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The Feynman path integral formalism is one of the most elegant approaches
to Quantum Mechanics, and it provides an alternative and more intuitive man-
ner of understanding the relation between quantum and classical mechanics.
Nevertheless, path integrals have the drawback of being utterly difficult to
compute, which is why computational methods tackling this issue are in order.
In this work we explore the possibilities that Machine Learning has to offer in
such computational scenarios. Inspired by the standard Markov-Chain Monte
Carlo approach to path integrals, we design a generative neural network that
can infer the path distribution from previously generated paths and can also
generate new paths equally distributed. Our method has the fundamental ad-
vantage over the Markov Chain technique that, once trained, it can sample
random paths efficiently and in parallel. The ML model that we employ is
not specifically tailored to solve path integrals, and in fact it can be readily
embedded in any setting where learning or sampling from a probability density
function is needed.
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1 Introduction
Artificial Neural Networks (ANNs) have become powerful computational tools in the physics
domain (1; 2). The manifold of techniques used to approach physical problems with Ma-
chine Learning (ML) is growing steadily, and many of these techniques find applications in
a wide range of problems. Fields like condensed matter (3) and nuclear physics (4; 5; 6; 7)
are benefiting from this, and works like the one in Ref. (8) have already shown unrivalled
precision in quantum many-body problems, with applications also in quantum chemistry.
This last work uses ML techinques within the variational approach to quantum many-body
problems (9), which we have used ourselves in past works to solve a nuclear bound state
(10; 11). The fundamental idea is to use an ANN as the wave function ansatz in a varia-
tional setting, whence minimization of the energy leads directly to the ground-state wave
function.

One ML tool that is gaining momentum is that of random variable generation. In
fact, there exist ML settings wherein ANNs are used to learn some probability density
function (PDF) which is in turn used to efficiently extract samples (12). Some of the
methods in this direction have already been used in physical scenarios like lattice field
theory (13) and statistical physics (14), but only one work (at least that we are aware of)
has used these ideas in a path integral scenario (15), and it is precisely here that the focus
of this work is placed in. In Ref. (15), the harmonic oscillator (HO) and the double-well
potential problems are solved within the path integral formalism of quantum mechanics
using Recurrent Neural Networks (RNNs).

In a similar vein, here we propose a distinct generative approach to tackle the HO.
Rather than aiming at learning the analytical path distribution as in Ref. (15), input paths
originally sampled according to the analytical distribution (using standard computational
methods) are learned by a neural network. To this end, we use Variational AutoEncoders,
a special kind of generative ANNs that can extract relevant features from data and then use
them to generate new data with these features. Special attention is payed to the sampling
efficiency of our method, which is compared to that of the more standard computational
approaches to path integrals. In the last section of this work we briefly discuss the original
approach using RNNs and a different training objective.

We divide our work into three main Sections: in section 2 we provide an overview
of the path integral formalism. In Section 3 we explain the Markov-Chain Monte Carlo
approach that is customarily used in these sorts of problems. This is followed by section
4, wherein we introduce a ML method that shows computational advantage with respect
to the standard methods. Lastly, in section 5 we shortly discuss a ML approach to solve
path integrals from scratch, similar in spirit to that of section 4 but designed for a different
initial setting.
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2 The path integral formalism
The path integral (PI) formalism was first developed by Richard Feynman around the year
1948, and was published in the paper of Ref. (16). Feynman derived this formalism from
scratch, by analogy with the variational formulation of classical mechanics and without
using the standard operator formulation of quantum mechanics. It is a posteriori that
he showed that the formalism is equivalent to the standard one of quantum mechanics.
Interestingly, we now know that the converse is also valid. This is, we can obtain the PI
formalism starting from the operator formalism (17; 18).

The PI formulation has some advantages and some drawbacks when compared to the
standard formulation of QM. On the one hand, it establishes a connection with classical
mechanics: concepts such as trajectories or paths are the main pillar of path integrals, and
also the least action principle is recovered (with some nuances). This provides us with a
precious intuition of QM that we cannot get from the standard formulation.

On the other hand, for the standard, non-relativistic quantum-mechanical problems the
PI formulation is known for making calculations innecessarily complicated. Nevertheless,
they become indispensable to the formulation of Quantum Field Theory.

We will now briefly introduce the PI formalism for non-relativistic QM as Feynman did
it, for the procedure based on operator quantum mechanics is more easily found in books
and also some intuition of the connection with classical mechanics is lost on the way. We
follow the discussion of Ref. (19).

In classical mechanics we have a rule to determine which of all the possible paths (or
trajectories) x(t) is the one that the system will take to go from point a to point b of
spacetime. The rule is given by the functional minimisation of the action, δS = 0. To
rephrase this, the action functional S[x(t)] must be stationary at the correct path. In
quantum mechanics the rule changes a bit: now all paths contribute to the probability
amplitude of going from a to b, not just the path of stationary action (aka classical path).
All paths contribute equal magnitudes to the total amplitude, but they contribute at
different phases, and the phase of contribution is the action S in units of the quantum
action, ℏ. Mathematically, if the probability of going from a = (xa, ta) to b = (xb, tb) is
denoted by P (b, a), then in terms of an amplitude K(b, a)1 we have P (b, a) = |K(b, a)|2.
This amplitude K(b, a) is the sum of the contributions from all the possible paths that
start at a and end at b:

K(b, a) =
∑

paths
ϕ[x(t)] =

∑
paths

CeiS[x(t)]/ℏ, (1)

where C is a constant. Please note that here the paths are classical trajectories, and
the action is the one used in classical mechanics. The only thing that is different is the
contribution of each path (along with the non-determinism this entails, of course).

Eq. (1) tells us how classical mechanics arises from quantum mechanics at the macro-
scopic level. In the classical approximation, the values of the physical magnitudes are
within such a scale that the action S is huge in front of ℏ. If we now take a path x(t) and
apply a perturbation to it that is small in the classical scale but big in the units of ℏ, we
encounter extremely rapid oscillations in the phase, so that all contributions from the var-
ied paths cancel out and add to (nearly) zero. Therefore, whenever the neighbouring paths
have different actions their contribution is null; it is only when the action is an extreme

1This quantity is denoted K as in Kernel, because we know from standard QM that this is the propagator,
i.e., the kernel of the wave function evolution in time. It is also the Green’s function associated to the
Schrödinger equation.
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that the change in S when varying the paths is zero (at first order, at least), and therefore
all contributions are in phase. In the classical limit we are considering only the path that
is right at the extreme, and this suffices. We can see, then, that the classical trajectory
is in fact slightly indefinite: as long as the action variation is within the range of ℏ, the
neighbouring paths make significant contributions to the amplitude, so their presence is
not to be ignored. However, the scale of ℏ is so small that the effect at the macroscopic
scale is not noticeable.

A natural question arises when looking at Eq. (1): how is this sum to be interpreted?
In fact, there is an infinite number of paths, so the sum is not to be taken literally. It seems
logical to use integration, but the problem is then that of choosing an adequate measure:
not only do we have an infinite number of paths, but also each path has infinite points.
We can start to tackle this problem using the same reasoning as for Riemann integrals: we
make a partition of the domain and then take a limit. In our case, we partition a single
path by partitioning time into N + 1 points separated by a width ϵ, so that

Nϵ = tb − ta (2)
ϵ = ti+1 − ti (3)
t0 = ta tN = tb (4)
x0 = xa xN = xb. (5)

Now Eq. (1) becomes:

K(b, a) =
∫
· · ·

∫ ∫
ϕ[x(t)]dx1dx2 . . . dxN−1. (6)

We do not integrate over x0 or xN because these points are fixed. Now, to have a more
representative sample of paths we could take the limit of ϵ→ 0, but of course this limit does
not exist, since the quantity diverges. This suggests that we need a normalizing factor that
depends on ϵ, and here we encounter one of the main formal problems of the PI formalism:
there is no known general manner to define such a factor. In Riemman integration, the
analogue situation would be the one where we have to sum N − 1 ordinates f(xi), the
difference being that in this case we know that the normalizing factor is just the width of
each step (typically denoted h). In contrast, it can be proven that for all Lagrangians of
the form

L = m

2 ẋ
2 − V (x, t) (7)

the normalizing factor is A−N (19), where

A =
(2πiℏϵ

m

)1/2
. (8)

With this factor the limit exists and we have:

K(b, a) = lim
ϵ→0

1
A

∫
· · ·

∫ ∫
eiS[x(t)]/ℏdx1

A

dx2
A

. . .
dxN−1
A

. (9)

There is still one thing unsolved, and it is the precise form of the paths between each pair
of points xi and xi+1. Although this may not seem as a concern at first sight, recall that
even the free particle Lagrangian contains a derivative of position. Even worse, if there
was an acceleration term we would find that the velocity is discontinuous. As it turns out,
we can unite all the N +1 points of our paths with straight lines, as shown in Fig. 1. Then,
we can estimate the velocity using the standard rules of computational physics, which are
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Figure 1: Discretized path.

exact for linear functions. As concerns acceleration, the problem has multiple solutions
and, perhaps not so suprisingly, the standard choice is the following:

ẍ = 1
ϵ2

(xi+1 − 2xi + xi−1). (10)

Nevertheless, there exist some problems where this fix is not adequate, so integration must
be redefined. Thus, given that no general procedure is known, the notation used when
referring to the summation of Eq. (1) is:

K(b, a) =
∫ b

a
eiS[x(t)]/ℏDx(t). (11)

This is called a path integral. This notation is non-restrictive, in the sense that it is agnostic
to the choice of measure and discrete approximation of some quantities.

Path integrals have many exciting properties, but we will not cover any more of those
here. Instead, we will end by deriving a useful formula that relates the propagator and
the Hamiltonian eigenvectors. In standard QM, the propagator of a particle going from
(xa, ta) to (xb, tb) can be written as:

K(xb, xa, T ) = ⟨xb|e− i
ℏ ĤT |xa⟩ , (12)

where we have defined T ≡ tb − ta. Inserting two identities expressed in the energy
eigenvector space in the expression above:

K(xb, xa, T ) =
∑
n′,n

⟨xb|n′⟩ ⟨n′|e− i
ℏ ĤT |n⟩ ⟨n|xa⟩ =

∑
n

e− i
ℏEnT ⟨xb|n⟩ ⟨n|xa⟩

=
∑

n

e− i
ℏEnTψ∗

n(xb)ψn(xa).
(13)

This is known as the spectral representation of the propagator. Although this last
exercise is not explicitely related to path integrals, it is one of the few ways in which PI
formalism actually appears useful to solve QM problems, and in fact the only reason why
we make use of it in our work in the first place; hence its importance here.
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3 The standard approach to PI: MCMC
The usual way of computing path integrals is by Markov-Chain Monte Carlo or MCMC
(20; 21; 22). The idea is straightforward: given that a path integral is a high-dimensional
integral we can estimate it using the Monte Carlo method. As usual, the properly dis-
tributed points can be obtained via the Metropolis algorithm, which makes use of Markov
chains. We discuss these ideas in more detail in the next subsections. The concrete choices
of parameters are inspired by Ref. (22).

3.1 Constructing the paths
The paths are constructed just as in section 2. The only thing we must bear in mind is
that the limit ϵ → 0 is ignored when computing PIs computationally, and therefore we
must choose ϵ small enough in order to have a representative sample of all paths between
a and b.2 For our purposes we have chosen the following parameters:

N = 201
ta − tb ≡ T = 100.

The step is obviously ϵ = T/(N − 1). We require the initial and final values xa and xb

to be the same, so that the paths are closed (the reason for this will be clear later in the
text). Since we will be generating the paths randomly, a way to do this is by first obtaining
N = 200 random points, and then adding the last one as xN = x0. In practice, each path
will be a collection of N = 201 points, each labelled x(ti) ≡ xi.

3.2 Approximation of the ground-state density
We want to compute the harmonic oscillator ground-state (GS) density in position space,
this is, |ψ0(x)|2. Since we are using path integrals we start by computing the propagator
K(x′, x, T ). Following Eq. (11), we must start by formulating the Lagrangian:

L = m

2 ẋ
2 − V (x), (14)

whence the action is immediately:

S(tb, ta) =
∫ tb

ta

L(ẋ, x, t)dt. (15)

Given that we will be dealing with discretized paths, the Lagrangian and thereby the
action will also be discretized. A possible approximation of the action integral for such a
(discretized) path x(t) is (23):

S[x(t)] ≈ ϵ
N−1∑
i=0

(
m

2 ẋ
2
i − V (xi)

)
. (16)

Now we must specify how the terms in x and ẋ are to be interpreted. For our purposes and
given that our paths are as that of Fig. 1, it is sufficient to take the following estimates:

ẋi = xi+1 − xi

ϵ
, V (xi) = V (xi+1) + V (xi)

2 . (17)

2Sometimes a study is made for decreasingly small ϵ and then some extraploation method is used to
simulate the limit ϵ → 0.
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Before continuing any further we need to introduce the concept of Wick rotation, which is
fundamental for our computational implementation. It consists of the following change of
variables: t → −iτ . The new coordinate τ is usually referred to as Euclidean time. In a
similar fashion, the action of a path S[x(τ)] is noted SE [x(τ)]. Introducing this substitution
into Eq. (16), we find:

SE [x(τ)] ≈ iϵ
N−1∑
i=0

(
m

2 ẋ
2
i + V (xi)

)
, (18)

where the dot now indicates derivation w.r.t. τ . Also, the PI formula now reads:

K(b, a) =
∫ b

a
e−SE [x(t)]/ℏDx(τ). (19)

We now want access to the GS wave function. To get there, we start at Eq. (13). Then,
to obtain the wave function at a point x we can take the propagator of a particle starting
and ending at this same point. Indeed,

K(x, x, T ) =
∑

n

e−EnT/ℏ|ψn(x)|2, (20)

where we have maintained the notation for the time interval. Now we can do the following
trick: the GS density is, by definition, the state with the lowest energy (E0), and therefore
the term that contributes the most to the sum. In order to further isolate this term we
would like the quantity |T (E1 −E0)| to be big, |T (E1 −E0)| ≫ 1 (E1 is the energy of the
first excited state). Formally, we can achive this by taking the limit

lim
T →∞

K(x, x, T ) = e−E0T/ℏ|ψ0(x)|2. (21)

Eq. (21) holds under the assumption that E0 ≪ E1. Computationally we need not be so
drastic with this limit; we might as well pick a value for T that makes the first excited
state contribution very small in front of the GS contribution, just as we do in subsection
3.1. Eq. (21) then tells us how to access the particle density via PI. Also, the reason for
enforcing xN = x0 on all paths is now clear: the wave function is related to the diagonal
part of the propagator, K(x, x, T ), which only involves paths which fulfil xN = x0.

3.3 Monte Carlo estimation of path integrals
Now that we know how to obtain |ψ(x)|2 we have to address the path integral compu-
tationally. The usual approach to doing so is as follows: once the step size ϵ and the
Lagrangian (and therefore the measure) are fixed, a PI is just a multi-dimensional integral,
and considering the large number of dimensions, the Monte Carlo method presents itself
as the best available option.

We need to be careful as concerns the points (paths) used to evaluate the integral,
nonetheless, for the integrand is a non-trivial functional of the paths and can therefore
present big variations over big time intervals T . For this reason we must obtain paths that
are distributed in high accordance with the distribution suggested by the integrand itself.
The functional e−SE [x(τ)] suggests that the paths that contribute the most are those with
minimum Euclidean action, and we can formalize this idea by constructing the following
probability density functional:

pE [x(τ)] = e−SE [x(τ)]∫
e−SE [x(τ)]Dx(τ)

≡ e−SE [x(τ)]

Z
. (22)
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Then, the Metropolis algorithm can be trivially used to obtain the paths distributed ac-
cording to pE [x(τ)] (a brief description of this algorithm can be found in Appendix A).
Note that, while we do not know how to compute Z, we do not need it for the Metropolis
algorithm to work. Nevertheless, to obtain the particle density we can do the following
trick: given that |ψ(x)|2 is the probability of finding a particle between x−∆x and x+∆x
and that we know all the (most representative) paths that the particle can take, we can
estimate |ψ(x)|2 with a histogram by keeping track of the “time” that a particle spends in
a given interval, on average. This is,

|ψ(x)|2 = 1
∆x

∑
i

θ(∆x− |xi − x|)
M

, (23)

where M is the total number of paths that we have generated, θ is the Heaviside function
and ∆x is the bin size of the histogram. Note that this allows us to compute the whole
|ψ(x)|2 within a single Metropolis sweep, because as opposed to what Eqs. (11) and (21)
would suggest, we need not compute a PI for every x.

3.4 Results
We have computed the ground-state density of a single particle in a 1D HO using the ideas
in the subsections above. This is, we have used the Lagrangian

L = m

2 ẋ
2 − m

2 w
2x2 (24)

with m = w = 1, we have generated M = 104 paths like those of subsection 3.1 via
Metropolis-Hastings and we have then substituted ∆x → ϵ in Eq. (23) to obtain the
particle density.

The bottom left panel of Fig. 2 shows a typical particle path obtained via Metropolis.
As one can see, the path presents rapid oscillations in time. This figure is also intended
to serve as a visual explanation of Eq. (23): the bottom left panel displays vertical lines
which represent the different intervals of size ∆x. By counting the number of times that
the path crosses each of these intervals, storing each number in its corresponding interval
and projecting these intervals to the plot above we get the wave function in position space.
The rightmost panel shows the evolution of the action as more paths are accepted. Note
that here we show only the first 2 · 103 accepted paths.

One possible way to quantify the quality of the histogram fit to the exact GS is to com-
pute the Kullback-Leibler divergence or KL divergence, DKL, between the two distributions.
The KL divergence can be used as a measure of closeness between two PDFs. Despite this,
it is not symmetric and this implies that the two possible orderings of the inputs entail
two different meanings: the first argument can be thought of as a reference PDF, and
the second argument is an approximation of the reference PDF (see Appendix B for more
information on the KL divergence). Therefore, if we call the MCMC GS q ≡ |ψ0(x)|2MCMC
and the exact distribution p ≡ |ψ0(x)|2, the meaningful quantity in our case is DKL(p||q).
For reference, the HO GS wave function is given by the following expression:

ψ0(x) =
( 1
π

) 1
4
e− x2

2 , (25)

where we have used m = ℏ = w = 1, w being the frequency of the oscillator. These units
will be used throughout this text.
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Figure 2: Right panel: evolution of the Euclidean action with the number of paths. Top left panel:
histogram of the paths generated with Metropolis (blue) compared to the exact GS density (solid orange).
Bottom left panel: a typical particle path in spacetime.

M = 400 M = 600 M = 800 M = 1200 M = 4000 M = 10000
DKL(p||q) 0.0379 0.0293 0.0297 0.0092 0.0030 0.0028

Table 1: KL divergence between the MCMC approximation to the GS density, q, and the exact solution
p computed for different number of generated paths. All the numbers have an associated estimation
error of 10−4 associated to the Simpson method for integral approximation (see main text).

Table 1 shows values of DKL(p||q) computed with different numbers of generated paths.
All the values have been computed using the Simpson integration method in 1D. The
tendency is clear: the more paths we use to compute the GS density, the better the
approximation, which is exactly what one would expect given that the paths are used as
points in a Monte Carlo estimation.
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4 Sampling paths with a Variational AutoEncoder
In section 3 we have shown how we can obtain the ground-state density of a system
with an arbitrary Lagrangian using MCMC. While this method is very general and well-
established, the Markov Chain used by the Metropolis algorithm is a big computational
bottleneck, mainly due to its sequential nature. For every new path x(i)(t) at iteration
i that we might generate, we need the path in the previous iteration x(i−1)(t), and this
requires the sampling process to be sequential and therefore, slow. Nevertheless, Machine
Learning methods provide us with a setting in which to overcome this very issue, where
the sampling process is fully parallelizable. For a quick introduction to ANN training see
Appendix C.

In this section we introduce a simple procedure showing how this can be achieved.
Then, we apply this procedure to solve the HO in the path integral formalism, just as
in section 3, and we compare the GS density thusly obtained against that obtained with
MCMC (see Fig. 2). Lastly, we compare the computation time of both methods.

4.1 Parametrizing probability distributions with ANNs
When faced with the problem of sampling from a known PDF p(x), the Metropolis al-
gorithm provides us with a distribution-agnostic procedure to obtain samples distributed
according to p(x). However, when p(x) is simple there exist methods for sampling which
are faster and more precise than Metropolis. For example, sampling from a uniform or
normal distribution is trivial, and most programming languages have built-in methods to
sample from these distributions (24; 25). The prime reason why we need Metropolis is
because hard problems usually entail hard PDFs for which a simple method does not exist.

A first attempt at overcoming this issue could consist of using parametric approximators
of PDFs. For example, Gaussian Mixture Models (GMMs) are known to be universal PDF
approximators (26; 27). In other words, there exists a set of parameters with which our
GMM is arbitrarily close to the target p(x). A GMM has the following form:

q(x) =
Nc∑
j=1

γjN (x;µj , σ
2
j I), (26)

where γj > 0 ∀j,
∑Nc

j=1 γj = 1 and N is the (multivariate) normal distribution. The
problem is now reduced to finding {γj , µj , σ

2
j }

Nc
j=1, and ANNs provide a natural setting to

do this: we can let the GMM parameters be the output of an ANN, and then train the
network so that our GMM approximation is close to the target PDF, p(x). In the simplest
case we could use single-layer, feed-forward networks to parametrize {γj , µj , σ

2
j }

Nc
j=1, and

our approximator in Eq. (26) would then read:

qϕ(x) =
Nc∑
j=0

γjN (x;µj(ϕ,x), σ2
j I(ϕ,x)), where

γ = softmax(W4h + b4)
µ = W3h + b3

σ2 = exp(W2h + b2)
h = tanh (W1x + b1),

(27)

and ϕ ≡ {Wi,bi}4i=1. Here, the softmax makes sure that γj > 0 ∀j and
∑Nc

j=1 γj = 1,
and the exponential is there to enforce positivity. Once the network is trained, since our
approximator is made of gaussians, we can sample in a fast and parallel manner.
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In terms of physical calculations, there are two evident scenarios where we can apply
this methodology. Firstly, any calculation that entails sampling from a hard function can
benefit from this approach. In path integrals, for example, we can model the target path
distribution, Eq. (22), with an ANN in the aforementioned manner and then train the
network to minimise some measure of closeness to the target PDF, such as the Kullback-
Leibler divergence. This idea is further discussed in section 5. The second scenario is one
where we do not know the exact PDF, but we have some data distributed according to it.
For these kind of settings there exist ANN architectures which can learn the distribution
of the given data and then generate new data with that same distribution. In this section
we will focus on the latter scenario.

4.2 Variational AutoEncoders

Figure 3: General form of a VAE. Here, a 2D image with the number 3 is passed as an input to the
VAE, and the VAE generates a distinct image that also contains the number 3.

Variational AutoEncoders or VAEs are a kind of neural network architecture designed
to generate new data that resembles the one that it is fed with during the training process
(28). To do this, VAEs work under the assumption that the observable data are generated
by some random process involving hidden random variables (also latent variables) z from
a parametric family pθ(z), so that once these variables are known we can generate new
samples of our observable quantity by sampling from the prior PDF pθ(x|z). Intuitively,
the latent space must contain information about the dataset, which we can access with the
(generally intractable) posterior PDF p(z|x). In order to approximate p(z|x) a parametric
recognition model qϕ(z|x) is used. In coding theory terms, we are encoding a sample x into
a latent variable z, and then decoding z to get (a similar version of) x back, and therefore
qϕ(z|x) is called encoder and pθ(x|z), decoder ; note that distinct sets of parameters, ϕ and
θ, are used for the encoder and the decoder respectively. Fig. 3 illustrates this idea: a 2D
image with a number 3 is passed to a VAE, which encodes the information in the latent
space, and from this latent representation it generates a similar image.

The learning process of a VAE is aimed at maximizing the marginal likelihood of the
dataset X = {x(i)}Ni=1, consisting of i.i.d. random variables. We shall refer to the marginal
likelihood of X as pθ(x(1), . . . ,x(N)).3 In order to achieve this we use ANNs to parametrize
the encoder and the decoder. Then, a lower bound on log pθ(x(i)) can be immediately
derived and written as follows (28):

L(θ, ϕ,x(i)) = −DKL(qϕ(z|x(i))||pθ(z)) + Eqϕ(z|x(i))[log pθ(x(i)|z)]. (28)

Eq. (28) is commonly referred to as the Evidence Lower Bound or ELBO. The (negative)
second term of the r.h.s of Eq. (28) can be thought of as the reconstruction error, this

3We are using the same notation for the parameters and the functions of both the PDF of X,
pθ(x(1), . . . , x(N)), and the PDFs of each individual sample x(i), pθ(x(i)). This is because the samples are
i.i.d., and therefore the PDF of the joint distribution is the product of the individual PDFs.
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is, the error made by attempting to recover x(i) after having encoded it. The (negative)
first term is usually called regularizing term, because it measures the “distance” between
the encoder distribution and the actual prior distribution of z and thus tries to make qϕ

similar to pθ. To maximize the ELBO we must jointly learn the parameters θ and ϕ. Once
the VAE is trained, we can generate new samples by sampling latent variables, now from
the prior distribution pθ(z) and using only the decoder. Since the decoder has worked in
tandem with the encoder during the traninig, it knows how the important features are
encoded or, in other words, where to find them in latent space; this shall prove useful for
computing the marginal likelihood with a trained VAE.

The usual approach to computing the ELBO is via Monte Carlo estimation. In fact,
Eq. (28) can be trivially rewritten as follows:

L(θ, ϕ,x(i)) = Eqϕ(z|x(i))

[
log pθ(x(i)|z)pθ(z)

qϕ(z|x(i))

]
. (29)

The expression above is Monte-Carlo-ready, and the sampling from qϕ(z|x(i)) can be made
simple with an appropiate choice of the encoder network. In fact, the usual trick here is to
use the ANN to parametrize a PDF, as explained in subsection 4.1. For example, in the
VAE original paper (see Ref. (28)) a single-layer feed-forward neural network is used to
parametrize an isotropic multivariate normal distribution, which we can think of as having
Nc = 1 in Eq. (26), and this is the case for both the encoder and the decoder. Explicitely,
the decoder reads:

log pθ(x|z) = logN (x;µ, σ2I), where
µ = W3h + b3

log σ2 = W2h + b2

h = tanh (W1z + b1).

(30)

The encoder network can be obtained by swapping x and z in Eq. (30). Here, θ makes
reference to the set of ANN parameters, θ = {W1,b1,W2,b2,W3,b3}. The prior distri-
bution over z is taken as p(z) = N (z; 0, I); note that in this case it does not depend on θ.
We shall employ this same parametrization in our experiments.

VAEs are used for a wide range of tasks, such as the generation of human faces, text,
speech, handwritten digits, and so on. One popular (and perhaps too enthusiastic) inter-
pretation of the learning process of VAEs is the following: during training, the network
forms an abstract internal representation of the given data, just as humans learn abstract
ideas. Following this reasoning, this is why we can ask a neural network trained in the
MNIST dataset (29), as in Fig. 4, to generate a “number 3” and it generates something
which we can interpret as a “3”: it has “learned the concept of 3”. Thus, in a PI setting
like ours, the network can learn the distribution of paths for the PI that is inherent in the
training set. However, even in the best possible scenario we cannot know what the learned
features will be beforehand.

4.3 Experiments with a simple VAE
We now test the VAE architecture by computing PIs. The idea here is to feed the VAE
with (a subset of) the path manifold already generated with MCMC, have it learn the
relevant features and then sample new paths in parallel. Please bear in mind that we do
not control what the learned features will be, so even though the path distribution is a
distinguished feature of the training set we cannot be certain that the encoder-decoder
tandem will grasp this. Henceforward, we shall denote the particle paths by x.
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Figure 4: Architecture of the VAE used in our experiments. The encoder network (left) consists of
three hidden layers: one with shared parameters and the other two compute µenc and σ2

enc separately.
The decoder network (right) has the same structure. The input (x), latent variable (z) and output (x̂)
quantities, although also multi-dimensional, are shown inside black boxes and not as a layer of nodes to
stress that they are not the immediate output of a neural network.

The architecture of the encoder and decoder networks is the one mentioned in subsection
4.1 and is depicted in Fig. 4. Fig. 4 shows the architecture of the VAE that we have used
in our experiments. In the leftmost side we find three fully-connected layers: one with
shared parameters, one with parameters for µ and one with parameters for σ2. Following
the flow of the arrows, µ, σ2 are used to parametrize a multivariate normal distribution
(the encoder PDF) from which we sample a latent variable z. From here, the rightmost
side of the figure is identical to the leftmost side, swapping x and z. In the end we use
the decoder PDF to sample a new path x̂. As concerns the dimensions of the network, the
layers that connect x(z) to henc(hdec) have h = 15 hidden nodes each. The layers that
connect henc(hdec) to µenc(µdec) and σenc(σdec) have h = 3 each. Note that this implies that
the dimension of the latent space is also s = 3; the importance of having a low-dimensional
latent space lies in that it prevents the VAE from learning the identity. For example, if
the latent space had the same dimensionality as the input, the network would then be
a bijection and it could learn to make exact copies of the input. Finally, the input and
output variables have dimension N = 20, i.e., equal to the number of time steps (length
of each path). In total, this network has 1111 parameters.

The training consists of taking a fixed subset of M = 2·103 paths from a manifold of 104

paths of N = 20 points generated with MCMC as the training set, and then passing these
to the VAE. At each iteration (epoch) we use stochastic gradient descent techniques (SGD),
which provide faster convergence and more importantly, allow the model to fit in our GPU.
Broadly, SGD consists in approximating the gradient of the loss over the entire training
set, ∇θ,ϕL = ∇θ,ϕ

∑M
i=1 Li, by the gradient of the loss over a smaller subset (or batch)

of the training set of size b, ∇θ,ϕ
∑b

i=1 Li; the specific batch changes at every iteration.
This approximation is intended to entail faster convergence, and also to simply reduce the
number of examples that we pass to the network at once. In fact, large models are usually
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Figure 5: Left panel: histogram of the paths generated with a trained VAE (blue histogram) compared
to the MCMC GS (solid orange line). The hyperparameters used for this VAE are the ones mentioned in
the main text. Right panel: evolution of the loss function (ELBO) with the number of training epochs.

impossible to fit in a regular computer RAM (or VRAM). In our implementation, we take
mini-batches of 150 paths without repetition, and after each batch we update the weights
using the Adam optimizer with a learning rate of 0.001 (30). The expectation over the
encoder distribution in Eq. (29) requires ∼ 103 samples to yield a reasonably accurate
estimate. A typical training is 600 epochs long; here, by epoch we mean a complete
iteration through the dataset, which happens every M/batch-size updates of the weights.
The code implementation of this project uses the PyTorch library and can be found in
Ref. (31).

After the training is complete we can generate new paths by sampling with the decoder,
and we do this by sampling latent variables z from the prior p(z) and then passing them
to the decoder. It is at this point where the sampling advantage of this method is evinced:
the z variables can now be sampled in a parallel fashion, and therefore so can the paths.
In order to test the accuracy of the generated paths we use them to compute the MCMC
ground-state density, in the same vein as in section 3. This is shown in Fig. 5.

Fig. 5 illustrates the GS density computed from the VAE-generated paths and the
reference GS density (left panel). Note that the meaningful comparison here is with the
density computed with MCMC, since the VAE obtains all the information from the MCMC-
generated paths. The right panel shows the loss evolution of the model used to compute
the histogram in the left panel. This is a typical mini-batch ELBO minimization, i.e., most
of the progress is done in the first few epochs and from there the evolution is rather slow.
In fact, this is a known feature of SGD techniques: approximating the full gradient with
batches allows for a faster initial convergence. Intuitively, we can think that, when far
from the minimum (initially) we are more likely to jump to a point with lower loss, even
if the gradient used is not informed of the entired dataset.

We now try to quantify these results. In a similar fashion as in subsection 3.4 we take
the KL divergence between the VAE and the MCMC solution as an indicator of the quality
of our model. By computing the KL divergence with different hyperparameters we can also
determine whether our model is truly functional or not. As a matter of fact, in a functional
model one would expect to find a certain kind of correlations between the hyperparameter
values and the test metric, and this is precisely what we find. This is explained next.

Table 2 shows values of the KL divergence between the VAE and the MCMC results for
the GS density, referred to as q and p respectively. Different values of the KL divergence
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h = 1 h = 2 h = 3 h = 7 h = 9 h = 50
DKL(p||q) 0.0101 0.0086 0.0095 0.0018 0.0020 0.0009

Table 2: KL divergence between the VAE approximation to the GS density, q, and the MCMC solution
p shown for different number of encoder/decoder hidden nodes. All the numbers have an associated
estimation error of 10−4 associated to the Simpson method for integral approximation.

M = 10 M = 50 M = 100 M = 500 M = 3000 M = 4000
DKL(p||q) 0.0925 0.0935 0.0552 0.0043 0.0011 0.0039

Table 3: Similar to Table 2, but here we vary the size of the training set.

correspond to different numbers of nodes in the linear layers h of both the encoder and
the decoder (see Fig. 4). We observe the trend that, the more hidden nodes, the lower the
value of DKL; this tendency lasts as far as h ∼ 100, where the DKL values stabilize around
0.0002. This is precisely what one should expect in any ML setting: a model with very few
hidden nodes does not possess the same learning capability as one with more nodes, and
thereby it performs worsely. Of course, this argument does not hold for high numbers of
nodes. If the number of parameters is excessive, the model can become prone to overfitting.
In VAEs this reasoning is further conditioned by the latent space dimension, where the
same argument can in principle be set forth.

Besides the number of hidden nodes we have also explored the size of the training set
and the latent space dimension; the results of these exploration are shown in Tables 3 and
4 respectively. Regarding Table 3, we find that, as M increases, DKL decreases. This
behaviour does not extend for all sizes: we can see that from M = 500, the KL divergence
values stabilize and present small fluctuations, whence we interpret that the model needs at
least this many paths to extract significant information out of them. As concerns Table 4
we find that the KL divergence does not seem notably affected by changes in s, even for
the lowest values. Although some of these dimensions might seem too low, we believe that
either the network has found a compact manner to store information about each path, or
the fact that the paths are 1-dimensional and have N = 20 points demands no more than
such a number of dimensions.

Let us now return to our initial goal of modelling the path density. Apart from plotting
a histogram of the VAE-generated paths, we can try to estimate the marginal likelihood
p(x) to then compare it to the exact distribution.4 A first approach to computing this
quantity would look as follows:

p(x) =
∫
p(x|z)p(z)dz = Ez∼p(z) [p(x|z)] . (31)

Although this expression is technically correct, in practice the distribution p(x|z) does not
have structure in the same region of the latent space as p(z), and this makes the estimation
more difficult. Nevertheless, we can use the encoder distribution in an importance sampling
scheme, for the encoder’s job is precisely to store information about the inputs in concrete
regions of the latent space, and it is in those regions where the decoder has the most
structure. A better attempt at computing p(x) is therefore:

p(x) =
∫
p(x|z)p(z)q(z|x)

q(z|x)dz = Ez∼q(z|x)

[
p(x|z)p(z)
q(z|x)

]
(32)

4These PDFs are not to be confused with the ones compared in Table 2: p(x) is the probability density
of path x, whereas p(x) in Table 2 is the squared modulus of a wave function (the GS density).
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s = 1 s = 3 s = 5 s = 10 s = 14 s = 20
DKL(p||q) 0.0016 0.0086 0.0045 0.0054 0.0053 0.0041

Table 4: Similar to Table 2, but here we vary the dimension of the latent space.
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Figure 6: Left panel: each circle represents a path; the filled blue circles represent paths generated
with MCMC, whereas the hollow orange circles represent paths sampled by the VAE. In both cases, the
probability of each path (vertical axis) is the one learned by the VAE. Right panel: evolution of the
action in a MCMC setting where paths with N = 20 points are generated. The relation between both
panels is explained in the main text.

Equating the marginal p(x) with the exact distribution pE(x) = exp(−SE(x)/ℏ)/Z and tak-
ing logarithms in both sides provides a way to visualize the distance of the VAE-generated
paths to pE(x), and this is shown in Fig. 6.

Fig. 6 shows (left panel) the VAE-learned path distribution for the training set (filled
blue circles) and for paths generated with the VAE itself (hollow orange circles). The right
panel shows the evolution of the action as a function of the number of accepted paths in
a MCMC setting where paths with N = 20 points are sampled. In order to judge whether
the path distribution in the left panel is good or not we need to look at the right panel first
and pay attention to the range of actions within we can find almost all the paths. Then,
if we look back at the left panel we realize that the VAE assigns (almost) the highest
probabilities to the paths in that same range of actions. Similarly, even though the VAE
generates paths that take a wider range of actions, we still find a larger density of paths
in that range of actions. The fact that paths with larger actions are also generated is
probably because the action is not the only feature that the VAE identifies as “important”.
Besides, we know that the “ideal” paths would lie on a line with slope −1, and we can see
in Fig. 6 how such a line dictates, roughly, the tendency of the plotted paths. We take all
of this as a sign that the network has identified the action, and therefore the distribution,
as an important property of the paths and that it has learned the distribution to a good
extent.

Throughout this section we have explained how to use a generative model to sample
data in parallel, but at this point, a quantitative comparison with the standard Metropolis
sampling is in order. To this end, we employ both MCMC and VAE to generate different
numbers of paths and, during the process, we measure the time it takes for each method
to complete the calculation. This is illustrated in Fig. 7.
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blue) and our VAE method (dashed orange). Note the base 10 logarithm in the axis magnitudes.

Fig. 7 shows the time it takes for both MCMC (solid blue) and our VAE (dashed
orange) to sample different numbers of paths. These are total CPU (or GPU) times, and
therefore the offsets represent the computation time previous to the generation of the first
path. The small offset of the MCMC curve is due to the burn-in period of the Metropolis
algorithm, whereas the comparatively bigger offset of the VAE line is due to the training
of the network. As one would expect, the time scales linearly with the number of paths
for MCMC (the acceptance rate rapidly stabilizes after a few iterations). Contrary to this,
the VAE can generate up to 106 paths without noticing any difference in computation
time, since the sampling occurs in parallel in the GPU. The main overhead in the Machine
Learning approach, however, is the training time.

Please note that the VAE training time is greatly dependant on the hyperparameters.
For example, the VAE offset in Fig. 7 corresponds to a 170 seconds-long traning, but varying
the hyperparameters can potentially help reduce this number. Reducing the training set
size, the number of hidden nodes, the number of samples used to evaluate the expectation
of Eq. (29) and increasing the learning rate are some examples of techniques we can use
to speed up the computation. The key point of our technique, however, is that once the
training is done the path generation is immediate, almost independently of the number of
paths we wish to generate (we have tested up to 106 paths). We believe that the potential
of this technique is big. For instance, going back to Fig. 7 we can perform an approximate
calculation of the time it would take to generate 106 paths from scracth: first we need to
generate paths with MCMC, and we have seen how ∼ 103 paths suffices to train a network,
so it would take ∼ 100.5 sec. We now pass these paths to the VAE, which takes ∼ 102 secs.
to train; from here, generating 106 paths is immediate, so the total time is of the order 102.
Thus, even though the VAE might have required MCMC first, it still manages to beat it
by a factor of 102.

This is not even the kind of settings where VAEs shine the most. In fact, any scenario
where the information we have beforehand is not a PDF, like in PIs, but rather data
distributed in a certain manner, would not be able to benefit from methods like MCMC;
this is the case of most experimental settings. Our method, however, would be perfect for
such situations, and we would not even need to generate any data first.
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5 Sampling from a generative RNN
In section 4 we have shown how a VAE can be used to infer the path distribution from
a set of MCMC-generated paths and then generate new paths equally distributed. Here
we introduce a method that also aims at learning the path distribution and generating
new paths efficiently, but with the initial assumption that we know the analytical path
distribution and do not have (necessarily) previous examples of such paths. This section
is based on the work of Ref. (15).

The idea is similar to that of the VAE of section 4. Roughly, the fundamental changes
are: (1) we dispose of the encoder network, (2) we set the loss function as the KL diver-
gence between the decoder and the analytical PDF and (3) instead of using a feed-forward
ANN as the decoder, we use a RNN. We like to think that (2) makes up for (1). Besides,
(3) is related to the fact that we want to process paths, which we can think of as sequential
data with long-term correlations. In fact, a RNN is a kind of ANN architecture specifi-
cally designed to process sequential data (more information about RNNs can be found in
appendix D).

This method has the advantage that, as a result of the training process we obtain an
estimation of the partition function Z. Indeed, the loss function can be written as follows:

L = Ex∼qϕ

{
ℏ−1SE(x) + ln qϕ(x)

}
+ lnZ, (33)

where Z is the partition function and the other variables have the same meaning as in
previous sections of the text. Despite the fact that Z appears in the loss function, since it
does not depend on the network parameters we can disregard it when computing the loss.
By the end of the training, when the loss has reached its minimum value we have direct
access to (an estimation of) Z.

There are still some other implementation differences in the approach of Ref. (15). For
example, the parametrized PDF of the decoder is a GMM with Nc > 1 instead of an
isotropic multivariate gaussian distribution. Furthermore, it is not raw RNNs which are
used, but a more sophisticated version of these called Long-Short Term Memory or LSTM.
Broadly, LSTMs have the advantage over vanilla RNNs that they can track long-term
dependencies more easily thanks to a technique to avoid vanishing gradients (for more
information on LSTMs see Ref. (32)). In the original work, this method is used to solve
both the HO and a system with a double-well potential. The results obtained are within
reasonable accordance to the exact solutions and, in the HO case, they are similar to ours.
For instance, Fig. 3 of Ref. (15) is similar to Fig. 6 of this work; the dissimilarities of the
action values stem from the number of time steps of each path.

We have tried this approach ourselves: we have carried out all the coding implementa-
tion and we have tried to understand all the moving parts in the explanation of Ref. (15),
but at the time of writing this, we have not been quite able to accurately reproduce the
original results.
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6 Conclusions and future outlook
In this work we explore path integrals from the computational point of view. We explain
the standard approach to these problems, this is, using Markov-Chain Monte Carlo to
generate paths distributed according to the analytical distribution that appears in the
particle propagator, and we use the HO as the test bed for this method. We seize this
setting to obtain the ground-state density of the HO. The results obtained, although not
novel, are very accurate and they evince the powerfulness of the MCMC method.

We also pinpoint the fundamental performance issue of Markov Chain methods, and
we propose a way to overcome this limitation. To this end, we make use of VAEs to learn
the path distribution from a given set of MCMC-generated paths and we show how, once
the model is trained, generating new paths with the VAE comes at almost no cost. We
find that our model is robust and needs no specially tailored architecture to process and
extract information from paths. We take this as an indication that these ideas are easily
transferable to any probabilistic scenario. Future work might entail applying this ideas
to solve other problems. For one, a well-known approach to solving quantum many-body
problems is to use a wave function ansatz along with MCMC to iteratively compute the
energy of the system (33; 34). Here, we could embed our VAE in the following manner:
in the first iteration, after having generated well-distributed points with Metropolis, we
train the VAE on these points and, in the subsequent iterations, we replace the Metropolis
process with training the VAE on the new points. Another use case for our method might
be combining it with transfer learning, that is, having a network which has been trained in
one task learn a similar one. In physics this might mean first training a network to solve a
HO and use this solution as the starting point for a more complicated potential. The hope
is that the network will have learned relevant physical properties during the first training
and that the second calculation will be able to benefit from that “knowledge”.

In the last section we mention a distinct ML technique that can be used to tackle path
integral problems. The fundamental idea stems from Ref. (15), and in our work we give
an overview of the basic ML methods employed. Even though we have carried out the
computational implementation ourselves, at the moment of writing this, valid results are
still missing.

Overall, this experience has provided us with a wider background in ML techniques
for solving problems in quantum mechanics and, additionally, with some useful ideas of
physical calculations in which our VAE approach can be used.
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A Metropolis algorithm
The Metropolis algorithm (also Metropolis-Hastings) is a procedure used to obtain points
that are distributed according to some known probability density function (PDF). Algo-
rithm 1 shows the steps of this method for generating m points of n dimensions distributed
according to a PDF ρ. For a more exhaustive explanation and formal proof of the algorithm
see Ref. (35).

Algorithm 1 Metropolis-Hastings
Set naccepted = 0.
Choose an initial random path x0.
while naccepted ≤ m do

Generate a random vector ξ in the m-dimensional space.
Compute y = xn + δξ ▷ In the first step, xn = x0
Compute r = ρ(y)/ρ(xn)
if r ≥ 1 then

xn+1 ← y
naccepted ← naccepted + 1

else if r ≤ 1 then
Generate p ∈ U(0, 1)
if r > p then

xn+1 ← y
naccepted ← naccepted + 1

else if r ≤ p then
xn+1 ← xn

B Kullback-Leibler divergence
The Kullback-Leibler divergence DKL (also relative entropy) is a divergence in the sense
of information theory. In the 1D case it is defined as:

DKL(p||q) =
∫
R
p(x) log p(x)

q(x)dx, (34)

where p and q are PDFs and the logarithm can be taken in any basis, depending on the
desired units of information. This quantity has some interesting properties. First, the KL
divergence is non-negative, DKL(p||q) ≥ 0. Second, it serves as a measure of the shared
information of p and q, and when DKL(p||q) = 0 we say that p and q carry the same
information. Sometimes this quantity is referred to as a distance for the sake of simplicity,
although it is not a distance in the topological sense (it is not symmetric with respect to
its arguments). In fact, swapping the arguments gives different meanings to the overall
quantity: the first argument is taken as the truth or null hypothesis, whereas the second
argument is the alternative hypothesis. For example, in the main text (see subsection 3.4)
we pass the analytical distribution as the first argument.

In statistical settings it is common to use the KL divergence as a measure of closeness
among functions instead of, say, Mean Squared Error (MSE). This has to do not only
with its probabilistic/statistical meaning and suitability for dealing with PDFs, as we have
already explained, but also because the magnitudes of PDFs can get very small, and taking
logarithms ensures computational stability.
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C Artificial Neural Network training
Artificial Neural Networks (ANNs) are a special kind of parametric functions that have the
property of being universal approximators of any continuous function (36), i.e., there exists
a set of parameters such that the ANN is arbitrarily close to the target function. Training
an ANN consists of finding these parameters, or at least a set which is good enough. This
is achieved by first choosing a loss function, i.e., some differentiable function that measures
the quality of the ANN predictions, and then using numerical optimization techniques to
find the parameters that optimize this loss.

Δ𝑊 1 , Δ𝑊 2

ANN PREDICTION

1
COST FUNCTION

2

4

𝑥

𝑾 𝟏 𝑾 𝟐

𝑓(𝑥)

1

OPTIMIZER

3

ℒ(𝑓(𝑥;𝑊))
2 Minimisation Algorithm3

Figure 8: ANN training scheme. Top: flux diagram which indicates the ordered iterative steps of the
training process. Bottom: illustrations that represents steps 1 to 3 of the diagram on top.

Fig. 8 illustrates this training process. In step 1 we have an ANN with arbitrary
parameters whose outputs have no meaning. We then compute the loss (or cost) L of these
predictions (step 2), which we in turn pass to a minimisation algorithm (or optimizer) (step
3). The optimizer then suggests how to change the ANN parameters so that, at the next
iteration, the loss of the ANN predictions will be lower than that at the current iteration.
This process is repeated until convergence of the loss function is observed. The “learning”
in “Machine Learning” refers to this very process.
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D Recurrent Neural Networks
In this section of the Appendix we expose the general idea behind RNNs, which are the
basis behind LSTMs, the kind of networks used Ref. (15).

Recurrent Neural Networks or RNNs are neural networks whose architecture is specif-
ically tailored to learn sequences of data. In these tasks they stand out against other
architectures like feed-forward neural networks because they can:

• Take in variable-lenght input.

• Track long-term dependencies (of elements in a sequence).

• Maintain information about order (of elements in a sequence).

• Share parameters accross the sequence.

The architecture of a generic RNN is depicted in Fig. 9. When the network receives an input
vector of length N , x, it recursively applies the same transformation f , parametrized by a
set of weights and biases W , to all elements of x until the last element has been inputted
to the net. The output of this transformation at each time t (that is, when the input is xt)
is the internal cell state, ht. The input of fW at time t is not only xt but also ht−1, and
since this is the case at all time steps, each internal cell state is conditioned on all previous
internal states. Typically, fW is taken as a nonlinear function of an affine transformation
of the inputs, as in feed-forward ANNs.

RNN

 𝑦𝑡

𝑥𝑡input vector

output vector

ℎ𝑡

ℎ𝑡 = 𝑓𝑊(𝑥𝑡, ℎ𝑡−1)

Figure 9: “Rolled” RNN. The parameters W are the same at every time step.

Note that the output of an RNN does not have its dimension fixed by anything. For
example, when doing next word prediction we would only compute ŷt (usually just a linear
transformation of ht) in the last step, but in our work we sample a position coordinate at
each time t, whence we obtain an N -dimensional output.

These networks were not used in this form for too long because of a problem that arises
due to the architecture itself. In the most general setting where the network output is
computed from multiple ŷt, the prediction error is not only backpropagated through each
individual ŷt, but also across all time steps5, and it is not difficult to see how this can lead
to exploding and/or vanishing gradients. This often translates into the changes in the net
parameters not reaching the first “layers”. The solution to this problem was brought by
LSTMs (32).

5This is known as Backpropagation Through Time or BPTT.
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