In these generalizations, the variables of the
response evolve in correlation with the variables of the drive,
although they do not take the same values. Amritkar and
Gupte@13# characterize this generalization by means of con-
venient correlation dimensions that quantitatively measure
the correlations between drive and response. Rulkovet al.
@14# generalize the idea of synchronization equating vari-
ables from the response with a function of the variables of
the drive.

In this article I will report on a particular type of nonlin-
ear dynamical systems that exhibit synchronization behav-
iors of a generalized type together with the usual~Pecora and
Carroll! synchronization. These nonlinear systems are de-
scribed by equations that hold symmetries such that a re-
sponse may synchronize in more than just one way to the
drive. The synchronization behavior achieved is determined
by the initial conditions of drive and response. In this case
synchronization is to be understood in a generalized sense, as
a state in which there is some generalized distance that goes

to zero as time increases. This must be a nontrivial function
of the phase space positions of drive and response. Then
synchronization of chaotic systems by homogeneous nonlin-
ear driving becomes a phenomenon richer than initially
thought. In this article, I will develop these ideas for autono-
mous nonlinear systems and present a computer simulation
study of various mathematical models whose equations ex-
hibit symmetries of that type.

The contents of the article are arranged as follows. In Sec.
II, I will present a general discussion on system symmetry,
the appearance of multiple synchronization states, and its
consequences. Moreover, I will present three particular clari-
fying examples. In Sec. III, I will present and discuss a nu-
merical study of the model systems proposed in the preced-
ing section as examples. In particular, I will pay attention to
the chaotic behavior, the synchronization behavior, the ba-
sins of attraction to the several synchronization states avail-
able, and the effect of external noise on the synchronization.
Finally, in Sec. IV, I will discuss and summarize the main
results presented in the paper.

II. THEORETICAL CONSIDERATIONS

A. Theory

Let us begin with a brief review of some background
concepts. The drive system is a homogeneous nonlinear au-
tonomous n-dimensional system with variables
u5(u1 ,...,un), evolving under the equationsu̇5 f (u) with
f5„f 1(u),...,f n(u)…, which can be divided in two sub-
systemsn5(u1 ,...,um) andw5(um11,...,un), governed by
the equationsṅ5g(n,w) with g5„f 1(u),...,f m(u)…, and
ẇ5h(n,w) with h5„f m11(u),...,f n(u)…, respectively. The
response system is a copy ofw, w85(um118 ,...,un8), which
evolves underẇ85h(n,w8), so that it is run by its own
variables w85(um118 ,...,un8) plus the variables
n5(u1 ,...,um) of the drive, which are called the drive sig-
nal. Pecora and Carroll define synchronization as the situa-
tion in which the distance in phase space between the sub-
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systemsw andw8 Dw(t)5w8(t)2w(t) converges to zero
as time increases. The evolution ofDw(t), in the limit of
infinitesimal Dw, obeys the variational equation@1#:
d(Dw)/dt5Dwh(n,w)Dw, whereDwh(n,w) is the Jaco-
bian of thew subsystem. The Lyapunov exponents resulting
from this equation are called conditional Lyapunov expo-
nents and measure the average rate of divergence ofw8 from
w for smallDw(t) @2#. The necessary and sufficient condi-
tion for synchronization is that the conditional Lyapunov ex-
ponents must be all negative@1,2#. In addition, Badola,
Tambe, and Kulkarni@3#, have reported that negativity of
conditional Lyapunov exponents is only a guarantee of syn-
chronization for a subset of initial conditions, so that only in
these cases synchronization occurs. In particular, they re-
ported computer simulation results of coupled lattice maps
with negative conditional Lyapunov exponents, for which
not all sets of initial conditions gave rise to synchronization.

My point in this paper is that the idea of synchronization
can be enriched in a meaningful and interesting way. This
happens when there is a transformation of coordinates
T:w→w* , such that the evolution equations forn andw are
invariant under this change, so thatṅ5g(n,w* ) and
ẇ*5h(n,w* ) hold. In this case, if there is a set of initial
conditions for whichw8 synchronizes withw in the sense
that the distancew82w→0, then it must also happen that
w8*2w→0 for another set of initial conditions, obtained
from the first by means of the above transformation of coor-
dinates. However, the variablesw* andw can be obtained
one from each other by means of some function relating
themw*5T(w). Then, it follows that—for this second set
of initial conditions—there is a generalized distance
D(w8,w)[T(w8)2w that goes to zero as time increases. In
a broader sense this means thatw8 is synchronized withw in
a form different than the usual (w82w→0). So we have two
different ways for the response to evolve in synchrony with
the drive; that is, two different synchronization states avail-
able. Which of them is to be achieved in a particular case
will depend on the initial conditions of drive and response in
that case. It is important to note that the existence of this
second synchronization state of the response follows from
the symmetry of the system plus the existence of the usual
synchronization state for a particular set of initial conditions.
That is, besides symmetry one needs negative conditional
Lyapunov exponents to ensure the usual synchronization
state to exist@1#, at least for a subset of initial conditions@3#.

This opens up a scenario in which, for attractors which
are invariant unders nontrivial symmetry transformations
$w1*5T1(w),w2*5T2(w),...,ws*5Ts(w)%, one may have
drive systems and signals for which there is a set ofs11
different synchronization states available,aP$0,1,2,...,s%,
each with its own distanceDa(w,w8)5Ta(w8)2w that
goes to zero for properly chosen initial conditions of drive
and response. Here,a50 stands for the usual synchroniza-
tion state (T0(w)5w). The synchronization states discussed
here can be seen as particular cases of the idea of generalized
synchronization as introduced by Rulkovet al. @14#, who
understand synchronization as equality of the variables of
one of the subsystems to a function of the other subsystem.
In the present case, the functionTa(w) plays this role, be-
causeDa→0 meansw5Ta(w8) for time large enough.

According to Badola, Tambe, and Kulkarni@3#, when
only the usual Pecora and Carroll synchronization state is
available, the 2n–m dimensional space of initial conditions
(u0 ,w08), is divided into two sets of initial conditions: one
that leads to synchronization and another that does not. In the
present case, the situation becomes even more interesting
because the space of initial conditions is to be divided in as
many subsets, or basins of attraction, as synchronization
states available; to which, eventually, one must add possible
initial conditions that do not drop down to synchronization
states. From the above discussion it follows that such divi-
sion in basins of attraction must exhibit symmetries reminis-
cent of those of the attractor. In particular, the regions of
nonsynchronization initial conditions must be invariant un-
der the coordinate transformationsTa of the equations of the
drive; whereas, such kinds of transformations, must convert
the different regions of generalized synchronization behavior
into each other.

An important related issue is the effect of external pertur-
bations, such as external noise in the synchronizing signal,
on the synchronization phenomenon. In the present case, if
the perturbations are not too large, one can expect their effect
to be of one or both of the following types:~i! a weakening
of the synchronization, in which none of theDa converges to
zero, but one of them remains small, so that its time average
is a well defined small constant, and~ii ! a jumping behavior,
in which the response switches between the different syn-
chronization ~or nonsynchronization! states available. The
particular effect observed and its intensity will depend on the
system considered and on the strength and properties of the
perturbation.

The weakening of the synchronization is mainly due to
the competition between the tendency of the subsystems to
synchronize, given by the conditional Lyapunov exponents,
and the tendency of the noise to put them apart. Therefore
one can expect different models to respond in the same
qualitative manner. This behavior may be described by
means of a set of probability densities for the distance
Pa(D) each of them defined for one of the generalized dis-
tances involved. These probability densities are defined such
that Pa(D)dD is the probability of finding the drive and
response at a generalized distanceDa betweenD and
D1dD. In a weakly synchronization state, the generalized
distance between drive and response will fluctuate in such a
way that, for the value ofa for which there is weak synchro-
nization, the corresponding probability densityPa(D) will
be peaked around a value of maximum expectationD̄ which
will be small and must increase with increasing noise
strength. For the distances corresponding to values ofa for
which there is no synchronization at all, the corresponding
distribution function should exhibit a broad maximum
around values of the same magnitude than the attractor size.
The value ofD̄ represents a compromise between the ten-
dency of the distance to exponentially decay to zero~given
by the conditional Lyapunov exponents!, and the size and
distribution of the external fluctuations that act to separate
the response from the drive. As for the generalized distances
that do not synchronize, they will take values corresponding
to distances between different parts of the attractor; and, this
is why, they should fluctuate around values of the same order
of magnitude of the attractor size.
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Otherwise, the jumping behavior between synchronization
states is very likely to be a consequence of the particular
geometry of the attractors involved. A jump will occur when
a fluctuation is large enough to send the system from one
synchronization state to another. For a given distribution of
fluctuations the probability of such an event will depend on
how separated, in the response attractor, are the couples of
state pointsw8 andw8* which are related by a symmetry
transformation (w8* )5Ta(w8). This is something given by
the shape of the attractor. For example, attractors with the
topology of a single loop~the type shown by the Ro¨ssler
attractor@15#! are expected to be more robust against jumps
than attractors with the topology of two tangent loops~the
type of the Lorenz model@16#!. This is because in this sec-
ond case it is very likely that a fluctuation throws a system
evolving in one loop to the other when it is moving in the
neighborhood of the point of contact between the loops. This
situations is, however much less likely in the case of the
single loop because the distance betweenw8 andw8* will be
of the same order of magnitude that the attractor size. I shall
remark at this point that I do not mean that the Ro¨ssler and
Lorenz models are going to exhibit the behavior previously
described. I am just using the overall image of two very well
known dynamical systems to illustrate a general idea. Ex-
amples of systems that exhibit the behavior studied in this
paper are presented in the next subsection.

B. Examples

Consider, for example, a drive with variablesu5(x,y,z)
such that the equationu̇5 f (u) has inversion symmetry in
the x-y plane; that is, it is invariant under the change
(x,y,z)→(2x,2y,z). Let us takez as the driving signal and
(x,y) as the response. If for some initial condition of the
drive and the initial condition of the response (x08 ,y08) it
happens that D0[ux82xu1uy82yu→0, then D1
[ux81xu1uy81yu→0 must occur for the same initial con-
dition of the drive and the initial condition of the response
(2x08 ,2y08). So we will have two different synchronization
states, each available from the proper set of initial condi-
tions. A couple of particular examples of models holding this
type of symmetry, to which I will dedicate particular atten-
tion in the numerical part of this paper, are given by the
systems of first order differential equations

ẋ52ax1bz sin~y!,

ẏ52y1~z2g!x,

ż512xy, ~1!

beinga, b, andg parameters of the model, and

ẋ5y1A sin~Vy!,

ẏ52y2~z2R!x,

ż5x22z, ~2!

with A, V, andR parameters of the model. These equations
are invariant under the change (x,y,z)→(2x,2y,z). Then,
if the drive u5(x,y,z) is decomposed inn5(z) and
w5(x,y), they have available two possible synchronization
states, which correspond to the above distancesD0 andD1.

As a second illustrative example consider the case of sys-
tems with variables (x,y,z) that are invariant under rotations
of thex-y plane around thez axis. In this case one will have
as many synchronization states as the order of the rotational
symmetry groupCm . A case of easy study isC4; that is,
invariance under rotations under angles that are integer mul-
tiples ofp/2 radians. In this case we will have invariance of
the evolution equations under the identity, plus the following
three different coordinate transformations:T1 :(x,y,z)
→(2x,2y,z), T2 :(x,y,z) →(y,2x,z), and, T3 :(x,y,z)
→(2y,x,z). Therefore, given an initial condition of the
drive, if D0[ux82xu1uy82yu→0 for some initial condition
of the response (x08 ,y08), then it must occur that
D1[ux81xu1uy81yu→0 for (2x08 ,2y08), D2

[uy82xu1ux81yu→0 for (y08 ,2x08), and D3

[uy81xu1ux82yu→0 for (2y08 ,x08). Then we will have
four different synchronization states available from the
proper sets of initial conditions. An example of an attractor
that exhibitsC4 symmetry, and which will be studied below
in this paper, is given by the following three dimensional
flux:

ẋ5e~x,y!@2ax1bz sin~y!#1d~x,y!@2x1~g2z!y#,

ẏ5e~x,y!@2y1~z2g!x#1d~x,y!@2ay2bz sin~x!#,

ż5e~x,y!@12xy#1d~x,y!@11xy#, ~3!

being e(x,y)5@11tanh(2sxy)#/2, d(x,y)5@1
2tanh(2sxy)#/2, anda, b, g, ands are parameters of the
model.

I must note that the equations presented above are for
mathematical models, with no immediate physical interpre-
tation or applied motivation, that are proposed just for the
sake of illustration. In fact, Eqs.~1! and~3! are modifications
of the equations for a magneto-mechanical model proposed
by Rikitake to study the time reversal of earth’s magnetic
field @17#, and Eqs.~2! are a mathematical model introduced

FIG. 1. Projections of the attractors defined
by the proper evolution equations onto the (x-y)
plane for the three nonlinear systems described in
the text: ~a! A1, ~b! A2, and~c! A3.
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here only as an illustrative example. However, when dealing
with models with direct physical motivation, the variablesx,
y, and z will be physical quantities whose values define a
particular state of the system. In particular, they may be ve-
locities, electrical currents, temperature gradients, or other
physical quantities, so that a change of sign or numerical
values would mean significant changes in the corresponding
experimental situations. Accordingly, the occurrence of
DaÞ0→0 instead ofD0→0 would imply different physical
situations, and so it follows that what I am describing here
may manifest itself as a phenomenon with physical meaning.

III. NUMERICAL EXPERIMENTS

A. Chaotic attractors

To illustrate the theoretical points raised above I will now
present and discuss some numerical results for the math-
ematical models used above as examples. These have been
obtained working in double precision, and integrating the
evolution equations by means of a fourth order Runge-Kutta
algorithm. Most of the numerical results in this section cor-
respond to the following cases:~A1! Equation~1!, at the
parameter valuesa51.5, b52.0, andg53.75, and an inte-
gration time step of 0.03,~A2! Equation~2!, at parameter
valuesA53.2,V51.4, andR55.2, and an integration step of
0.01, ~A3! Equation~3! at parameter valuesa52.0,b52.0,
g53.0, ands516.0, and an integration step of 0.03. These
cases will be designated throughout this paper with the cor-
responding abbreviation An,nP$1,2,3%.

In the first place, to ensure that at the above parameter
values the systems considered are chaotic, I have performed
a series of standard tests@18,19#. The results of some of them
are displayed in Figs. 1–3. In Fig. 1 there appear plots of the
attractors which tend to fill up a section of the phase space,
as corresponds to chaotic evolutions. Besides, this figure
shows how the attractors exhibit the symmetry of the corre-
sponding evolution equations. In particular, one can appreci-

ate how A1 and A2, despite showing the same type of sym-
metry, present a different topology, i.e., A1 is a double loop,
while A2 is a single loop. In Fig. 2, there appear plots of the
~n11!th maximum ofz versus thenth for sets of 10 000
points. This shows the existence of approximately quadratic
or tent maps embedded in the attractors, which is clear evi-
dence of chaos. Additional evidence is given by the power
spectrum of the variablesx(t), y(t), andz(t) which exhibit
the presence of a broad spectrum of frequencies as shown,
for example, in Fig. 3 for the variablez(t). Moreover, I have
computed the Lyapunov spectrum of the systems by means
of the technique developed independently by Benettinet al.
@20#, and by Shimada and Nagashima@21#. The results ob-
tained are displayed in Table I. Because the theorem of
Haken @22#, on the existence of at least one vanishing
Lyapunov exponent, does hold in this case, these are to be
understood as chaotic spectra of the type~1,0,2!.

B. Synchronization behavior

Let us now turn to the synchronization behavior of these
system underz driving. First of all, I have computed the
conditional Lyapunov exponents using the Benettinet al.
@20#, and Shimada and Nagashima@21# method. The results
obtained appear in Table I. In all cases I have found that both
conditional Lyapunov exponents are negative; so, the Pecora
and Carroll condition for synchronization is satisfied. Then
one can expect, for all three attractors, to exist a set of initial
conditions, (x0 ,y0 ,z0 ,x08 ,y08), from which the response syn-
chronizes with the drive in the sense thatD0→0. According
to the discussion in the preceding section, this implies that
we should observe generalized synchronization behaviors of
the proper typeDa→0, for the initial conditions of the re-
sponse obtained from the above (x08 ,y08) by means of the
coordinate transformationTa . The discussion of the results
obtained for the different cases studied follows.

For A1, I have numerically integrated the fifth order non-
linear system defined by equations

FIG. 2. Return maps for the three symmetric
nonlinear systems studied:~a! A1, ~b! A2, and
~c! A3.

FIG. 3. Power spectra for the
z signal for the three symmet-
ric nonlinear systems studied:
~a! A1, ~b! A2, and~c! A3.
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ẋ852ax81bz sin~y8!,

ẏ852y81~z2g!x8, ~4!

combined with Eq.~1!. In this case, the two types of syn-
chronization behaviors mentioned aboveD0→0 andD1→0,
can be obtained from the proper initial conditions. As an
example, the time evolution ofD0(t) andD1(t) is displayed
in Fig. 4~a! for an initial condition in the basin of attraction
for thea51 generalized synchronization state. The evolution
of D1(t) shows an oscillatory exponential decay to zero,
while D0(t) oscillates around a constant value, with a mag-
nitude around the size of the attractor. A plot ofD0(t) and
D1(t), for initial conditions leading to the usual synchroni-
zation state, would look like that in Fig. 4~a! but with the
curves forD0(t) andD1(t) swapped.

For A2, I have integrated the fifth order nonlinear system
defined by equations

ẋ85y81A sin~Vy8!,

ẏ852y82~z2R!x8, ~5!

combined with Eq.~2!. In this case, I have observed that not
all initial conditions of drive and response give rise to evo-

lutions towards one of the two synchronization states de-
scribed above. In fact, I was able to observe four different
behaviors available to the response from the appropriate sets
of initial conditions: ~1! synchronization of theD0→0 type,
~2! synchronization of theD1→0 type, ~3! a nonsynchro-
nized bounded state in which the response moves in an
ample orbit around the drive, never intersecting it, and~4! a
nonsynchronized unbounded state, in which the response fol-
lows a divergent evolution, which slowly spirals outward
around the drive so that both distancesD0(t) and D1(t)
diverge to infinity. These different behaviors are illustrated
in Fig. 4~b!, wereD1(t) is displayed as a function of timet
for four different initial conditions leading each to one of the
four types of behavior available. For an initial condition in
theD1→0 basin of attraction theD1(t) function decays in an
oscillatory exponential way to zero~curve 2!. For the non-
synchronized unbounded case an oscillatory exponential di-
vergence is clearly seen~curve 4!. For the other two cases
~curves 1 and 3! the generalized distance fluctuates around
an average finite value which is larger in the nonsynchro-
nized bounded case~curve 3!. A similar plot, with the be-
havior for the cases 1 and 2 swapped, would be observed if
the distanceD0(t) were shown. For additional illustration a
parametric plot ofx8(t) versusx(t) is displayed in Fig. 4~c!
for the nonsynchronized bounded case. This type of plot,
when synchronization occurs, looks like a straight line seg-
ment with a slope equal to 1 for theD0→0 case, and equal to
21 for theD1→0 case. The wide dispersion of points in Fig.
4~c! is indication of no correlation between the signals. The
overall inclination of the cloud of points, with a slope ap-
proximately equal to 3, indicates that the orbit for the re-
sponse is wider that the orbit for the drive. A plot ofy8(t)
versusy(t) would be similar to that in Fig. 4~c!.

For A3, I have numerically integrated the fifth order non-
linear system defined by equations

TABLE I. Spectra of Lyapunov exponents~l1,l2,l3! and con-
ditional Lyapunov exponents underz driving (l 1

(z) ,l 2
(z)) for the

three dynamical systems studied in this article.

~l1,l2,l3! (l 1
(z) ,l 2

(z))

A1 ~0.232, 0.000,22.732! ~20.104,22.396!
A2 ~0.126, 0.000,22.126! ~21.000,21.000!
A3 ~0.136, 0.000,22.981! ~20.053,22.790!

FIG. 4. ~a! Time evolution of the generalized
distancesD0(t) andD1(t) for an initial condition
in theD1→0 basin of attraction for attractor A1.
~b! Time evolution ofD1(t) for the four different
behaviors available to the response in the case of
attractor A2: ~1! synchronization of theD0→0
type, ~2! synchronization of theD1→0 type, ~3!
nonsynchronized bounded state, and~4! nonsyn-
chronized unbounded state.~c! Parametric plot of
x8 versus x in the nonsynchronized bounded
state.~d! Time evolution of the generalized dis-
tancesD0(t) andD3(t) for an initial condition in
theD3→0 basin of attraction for attractor A3.
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ẋ85e~x8,y8!@2ax81bz sin~y8!#1d~x8,y8!

3@2x81~g2z!y8#,

ẏ85e~x8,y8!@2y81~z2g!x8#1d~x8,y8!

3@2ay82bz sin~x8!#, ~6!

combined with Eq.~3!. As in the previous cases, I have been
able to observe all the synchronization states given byDa(t),
with aP$0,1,2,3% for initial conditions chosen conveniently
~see Sec. II B!. As an example, a plot ofD3(t) displaying the
characteristic exponential decay to zero appears in Fig. 4~d!,
for an initial condition in theD3→0 basin of attraction.
Moreover, in this plot there appearsD0(t), for the same
initial condition, which fluctuates around a finite value@the
same behavior will be observed ifD1(t) or D2(t) were
shown#. The corresponding plots for the other three cases
would exhibit a similar look. I must note that besides these
four synchronization behaviors available, there is the possi-
bility of no synchronization between drive and response for
initial conditions of the response close to~0,0!. In this case
the response evolves towards a fixed point located at the
origin of coordinates.

The plots forDa(t) in Fig. 4 illustrate the possibility of
the synchronization states of types different than the usual,

described in Sec. II, to exist. It is worth noting that Pecora
and Carroll also reported this type of oscillatory exponential
decay in their study of synchronization of systems with just
the usual synchronization state available@1,2#. The observa-
tion of systems with negative conditional Lyapunov expo-
nents for which some initial conditions synchronize while
others do not, gives additional illustration to the finding of
Badola, Tambe, and Kulkarni@3# that negativity of condi-
tional Lyapunov exponents is not a guarantee of synchroni-
zation for all initial conditions.

C. Basins of attraction

The study of the basins of attraction in the present case is
quite difficult, because we are faced with a five dimensional
space of initial conditions. To have some insight on the
shape of the basins of attraction to the different types of
behaviors available to the response, I have proceeded as fol-
lows. I chose some point in the attractor as initial condition
for the drive, (x0 ,y0 ,z0), and a grid ofN3N initial points in
the (x8,y8) subspace for the response. Then, I ran the equa-
tions for drive and response to see the time evolution ofDa
for each point in the grid. A plot was prepared in which each
point of the grid is colored according to the synchronization
state achieved, so that one can have an image of the basins of

FIG. 5. ~a! Drive attractor tra-
jectory, for attractor A1, with indi-
cation of the points taken as initial
conditions for the calculation of
the basins of attraction depicted in
this and the following two figures.
Plots of the basins of attraction of
the response to the different be-
haviors allowed to it whenz driv-
ing is applied: ~b! point 1, ~c!
point 3, ~d! point 4, ~e! point 5,
and ~f! point 7.

FIG. 6. Plots of successive am-
plifications of a basin of attraction
of attractor A1. The initial condi-
tion for the drive point is given by
point 6 in Fig. 5~a!, the origin of
coordinates is always at the center
of the image, and the amplification
factors are: ~a! 31, ~b! 310, and
~c! 3100.
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attraction for the particular initial condition of the drive
(x0 ,y0 ,z0). In almost all the cases that follow, these pictures
are centered at the origin of coordinates and show a region of
phase space a bit larger than the one spanned by the attractor.
In the case when the pictures represent regions not centered
at the origin or with dimensions different than those of the
drive attractor this is explicitly stated. In this study, I have
paid particular attention to the evolution of the basins with
the values of (x0 ,y0 ,z0) ~always chosen as a point in the
stable drive attractor!, to the nature of the basin boundaries,
and to the effect of the changes in the parameters of the
system on the basin pictures. In this last case I have studied
attractors with parameters different than those indicated at
the beginning of this section, chosen so that the system is
still chaotic, and the conditional Lyapunov exponents con-
tinue to be negative. In this case, the values of the drive
initial conditions (x0 ,y0 ,z0) cannot be exactly the same for
all choices of parameters because they are to be points of the
stable attractor which is a set of points that changes when the
parameters change. However they have been carefully cho-
sen to ensure that the points used for every choice of param-
eters are very close among them.

Representative examples of such basins in the case of A1
are displayed in Figs. 5, 6, and 7. There, grids of 1613161
initial conditions for the response are displayed with the
points in the grid colored white ifD1→0 and black ifD0→0.
Except when explicitly indicated, the regions studied has a
size of 9.634.8; which corresponds to the region of phase
space shown in Fig. 5~a!. All initial conditions give rise to
one of the two synchronization states available, with the only
exception of the origin of coordinates, which is an unstable
fixed point. Moreover, from these pictures it is clear that if
D0→0 for (x08 ,y08), then D1→0 for (2x08 ,2y08), as ex-
pected. The basin shapes vary with the initial condition of
the drive. This variation is illustrated in Fig. 5, where five
basin pictures are shown with an indication of the drive point
trajectory to which they belong. Additional pictures can be
seen in Fig. 6~a! and Fig. 7~a!. The shape of the basins
evolves smoothly along the drive trajectory@compare Fig.
5~e! with Fig. 6~a!# but experiences noticeable changes when
the point in the drive attractor are far away. In general, the
shapes of the basins are complicated and the two types of
synchronization behaviors available appear entangled. The
nature of these basins seems to be fractal as more detail is
seen with amplification; as illustrated in Fig. 6, where suc-
cessive amplifications by a power of ten of the central region
of one of them are displayed. Moreover, as illustrated in Fig.
7, the overall shape of the basin pictures appears robust un-
der changes in the parameters of the attractor; although, the

details of the different pictures change with changing param-
eters. In this figure, the shapes of the basins for close sets of
values of the drive initial condition (x0 ,y0 ,z0) and different
values of the parameteraP$1.5, 1.6, 2.0% appear. In particu-
lar it is worth noting that fora52.0 the basin boundaries
become smooth and simple.

For A2, representative examples of such basins are shown
in Figs. 8–11, where the grid of initial conditions for the
drive is displayed with the points in the grid colored white if
D1→0, black if D0→0, and gray if none of these events
happen. A small white dot indicates the position of the initial
condition of the drive. The grids of initial conditions for the
response displayed contain 2393239 points. Except when
indicated, the region studied has a size of 10314 and corre-
sponds to the phase space region shown in Fig. 8~a!. In all
plots the origin of coordinates is at the center of the image,
and the expected symmetry of the basins pictures is obvious.
The particular shape of the pattern observed depends on the
set of initial conditions chosen for the drive, as illustrated in
Fig. 8, Fig. 9~a!, and Fig. 10~a!. As in the previous case, one

FIG. 7. Plots of the basin of
attraction corresponding to the at-
tractor A1 for almost the same ini-
tial condition of the drive@point 2
of Fig. 5~a!#, and different values
of the parametera: ~a! 1.50, ~b!
1.60, and~c! 2.00.

FIG. 8. ~a! Drive attractor trajectory, for A2, with indication of
the points taken as initial conditions for the calculation of the basins
of attraction depicted in this and Figs. 9, 10 and 11. Plots of the
basins of attraction of the response to the different behaviors al-
lowed to it whenz driving is applied: ~b! point 1,~c! point 3, and
~d! point 4.
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obtains an evolution of the basin pictures with the change on
the drive initial condition (x0 ,y0 ,z0). However the overall
appearance of the basins is quite different than those of A1.
The more significant difference is that, despite the variety of
behaviors available, the different basins of attraction are
wide and clearly separated. Moreover, the values of the ini-
tial conditions of the response coincident with those of the
drive always appear far from the basin boundaries. These
basin boundaries, however, still seem to be fractal as illus-
trated in Fig. 9 by means of successive amplification, by a
factor ten, of the central region of one of them. The basin
shapes appear robust under the changes in parameter values,
as shown in Fig. 10, where basin pictures are displayed for
close drive initial conditions corresponding to different val-
ues of the parameterRP$5.20, 5.15, 4.80%, showing the same
overall shape but changes in the details. A particularity of
this system is the existence of other states available to the
response besides to the two synchronized ones. To show
more clearly the presence of these states, in Fig. 11, there are
displayed basin pictures for the same drive initial conditions
as those in Fig. 8, but displaying a region of 1003140 ~i.e.,
10 times larger!. The light gray region indicates the initial
conditions that gives rise to bounded nonsynchronized states,
and the medium gray regions~far from where the attractor
evolves! the initial condition from which the distances di-
verge.

Results for the basins of attraction of A3, are displayed in
Figs. 12–15. As for A1, the grids of points are 1613161.
Different shades of gray are used in this case with the fol-
lowing code: black forD0→0, white forD1→0, light gray
for D2→0, dark gray forD3→0, and medium gray for the
initial conditions from which the response drops towards the
fixed point at the origin. Moreover, a white dot indicates the
position of the initial condition of the drive. The region stud-
ied, except when indicated, has a size of 6.436.4 and corre-
sponds to the square shown in Fig. 12~a!. The symmetries
associated to theC4 symmetry of the attractor are clearly
seen through these pictures, except in Figs. 13~b! and 13~c!
that are not centered at the origin of coordinates. The evolu-
tion of the basins with the initial conditions, which is smooth
as in the previous cases, is illustrated in Fig. 12, and Figs.
13~a! and 14~a!. Despite having its own shape, these basins
resemble those of A2 in that there are wide regions for each
of the behaviors available in which there is no mixing among
the different behaviors available. This is so despite the basin
boundaries seeming to be fractal as illustrated in Fig. 13 by
successive amplifications by a power of ten of the central
region of one of them. The changes with the parameters of
the system resemble those of the two previous cases in that
the overall shape of the basins does not change, while the
details of the boundaries are somewhat modified. This is
shown in Fig. 14 where there appear results for the parameter

FIG. 9. Plots of successive amplifications of the basin of attraction of the response to the different behaviors allowed to the A2 attractor.
The initial condition for the drive point is given by point 5 in Fig. 8~a!, all the plots are centered at the origin of coordinates, and the
amplification factors are: ~a! 31, ~b! 310, and~c! 3100.

FIG. 10. Plots of the basin of attraction corresponding to the attractor A2 for almost the same initial condition of the drive@point 2 of Fig.
8~a!#, and different values of the parameterR: ~a! 5.20, ~b! 5.15, and~c! 4.80.
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s taking values in$16.0, 14.0, 12.0%. An interesting observa-
tion, for this attractor, is that, although almost all the time the
numerical values corresponding to the initial condition of the
attractor are well inside theD0→0 basin of attraction, for
some special points they become very close to the bound-
aries. This situations is illustrated in Fig. 15, where there
appear the boundaries for two close points near a region in
which the attractor bifurcates between two different loops. It
deserves to be noted how different the basins are, despite
points 1 and 2 being quite close. This reflects the fact that
point 1 is in a trajectory inside a loop, while point 2 is in a
trajectory corresponding to a jump between loops.

The results in Figs. 5 to 15 illustrate the practical possi-
bility of synchronization in a way different than usual when
we deal with symmetric systems. Moreover, they tell us that
each particular nonlinear system will display a set of peculiar
patterns that are a specific property of that system. This
means that the shapes of the basin boundaries are expected to
be as diverse as the dynamical systems themselves are. How-
ever, some regularities are present:~i! the basins display
symmetries reminiscent of those of the dynamical system to
which they belong,~ii ! they change smoothly with the varia-
tion of (x0 ,y0 ,z0) along the drive trajectory, and~iii ! they
appear to be robust under small changes of the parameters of
the system, despite that a change in parameters implies
changes in the attractor properties~expected to be small! as
well as in the values of the initial conditions of the drive.
Large changes in the parameters can alter in a significant
extent the basin boundaries. Moreover, the boundary basins
seem to be fractal, although this is not expected to be the
general rule as some of the plots indicate@see Fig. 7~c! and
Fig. 14~c!#.

D. Effect of external noise

To test the effect of external noise on the synchronization
in the models studied here, I have studied how synchroniza-
tion is affected by a white noise in the driving signal. To do
this I have integrated, together with the equations for the
drive, the corresponding equations for the response adding a
random Gaussian variableh with a standard deviations, to
the drive signalz. In the calculations performed, I have cho-
sen initial conditions well inside one of the basins of attrac-
tion to one of the synchronization states involved. Then, I
ran the equations of motion for 108 time steps, for values of

s between 10 and 1.031025 for A1, 10 and 5.031024 for
A2, and 10 and 1.031028 for A3. The objective is to get
some insight on the shape and behavior of the probability
densitiesPa(D) and the rate of jumps between synchroniza-
tion states. To achieve this, I have computed, in that time
window: ~i! the histograms for the number of occurrences
DNa(D) of a generalized distanceDa betweenD and
D1DD, and~ii ! the number of jumps between synchroniza-
tion states along the runNJ . To do this last calculation, I
consider the system to be weakly synchronized when one of
theDa is less 3s, while all the others are much greater than
that quantity. A jump happens when the particular value ofa
for which Da is small, the others being large, changes.
This choice is justified by what follows. Moreover,
I will note that, in this subsection, the histogramsDNa(D)
are presented under the form for the functionsf a(D)

FIG. 11. Basins of attraction for the same cases shown in Fig. 8, but showing a region 10 times wider:~a! point 1, ~b! point 3, and~c!
point 4.

FIG. 12. ~a! Drive attractor trajectory, for A3, with indication of
the points taken as initial conditions for the calculation of the basins
of attraction depicted in this figure and in Figs. 13 and 14. Plots of
the basins of attraction of the response to the different behaviors
allowed to it whenz driving is applied: ~b! point 1, ~c! point 3,
and ~d! point 5.
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5DNa(D)/NObs, beingNObs the number of observations of
D in the above time window, for a givenDD. In each case
the value ofDD has been chosen according to the range of
definition of the functionf a(D), to ensure that their shapes
are well resolved. The results obtained are independent of the
particular choice ofa for the basin of attraction of the initial
condition.

For A1 I have integrated, together with the above Eqs.~1!
for the drive, the following equations for the response:

ẋ852ax81b~z1h!sin~y8!,

ẏ852y81@~z1h!2g#x8, ~7!

with h the above random Gaussian variable. The shape of the
histogramsf a(D) for D0(t) and D1(t) exhibits the same
behavior, no matter in which basin of attraction the initial
condition was set. This is illustrated by means of the results
for f 0(D) and f 1(D), at a particular value ofs, shown for
the smallD region in Fig. 16~a! and for the largeD region in
Fig. 16~b!. Both distribution functions show the same ap-
pearance and are practically put on top of each other despite
the statistics implying only a finite number of observations.
This is an indication of repeated changes between synchro-
nization states. That is, what we see in these figures, for each
f a(D), is the combination of the distribution functions for
two different synchronization states: the case when the re-

sponse is in theDa→0 state@Fig. 16~a!# with the case when
the response is in theDa8Þa→0 state@Fig. 16~b!#. In the
smallDa region these functions present a well defined maxi-
mum close to zero, which signals a state of weak synchroni-
zation, in which the distance between both systems fluctuates
around the distance corresponding to this maximum. The
largeDa regions correspond to the time when the system is
in the other synchronization state so that the distance fluctu-
ates around values that are of the same order of magnitude as
the attractor size. It is important to notice that the distribution
functions for these two states have an overlapping region, as
seen in Fig. 16~b!, in accordance with the idea that the sys-
tem can easily jump between synchronization states. How-
ever, one has a well defined maximum for the times when
generalized synchronization occurs, so that it is possible to
compute the dependence of the value of the position of the
maximaD̄, with s. The results, that appear in Fig. 16~c!, can
be accurately fitted by a potential law of the type
D̄a(s)5Asb, beingA50.41960.015,b50.99960.005, and
the correlation coefficient 0.999 94. The dependence of the
number of jumps between synchronization statesNJ with the
amplitude of the noises is displayed in Fig. 16~d!. The
function NJ~s! can be approximated by a law of the type
NJ(s)5Asb with A51.10310661.73105 and b51.039
60.021, being the correlation coefficient 0.999 83. As the
interval of the variation of thez signal is 6.37 wide, we see
that above a noise as small as 1.631026 of the amplitude of

FIG. 13. Plots of successive amplifications of the basin of attraction of the response to the different behaviors allowed for A3. The initial
condition for the drive point is given by point 2 in Fig. 11~a!. The respective centers of the figures and amplification factors are:~a! ~0,0!
and31, ~b! ~0.32, 0.32! and310, and~c! ~0.094, 0.246! and3100.

FIG. 14. Plots of the basin of attraction corresponding to the attractor A3 for almost the same initial condition of the drive@point 4 of Fig.
12~a!#, and different values of the parameters: ~a! 16.0, ~b! 14.0, and~c! 12.0.
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this signal we still see jumps between synchronization states
~at this level of noise only nine jumps were observed in the
time window studied!. Anyway, the extrapolation ofD̄a~s!
andNJ~s! to s50 indicates that, when no noise is present,
the system stays in only one of the synchronization states
available. The effects of adding noise is to weaken the syn-
chronization and to introduce a rate of jumps between syn-
chronization states. These effects become more and more
intense as the level of noise is increased until synchroniza-
tion is completely lost.

For A2 I have integrated, together with the above Eqs.~2!
for the drive, the following equations for the response:

ẋ85y81A sin~Vy8!,

ẏ852y82@~z1h!2R#x8, ~8!

with h the above random Gaussian variable. One must note
that these equations also describe the behavior of the system

under a fluctuatingR parameter for the response, which in a
physical situation would stand for a response system in con-
tact with a fluctuating environment. In the following discus-
sion I will assume the noisy drive signal picture, however the
translation to the fluctuatingR case is straightforward. Fig-
ures 17~a! and 17~b! show, respectively, the shape of the
distribution functionsf 1(D) and f 0(D) for three different
values ofs. The initial condition for this particular picture
was in theD1→0 basin of attraction. Those plots indicate
that both distances fluctuate inside intervals that are well
separated; i.e., negligible overlap betweenf a(D) functions
at different synchronization states. Forf 1(D), this interval is
narrow and close to zero, while forf 0(D) it is wide and far
from zero. Moreover, the values forf 1(D) can be scaled in a
single curve when the distance is divided by the strength of
the noise. For values ofs below 0.8, the average value of the
distance for the weakly synchronized state^D1& is small and
well defined. I have verified that for a size of the sample

FIG. 15. ~a! Drive attractor trajectory with indication of the points taken as initial conditions for the calculation of the basins of attraction
depicted in this figure; and, plots of the basins of attraction of the response to the different behaviors allowed to it whenz driving is
applied: ~b! point 1, ~c! point 2.

FIG. 16. Shape of the histo-
grams f a(D) for the distances
D0(t) andD1(t) for attractor A1
under a level of noise of
s50.000 3 in ~a! the small dis-
tances region, and~b! the large
distances region. To have the
function shapes well defined, dif-
ferent intervals DD have been
used for the calculations in~a! and
~b!. ~c! Dependence of the posi-
tions of the maxima of the distri-
butions with the strength of the
noise for the weakly synchronized
state.~d! Dependence of the num-
ber of synchronization state
changes with the strength of the
noise. In ~c! and ~d!, the squares
are for numerical results and the
lines for their least squares fits.
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large enough, its numerical value does not change when this
size is increased@see Fig. 17~c!#. In the same way the aver-
age value of the distanceD0, ^D0&, is well defined too, but of
the same size as the attractor@Fig. 17~d!#. When the initial
condition is chosen in theD0→0 basin of attraction these
comments would be the same but swapping indexes 0 and 1.
I have found that fors<0.8, in the time window studied
there are no jumps between the different synchronized and
nonsynchronized states available. Moreover, the relation be-
tween^D& ands, for the weakly synchronization state, can
be accurately fitted by a law of the type^D&5Asb, with
A50.35760.008,b51.00760.002, and the correlation coef-
ficient 0.999 98@see Fig. 17~e!#. A similar result is obtained
when D̄ is studied; in this case, it isA50.22660.001, and
b50.99960.001 and the correlation coefficient is 0.999 86.
The concordance is clear between the most probable and
average distances. The interval of variation of thez signal is
6.57 wide; then, below a noise as large as 12 percent of the
amplitude of the signal, we can have the response in one of
the generalized synchronization states, evolving at an aver-
age generalized distance of the drive of the same order of
magnitude than the noise applied, at least in the time window
studied here. For values ofs above 0.8 the response jumps
between the several basins of attraction available. Then,
sooner or later, it falls into the basin of divergent initial
conditions, and the value of̂Da& becomes a quantity that
increases when the interval where the time average is per-
formed is increased@see Fig. 17~c! and Fig. 17~d!#.

For A3 I have integrated, together with the above Eqs.~3!
for the drive, the following equations for the response:

ẋ85e~x8,y8!@2ax81b~z1h!sin~y8!#

1d~x8,y8!$2x81@g2~z1h!#y8%,

ẏ85e~x8,y8!$2y81@~z1h!2g#x8%

1d~x8,y8!@2ay82b~z1h!sin~x8!#, ~9!

with h the above random Gaussian variable. The effect of
noise is a generalization of the results described for A1 to a
C4 symmetry case. This is illustrated in Figs. 18~a! and 18~b!
where thef a(D) functions for the four generalized distances
implied are practically indistinguishable from each other, de-
spite the limited statistics used. As in the two previous cases,
weak synchronization is obtained with distributions func-
tions peaked at a value close to zero for the synchronized
state and broad distributions for the nonsynchronized. Al-
though, these distributions show overlaps with increasing
noise, one still has a well defined maxima atD̄ that can be
studied as a function of the noise strength@Fig. 18~c!#. More-
over, as in A1, jumps between synchronization states are
present and its number increases with the noise strength@Fig.
18~d!#. The laws describing these events are potential laws.
For the position of the maxima [D̄a(s)5Asb] one has
A50.22360.005 andb50.99960.002 with correlation coef-
ficient 0.999 97. And for the number of jumps
[NJ(s)5Asb], A53.93310462.63103 and b50.454
60.005 with a correlation coefficient of 0.999 23. Being the
range of variation of thez signal 3.23 wide, we obtain that
above a noise as small as 3.131029 of the amplitude of the

FIG. 17. Shape of the histogramsf a(D) for attractor A2 under a level of noise ofs50.005 ~circles!, s50.05 ~squares!, ands50.5
~triangles!: ~a! f 1(D) and ~b! f 0(D) for initial conditions in theD1→0 basin of attraction. To have the function shapes well defined,
different intervalsDD have been used for the calculations in~a! and~b!. Proof of the stability of the average value ofD for: ~c! D1 and
~d! D0. Circles, squares, and triangles have the same meaning as in~a! and~b!, diamonds are the results fors55.0. ~e! Dependence of the
positions of the maxima of the distributions,D̄, ~squares!, and the average distance for values of a weakly synchronized state,^D&, ~circles!,
with the strength of the noises. The lines are least squares fits.
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signal we still observed jumps between synchronization
states in the time window considered~only ten jumps at this
level of noise!.

In general, the two effects of noise expected in Sec. II are
observed in the computer experiments: weak synchroniza-
tion and changes between synchronization states. These ef-
fects become more important with the strength of the noise.
The mathematical laws followed are potential, so that in the
free noise cases there is full synchronization with no jumps
between synchronization states. A consequence of this is that
one can have one of theDa(t)'0 and no jumps between
states in a time window as large as desired when the noise
level is low enough. Moreover, the results for A2 illustrate
that, when the topology of the system is adverse for the
jumps between synchronization states, except for extremely
large fluctuation that are very improbable, one can expect
only a weakening of the synchronization with no jumps be-
tween synchronization states, even for quite large perturba-
tions. Anyway these results sustain the idea that the general-
ized synchronization states introduced here are not artifacts
of the computer, but robust situations that may be observable
in an experiment.

IV. SUMMARY AND CONCLUSIONS

In this article, I have shown how the symmetries in the
equations of a nonlinear dynamical system led to an exten-
sion of the idea of synchronization of two chaotic systems,
introduced by Pecora and Carroll, to an interesting situation
in which the system being controlled may synchronize in
more than just one way with the drive system. This repre-
sents an enrichment of the possibilities of synchronization
because, for a given system, there emerges a variety of states
of the response, physically different among them, but in syn-
chrony with the drive. Then, the space of initial conditions is
divided in basins of attraction to the different synchroniza-

tion states available—and, eventually, to nonsynchronization
ones. Moreover, two different responses to external pertur-
bations are possible: weakening of the synchronization and
jumping between synchronization states.

The phenomenon has been illustrated by means of a com-
puter simulation study of three mathematical models of cha-
otic systems, two of them bearing inversion symmetry and
one belonging to a large symmetry group~C4!. Moreover, in
some parts of the computational part of the paper, different
sets of parameters have been considered. From this computer
simulation results it follows that:

~1! When we deal with symmetric systems, it is possible
to have synchronization states of types different that the
usual. These can be described by means of convenient gen-
eralized distances, that decay to these states in an oscillatory
exponential fashion.

~2! The shapes of the basins of attraction to the different
synchronization states available are specific to each particu-
lar system. Even different systems having the same type of
symmetry will have patterns that differ qualitatively. How-
ever there are some regularities:~i! the basins display sym-
metries reminiscent to those of the dynamical system to
which they belong, and~ii ! they change smoothly under the
change of the parameters of the system. Moreover, it has
been found that the boundary basins may be fractal in many
cases.

~3! External noise has two effects: it weakens the syn-
chronization and gives rise to jumps between synchroniza-
tion states. The dependence with the strength of the noise for
both effects can be described by means of potential laws.
The weakening of the synchronization presents a behavior
common to all systems characterized by a well defined char-
acteristic distance. The jumping behavior is strongly depen-
dent on the topology of the system. In particular, for attrac-
tors with toroidal topology, even under relatively large
perturbations, one can expect to observe only a weakening of

FIG. 18. Shape of the histo-
grams f a(D) for the distances
D0(t), D1(t), D2(t), and D3(t)
for attractor A3 under a level of
noise ofs50.003 in~a! the small
distances region and~b! the large
distances region. To have the
function shapes well defined, dif-
ferent intervals DD have been
used for the calculations in~a! and
~b!. ~c! Dependence of the position
of the maxima of the distributions
with the amplitude of the noise for
the weakly synchronized state.~d!
Dependence of the number of syn-
chronization state changes with
the strength of the noise. In~c! and
~d!, the squares are for numerical
results and the lines for their least
squares fits.
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the synchronization with no jumps between synchronization
states.

Inside the frame of the general properties just mentioned,
each particular nonlinear system will have its own character-
istic properties, i.e., generalized synchronization states avail-
able, shapes of the basins of attraction, and response to ex-
ternal perturbations. This should not be a surprise because an
important characteristic of nonlinear systems is the richness
of behaviors available. In fact, the work presented here does
not exhaust the possibilities of study of synchronization of
symmetric chaotic systems, it only draws attention to their
interesting possibilities. Anyone willing to work on the syn-
chronization of a particular symmetric chaotic system should
perform a particular study of that system.

Possible extensions of the present work may include the
study of the synchronization of symmetric maps, instead of
flows. Prospective candidates for such a study will be the
maps with the symmetry of anm gon in the plane introduced
by Chossat and Gollubitsky in their work on symmetry-
increasing bifurcations of chaotic maps@23#. Other possible
candidates for such studies will be models that are more that
pure mathematical entities and represent real physical sys-
tems. An example of such models may be the network of
oscillators with the symmetries of an equilateral triangle
used by Ashwin to model coupled oscillating neurons@24#.

The ideas presented here have been tested only in numeri-
cal experiments with mathematical models. As it has been
found that the synchronization must be robust against weak
external noise and small changes in the parameters of the
system, there is founded hope that it will be observable in
experiments with real systems. This observation will be the
most important step forward in the issue of multiple synchro-
nization states and symmetry. It seems to this author that

electronic circuits will be the easiest way to realize such
experimental approach. This is because the usual Pecora and
Carroll synchronization has been observed in electronic cir-
cuits @4,5#, and these are versatile systems able to be tailored
for specific purposes. In particular, the use of nonlinear ele-
ments with piece-wise constitutive relations@25# will be es-
pecially useful to design systems like the one defined by Eqs.
~3!.

At a more speculative level, one might think the bistabil-
ity ~or multistability! of the kind of systems presented here to
be of interest in relation to problems in communication and
control theory, or in neural systems science. For example,
patterns resulting from a set of response systems under the
same drive, as those shown in Sec. III, are objects containing
information. In the frame of the emerging view of neurons
and neural nets as dynamical chaotic systems@26,27# this
might be of interest to study processes of storage and re-
trieval of information.

Finally, I will note that the results in the present paper
provide additional illustration of two important results re-
ported by other authors. These are:~i! the observation of
systems with negative conditional Lyapunov exponents, in
which not all the initial conditions of drive and response give
rise to synchronization, as suggested by Badola, Tambe, and
Kulkarni @3#, and ~ii ! the report of particular examples of
generalized synchronization behaviors introduced in more
general terms by Amritkar and Gupte@13# and by Rulkov
et al. @14#.
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