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We study the effect of particle imbalance in quantum droplets formed by
a binary bosonic mixture in a one-dimensional optical lattice. In this situa-
tion not all bosons are paired and we encounter an interplay between bound
states and individual atoms that leads to intriguing phenomena. For small im-
balances, quantum droplets are able to support a finite difference in densities,
thus showing an effective magnetization. As the imbalance increases, a critical
point is reached at which the droplets expels the excess of particles and the
magnetization is locked in the bulk. We study the effects of the imbalance from
both the few- and many-body perspective and we are able to extrapolate our
results to the thermodynamic limit.
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1 Introduction

Recently a whole new class of ultra-dilute quantum droplets has been produced in ul-
tracold atomic laboratories with dipolar bosonic atoms [FBKS+16, SWB+16, CBP+16]
and bosonic mixtures [CTS+18, CCS+18, SFM+18, DBP+19]. These quantum droplets
originate from a compensation between mean-field and quantum fluctuations [Pet15] and
consist of a new type of liquids, which their densities can be eight orders of magnitude
more dilute than liquid helium droplets [BSH+20], the other only known quantum liquid
at zero temperature [BGH+06].

Ultracold atomic systems can be trapped in optical lattice potentials. These ones create
a periodic potential structure where atoms can interact on-site and tunnel between sites.
Interacting spinless bosons in a high optical lattice at zero temperature are described by
the Bose-Hubbard model [Kru16], a model which has been deeply studied in recent years
[LSA12]. Ultracold setups like this offer a high control over the system and make them
perfect platforms for testing quantum properties in a controlled manner.

In particular, ultracold atomic systems can be trapped in a potential that limits its
movement to only one-dimension [SGM19]. This is then known as a one-dimensional
system. Quantum droplets in one-dimensional systems show interesting results compared
with the 3D case. In this situation the mean-field contribution is on average repulsive and
predicts a stable gas and it is the quantum fluctuations from the beyond-mean-field term
that result in an effective attraction that are able to liquefy the system [PA16]. In addition,
in one-dimensional systems the stability is increased due to the suppression of three-body
losses [TOH+04].

Quantum droplets made of bosonic binary mixtures on a one-dimensional lattice have
been studied in the particle-balanced situation [MAPJD20, MAPJD21], where the number
of atoms of both species is equal. In this thesis we go one step further and study the
effect of particle imbalance on these quantum droplets. First, we describe the model and
the numerical method we use in section 2, as well as a description of the situation in the
balanced case. Then in section 3, we characterize the effects of particle imbalance in the
few-body limit. We observe a rich collection of bound states. We characterize them by
computing the respective binding energies and correlation functions. The effects of particle
imbalance in the many-body limit are studied in section 4. In this limit we find that quan-
tum droplets are able to support a finite difference in the density of both species, and thus
gain an effective magnetization. This happens until a critical imbalance above which they
expel particles outside the droplet and the magnetization is locked. Furthermore, we are
able to obtain a prediction of the magnetization in the low particle imbalance and large
interaction strength regime. To do this we consider the density profile of the majority
component as the sum of the density of a Tonks–Girardeau gas of excess particles with
the density of the minority component in the mixture. To characterize the coherence prop-
erties of particle-imbalanced quantum droplets we compute the one-body density matrix.
Finally, we show that our results of the magnetization obey a simple scaling relation for
different total number of particles. To understand the expulsion mechanism we study the
thermodynamic limit and compute the chemical potential of the majority component. This
allows us to predict the expulsion point.

4



2 Model

We study a binary mixture of bosonic atoms with short-range interactions loaded in a
deep one-dimensional optical lattice at zero temperature. We assume the system can
be described to a good approximation by the two-component Bose-Hubbard Hamiltonian
[LSA12],

Ĥ = −t
∑

i

∑

α=A,B

(

b̂†
i,αb̂i+1,α + h.c.

)

+
U

2

∑

i

∑

α=A,B

n̂i,α(n̂i,α − 1) + UAB

∑

i

n̂i,An̂i,B , (1)

where b̂i,α (b̂†
i,α) are the annihilation (creation) bosonic operators at site i = 1, . . . , L for

species α = A,B; and n̂i,α are their corresponding number operators.
In this work we focus on the situation of equal tunneling strength for both species,

t > 0, and an equal repulsive intra-species interaction strength, U > 0. In the following
we use t as the energy scale and keep it fixed throughout the entire work. We study the
case of attractive inter-species interaction, UAB < 0, and we introduce the dimensionless
ratio r = 1 + UAB/U .

2.1 Density Matrix Renormalization Group

To compute the ground state of this system we use the Density Matrix Renormalization
Group (DMRG) algorithm. DMRG is a very efficient method to study one-dimensional
systems with short-range entanglement structure. This method was initially proposed as
a numerical renormalization technique [Whi92].

In recent years, Tensor Network (TN) based methods have been widely used to study
many-body quantum systems. The main idea behind TN methods is to describe the wave
function of the system with a network of interconnected tensors [Or4]. It can be seen that
TNs offer very efficient descriptions of many-body states and take advantage of the locality
of entanglement in the system. Matrix Product States (MPS) are a particular case of TNs
which describe one-dimensional systems decomposing the wave function ψ into products
of matrices,

|ψ〉 =
∑

n1,...,nL

T [1]n1
α1α2

T [2]n2
α2α3

. . . T [N ]nL
αLαL+1

|n1, . . . , nL〉 , (2)

where L is the number of sites, there are dim(ni) matrices T [i]ni of dimension χi ×χi+1 for
each site i, and we are using Einstein notation, so we sum over the repeated indices. The
superscript [i] denotes the set of matrices in this particular i site, the subscripts αiαi+1 are
called bond indices and the superscript ni is called a physical index, since it refers to the
site i in the lattice. We name the bond dimension χ the maximum value that we enable
for the dimension of these matrices.

The main idea behind TNs is that in order to represent a many-body system we do not
need to know the full Hilbert space of the problem, instead we can limit to only a small part
of it which follows an area law for the entanglement entropy [Or4]. This means that the
entanglement entropy of these states grows proportionally with the size of the boundary
between partitions and not with its volume, as would be expected for an arbitrary many-
body state. It has been proved that low-energy states of gapped, local, frustration-free
Hamiltonians in one-dimension fulfill an area law [Has07]. This makes TNs very good
methods to study one-dimensional systems with high efficiency. Nowadays, DMRG has
been reinterpreted as a variational approach to optimize the respective MPS [Sch11].

In the DMRG computations used in this work we put a cutoff on the maximum number
of bosons of each species per site of M = 4 for simulations with sufficiently large interaction
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Figure 1: (a) Averaged density in the bulk of the droplet as a function of the interaction strength U/t
for r = 0.15, maximum number of bosons per site M = 6 and different L, ensuring that the droplets
fit inside the lattice. (b) Typical density profile of a droplet compared with the corresponding fit using
eq. (3). The droplet in panel (b) is obtained for U/t = 4, L = 144 and NA = NB = 24.

strength U/t. This gives a dimension of the local Hilbert space of d = (M + 1)2 = 25. For
systems with open boundary conditions the maximum bond dimension is set to χ = 256 for
quantitative results of the density and energy of the system and χ = 2048 when we study
correlation functions. For systems with periodic boundary conditions we use χ = 512 to
extract the energy of the system. This choice of the bond dimension χ and the value M
for different quantities obtained in this work is discussed in Appendix A.

2.2 Particle-balanced situation

In a bosonic binary mixture in a one-dimensional lattice at zero temperature, quantum
droplets in the particle-balanced situation are able to exist for any strength of repulsive
intra-species interactions provided they are compensated by comparable attractive inter-
species interactions [MAPJD20]. In the following subsection, we give a brief review of the
key aspects of these droplets in this particle-balanced situation, that is when the number
of atoms of both species is equal NA = NB.

2.2.1 Density profile

Our numerical approach with DMRG allows us to obtain the density profile of the ground
state. This one gives us important insight on to the phases of the object and can be
employed to detect the presence of a quantum droplet. Moreover the profile of a droplet
can be fit to a symmetrized Fermi function [SM98],

ni =
n

M
sinh(R/(2a))

cosh(R/(2a)) + cosh(i/a)
, (3)

where R is the size of the droplet, a the typical length scale of the meniscus and nM is also
a free parameter. In Fig. 1(b) we show a fit to the density profile of a droplet using this
function.

In Fig. 1(a) we show the evolution of the averaged central density in the bulk of the
droplet as a function of the interaction strength U/t and fixed r. For low values of the
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interaction strength U/t the density tends to the beyond-mean-field (BMF) prediction of
the equilibrium density in the continuum, ni = 8U/9π2r2 [AM18]. This is expected since
for low U/t the effects of the lattice are more suppressed. Thus for U/t → 0 we expect to re-
cover BMF results. For large U/t the one-dimensional lattice is able to stabilize the density
of the droplet and stop the rapidly-growing value of the mean-field prediction. This feature
shows one of the advantages of the lattice, where lower values in the equilibrium density
imply lower three-body losses. Droplets with small values of the interaction strength U/t
are hard to compute since its equilibrium densities are very low and thus large lattices are
needed to fit the entire droplet. This same numerical problem occurs for large U/t where
droplets disappear. For U/t = 2/r the droplet is expected to vanish into a gas [MAPJD21].
This is seen in the density profile since the droplet grows its size and eventually disappears
the exponential decay in the meniscus.

The prediction of U/t = 2/r was obtained identifying the transition between attraction
and repulsion in the effective interaction between dimers. Dimers are bound states of one
A and one B particle. This result suggests that important information of quantum droplets
can be captured from the few-body limit. We can identify bound states and we can study
the droplet as interactions between these.

2.2.2 Phases in the droplet

Quantum droplets show superfluid properties in one-dimensional optical lattices. More-
over they can be classified in two different phases: two-atomic superfluids (2SF) and pair
superfluids (PSF). A 2SF state is characterized by a quasi-long range phase coherence in
both species. This can be seen in both one- (〈b̂i,αb̂

†
j,α〉) and two-body (〈b̂i,Ab̂i,B b̂

†
j,Ab̂

†
j,B〉)

correlation functions as a power-law decay behavior. On the other hand, the PSF state
is characterized by the formation of pairs of atoms which show long-range phase coher-
ence [HMD+09]. In our system, these pairs are two atoms of different species, i.e., dimers.
Therefore in the PSF the correlation function of pairs decays with a power-law. However,
the correlations of bosons of the same species decay exponentially [HMD+09]. This enables
to identify the transition between these two regimes, and it can be observed for a fixed r
and different interaction strengths U/t. Droplets are able to exist until a critical U/t above
which they vanish into a gas and a Mott-insulator phase can be found if the filling factor
N/L is integer, where N = NA = NB.
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3 Particle imbalance in few-body systems

Now we turn our attention to the central topic of this work, which is when the number
of particles in both species differ. Motivated from the fact that in the particle-balanced
situation the few-particle case offers great insight into the problem, we first consider the
effect of particle imbalance in few-body systems. To understand the internal structure of
the solution, we will perform calculations using different particle numbers to understand
the presence of composite bound states, i.e., dimers, trimers, . . . .

3.1 Four-particle case

The minimal system we consider consists of four bosons NA + NB = 4. In the balanced
situation (NA = NB = 2) for large enough U we expect the system to be dimerized
[MAPJD21]. In this regime an effective interaction between dimers emerges. In order to
rule out the presence of trimers in the particle-balanced situation we compute the respective
binding energies. In Fig. 2 we report the energy of two dimers AB and a trimer AAB with
a free particle B. The sum of the energy of two dimers is always lower than the sum of
the energy of a trimer and the energy of a free particle. Therefore we conclude that in the
particle-balanced case in dilute region the dimer is always more stable than other larger
bound states, since the ground state of the system always binds with the lowest energy
state.

3.2 Bound states with particle imbalance

When particle imbalance is present in the system the formation of larger bound states is
enhanced. This leads to different phenomena than in the balanced case. In this scenario
dimers are not necessarily the most stable bound states. Thus other larger bound states
can be created. We show that the type of bound state depends on the interaction strength
U/t and thus a transition between different bound states can be observed for a fixed r and

0 2 4 6 8 10
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E
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2EAB

Figure 2: Energy as a function of the interaction strength U/t for r = 0.15 and a lattice of size L = 200.
Both curves are obtained for NA = NB = 2. Circles represent the energy of a trimer AAB and a free
B particle and squares the energy of two dimers AB.
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Figure 3: In the main plot, we show the binding energies of the hexamer state (NA = 4, NB = 2) as a
function of the interaction strength U/t for r = 0.15 and L = 200. The green zone in the background
is the region where two trimers are not bound together, this is identified when its binding energy turns
zero. On the right, we show the density profiles of the hexamer state in the corresponding interaction
strength U/t marked with grey dashed lines.

a fixed NA and NB. This can be seen in Fig. 3, where we show different decomposition
channels for the hexamer state AAAABB. The most likely decomposition channel is
identified with the one which its binding energy is closer to zero. When the value of the
binding energy is zero the system fully decomposes into the respectively bound states. In
this figure it can be seen that for U/t . 6.5 the system binds into a pentamer AAABB
and an atom A and for U/t & 6.5 the system binds into two trimers AAB. We can also
notice that in contrast to the particle-balanced case, in this the system never dimerizes and
instead the trimer state plays a similar role as the dimer. In Fig. 4 we show the binding
energies for two-dimer and two-trimer states. This similarity between dimer and trimer
(and other bound states for different interactions and particle imbalances) may indicate
that quantum droplets can be created when there is this type of imbalance in the system,
as we will further see in section 4. In the continuum in a two-dimensional system it has
been seen that this similarity in the binding energies does not happen and instead the
dimer and trimer bind in different interaction strengths [GAB+20].

From U/t & 6.5 the two trimers are bound until U/t & 12, where in Fig. 3 we observe
that the binding energy of the hexamer with two trimers becomes zero. This transition is
also reflected in the density functions as a physical separation of the two trimers. With
this variety of bound states in the few-body case we expect a wide range of large bound
states in the many-body that can change for different interaction strengths U/t. This will
have strong consequences in the many-body properties of the system.

We now study the effect of changing the number of B particles while keeping fixed the
number of A particles. We consider the balanced case of NA = NB = 4 and we remove
B particles. We study the binding energies and the correlation functions which give us
information on the different bound states in the system. For NB ≥ 2 the B particles are
able to be bound with the other 4 A particles. However, for NB = 1 the B particle alone
is not able to bind the rest and instead creates a trimer AAB and two A particles are
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Figure 4: Binding energies as a function of the interaction strength U/t for r = 0.15 and L = 200. In
circles and squares, the binding energy of the tetramer with two dimers AB and the hexamer with two
trimers AAB, respectively.

left outside. We thus say that these two A particles are expelled from the large bound
state, the trimer. This can be seen in Fig. 5(a) with the main binding energies, that is we
identify which binding energy is closer to zero for each of these states. Thus we conclude
that different bound states appear for different imbalances. In addition, in Fig. 5(b) we
show that when there is no particle expelled, the correlation functions 〈n̂A

i n̂
A
j 〉 exhibit the

typical exponential decay associated to bound states [SC95]. However, when there are
particles expelled that are not bound the correlation function shows instead a different
behavior: it first decays exponentially for small values of |i− j| and then shows saturation,
see Fig. 5(c).
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Figure 5: (a) Main decomposition binding energies as a function of the lattice size L. In both panels
(b) and (c), the correlator 〈n̂A

i n̂
A
j 〉 with i fixed in the middle of the lattice and j scans from j = i

to the end of the lattice. In panel (b) the correlator is computed for NA = 4, NB = 2 and in (c) for
NA = 4, NB = 1. All three panels are obtained for U/t = 8 and r = 0.15 and both panels (b) and (c)
are obtained for L = 300.
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4 Ground state properties in the particle-imbalanced situation

In the previous section we have shown that particle imbalance plays a relevant role in the
few-body case. An important feature of DMRG techniques is that they can be used for
fairly large particle numbers and system sizes, thus allowing us to study the transition
from the few-body to the many-body regime. The main goal here is to describe the ground
state properties in particle-imbalanced many-body systems. In particular, we want to find
whether a given droplet solution in the balanced case is robust when we introduce a certain
amount of this imbalance.

In the following, we quantify the particle imbalance in the system by means of the
dimensionless variable z =

(

NA − NB

)

/
(

NA + NB

)

, where NA and NB are the total
number of particles for the species A and B, respectively.

4.1 Particle-imbalanced quantum droplets

We study the effect of particle imbalance in quantum droplets. Beyond-mean-field studies
of these droplets predict that excitations associated with particle imbalance are highly
energetic and above the particle expulsion threshold, leading to an effective evaporation into
the balanced case [Pet15]. In contrast to the continuum case, here we show that strongly
correlated droplets in one-dimensional optical lattices are robust against a certain amount
of this imbalance. To characterize this effect over the quantum droplets we introduce the
magnetization mab =

(

〈n̂A〉 − 〈n̂B〉
)

/2, where 〈n̂A〉 (〈n̂B〉) is the averaged density in the
bulk of the droplet for the species A (B). We obtain this value as,

〈n̂α〉 =
i+R+4a

∑

i−R/2−4a

ni,α

R+ 8a
, (4)

where R and a are obtained fitting the densities of the droplet with eq. (3) and i is its
center of mass. In Fig. 6 we show the evolution of the magnetization as the particle
imbalance z is increased. To obtain this imbalance, we fix the number of particles NA and
remove B particles. Therefore, for z = 0 we recover the results of the balanced case and
for z = 1 there is only the species A left in the system. As the imbalance is increased we
identify two distinct regions: for small z the droplet gains magnetization and is able to
support particle imbalance in density and for large z the droplet locks the magnetization by
expelling A particles outside the droplet. In this second region we observe a plateau in the
magnetization. We name the critical imbalance above which the droplet expels particles
as z∗. The two regions can be clearly identified in the density profiles, see insets in Fig. 6.
In the density profile of a droplet that has expelled particles, we observe the formation of
a gas outside it.

Another remarkable property of the magnetization is that, for sufficiently large inter-
action strength U/t, we find that this quantity is universal given an imbalance z for any
number of particles. This is visible in Fig. 6, where we present the magnetization for
different number of particles. The total density of the droplet n = nA + nB also features
the same universality, but this one has non-trivial dependence with the imbalance quantity
z.

Particle expulsion outside the droplet resembles the phenomena found in the few-body
regime detailed in section 3. When particle imbalance is increased the system decomposes
into a region of large bound states and a region of non-bound A particles. The critical
value of the imbalance can be understood as the point in which the B particles are not
able to bind the all other A particles and thus they are expelled.
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Figure 6: In the main plot, we show the magnetization mab (defined in the text) as a function of the
imbalance quantity z. The vertical dashed-dotted line is the value of the critical imbalance z∗. The
green region in the background shows where the system expels A particles outside the droplet. In the
insets, we show the density profile of the component A and B in blue and orange, respectively, in the
corresponding z region as a function of the lattice site. This figure was obtained for U/t = 8, r = 0.15
and L = 200. The droplets in the insets are obtained for NA = 40.

The plateau in which the magnetization is locked after the critical z∗ depends on the
interactions between atoms (r, U). This plateau exists until another critical imbalance z̃
above which the system has not enough B particles and it is no longer self-bound. Thus
the droplet disappears. z̃ is difficult to be studied quantitatively, since we find that the gas
made of expelled particles creates an effective pressure into the droplet. This gas occupies
the whole lattice except the part occupied by the droplet and therefore the value of this
pressure depends vastly on the lattice size L.

4.2 Tonks–Girardeau gas of the excess particles

In the small particle imbalance and large interaction strength limit we numerically find
that the density of the excess particles in A, nA(x) − nB(x), resembles the density profile
of a Tonks-Girardeau (TG) gas of NA −NB particles in a box of size R given by the droplet
size. The TG gas is a bosonic gas in one-dimension in which bosons are hard-core and
thus are infinitely repulsive (U → ∞). In this limit, bosons have such repulsion that they
can be mapped to a system of spinless fermions [Gir60]. The density of the TG gas that
we observe on top of the droplet is small. Therefore in this low-filling situation we expect
the continuum description to work fairly well. This enables us to find an exact analytic
solution. The single-particle wave function of a free particle in a one-dimensional box of
size R is,

ψn(x) =

√

2

R
sin

(nπ

R
x

)

, (5)

where n = 1, 2, 3, . . . .
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Figure 7: Density profile as a function of the lattice site i. The quantity ρ2T G is the density of a TG
gas of two particles in a one-dimensional box of size R, obtained from eq. (6). This droplet is obtained
for NA = 40, NB = 38, U/t = 10, r = 0.15 and L = 200.

The fermionic many-body wave function Ψ for N spinless fermions is thus the Slater
determinant of these single-particle wave functions occupying n = 1, 2, . . . , N . The density
operator can be written as ρ̂ =

∑N
i δ(x− xi). Therefore the corresponding density reads,

ρ(x) = 〈Ψ| ρ̂ |Ψ〉 =
N

∑

n

〈ψn| δ(x− xn) |ψn〉 =
N

∑

n

|ψn(x)|2 =
2

R

N
∑

n

sin2
(nπ

R
x

)

. (6)

In Fig. 7 we show the density profiles of a quantum droplet with NA −NB = 2 and the
sum of the TG density of two particles in a box of size R with the density of the B species.
This resulting density has an excellent agreement with the density of the A species.

This feature observed in the density profile enables us to get an approximation of the
magnetization for low particle imbalance. To do this, we consider the density of the species
A as a sum of the density of B and a density of a Tonks gas of NA −NB particles. Thus
the mean value of the Tonks density can be written as 〈n̂t〉 = (NA −NB)/R. We can then
write,

z =
NA −NB

NA +NB
=

R〈n̂t〉
NA +NB

. (7)

We introduce the expression of the magnetization mab,

mab =
〈n̂t〉

2
=
z(NA +NB)

2R
≃ znA , (8)

where in the last step we do a first approximation to the balanced case (NA +NB)/2 ≃ NA

and we write nA = NA/R. Within this approximation the magnetization is linear in z with
a proportionality given by the equilibrium density of the species A. Since the equilibrium
density is universal for any number of particles, this approximation of the magnetization
is also universal on z. Fig. 6 shows a good agreement of this approximation for low z with
numeric results.
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Figure 8: One-body density matrix (OBDM) 〈â†
i âj〉 where i and j are lattice sites, applied over a

quantum droplet that has two expelled particles outside (NA = 40, NB = 24, U/t = 8, r = 0.15 and
L = 200). Both panels (b) and (c) are two cuts in which i is fixed and j goes from j = i to j = L. In
panel (a) we draw these cuts considered for panels (b) and (c) with a dashed and dashed-dotted line,

respectively. In panel (b) the dashed line is a fit inside the droplet region with 〈â†
i âj〉 ∝ 1/|i − j|α,

where we extract α ≃ 0.2862. In panel (c) the dotted line is a fit inside the left gas region with

〈â†
i âj〉 ∝ 1/

√

|i− j|.

4.3 Coherence in quantum droplets

A Bose-Einstein condensate (BEC) created by non-interacting bosons is characterized by
the condensation of a large fraction of particles into the lowest single-particle quantum state
[DGPS99]. In this situation the presence of BEC is captured by off-diagonal long-range
order of the one-body density matrix (OBDM), namely the expectation value ρij = 〈â†

i âj〉
converges to a postive constant for large enough |i−j| [Tas20]. However, in one-dimensional
systems strong quantum fluctuations suppress coherence and Bose-Einstein condensation
cannot exist [PAG19]. In this situation the OBDM is expected to follow an algebraic decay
ρij ∝ 1/|i− j|α for sufficiently large |i− j| when a superfluid phase is present.

As we explained in section 2, quantum droplets in the balanced situation can have
quasi-long range order, and the coherence is exponentially lost in the Mott Insulator state
[MAPJD20].

We now analyze the coherence properties of an imbalanced quantum droplet that has
expelled two particles (one in the left and one in the right) studying the OBDM in Fig.
8. The operators âi (â†

i ) are the annihilation (creation) bosonic operators at site i for the
species A, since that is the species that is expelled outside the droplet and we want to
consider the coherence between the exterior gas and the droplet. We notice that coherence
exists not only inside the droplet but also between droplet and exterior gas. Fig. 8(b)
shows the algebraic decay of the OBDM inside the droplet. Outside this one, coherence
decays very fast between the droplet and the outside gas. The dashed line in this same
panel is a fitting with ρij ∝ 1/|i− j|α, and we can extract α ≃ 0.2862. Fig. 8(c) shows the
coherence between the left gas and the rest of the system. We can see that this value is
much lower than the results inside the droplet. For the TG regime of a single-component
bosonic gas, the OBDM decays with ρij ∝ 1/

√

|i− j [Len64]. The dotted line in Fig. 8(c)
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Figure 9: Density profile of both species as a function of the lattice site i for U/t = 10 and r = 0.15.
The left is obtained with open boundary conditions for NA = 40, NB = 30 and L = 200. The right is
obtained with periodic boundary conditions with a fixed density value that we obtain from the bulk of
the left droplet and for a lattice size of L = 60.

shows that this function compares well with numeric results in the gas region.

4.4 Thermodynamic limit

In this subsection we study the effect of particle imbalance in thermodynamic solutions.
DMRG computations allow to obtain results with periodic boundary conditions. These
ones produce a homogeneous solution that for large enough N = NA +NB and L we use
them as a good approximation to the thermodynamic limit, since it enables us to study
the bulk of the droplet without influence from the border of the lattice and the meniscus
of the droplet. With this we are able to obtain the equation of state (EOS) for a given
interaction U/t, r. We can identify the equilibrium density with the minimum value in the
EOS. The spinodal point can also be identified with the point from which the simulations
are not stable anymore. This can be identified with an important inhomogeneity in the
density profile.

We use these periodic boundary conditions with a fixed density value that we obtain
from the bulk of the droplets in open boundary conditions, see Fig. 9. With these homo-
geneous solutions we are able to compute the chemical potential of the A species,

µ
A

= E
(

NA, NB

)

− E
(

NA − 1, NB

)

, (9)

where E
(

NA, NB

)

is the energy of the homogeneous solution with NA and NB particles.
In Fig. 10 we show the evolution of the chemical potential of the A species as a function
of the imbalance z.

The Bose-Hubbard model of a single species in a one-dimensional lattice with non-
interacting particles can be exactly solved. This can be done taking the Bose-Hubbard
Hamiltonian with only the tunneling part and doing a discrete Fourier transform on to the
momentum space,

Ĥ = −t
∑

j

(

b̂†
j b̂j+1 + h.c.

)

= −t/N
∑

q,q′

N
∑

j=1

(

e−i(qrj−q′rj+1)b̂†
q b̂q′ + h.c.

)

(10)
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than −2. These values are obtained for U/t = 8, r = 0.15 and L = 80.

where N is the number of particles, rj is the position of the site j, q is the momentum
discretized over the first Brillouin zone and we introduced b̂†

i = (1/
√
N)

∑

q e
−iqRi b̂†

q. We
continue,

Ĥ = −t
∑

q

(

eiqd + e−iqd
)

b̂†
q b̂q′ = −2t

∑

q

cos(qd)b̂†
q b̂q′ , (11)

where from this we can see that the ground state energy of a single particle in a one-
dimensional lattice is −2t. From this and the computation of the chemical potential µ

A

we are able to obtain the expulsion point z∗ identifying where µ
A
> −2t, since we have

seen that is the energy of a free particle in a one-dimensional lattice. This calculation of
the expulsion point agrees very well with the calculations performed with open boundary
conditions where we can directly identify the expulsion point.

Another procedure we consider to obtain results in the thermodynamic limit is to study
the dependence of some quantities with the number of particles N = NA +NB.

4.5 Bound state insulator

The large bound states we find in the few-body suggest that these may have an important
role in the many-body scenario. In the low particle imbalance and large interaction strength
situation, we propose that for each B particle removed, a bound state is created. Moreover
we interpret that two bound states feel an effective very strong repulsive interaction. This
is the case since we have shown that in this region the excess particles formed an effective
TG gas on top of the quantum droplet. Thus there is a critical point for increasing particle
imbalance where the droplet creates an insulator of these bound states. If we then remove
more B particles, the droplet is not able to hold more bound states and thus it will expel
A particles. We propose that this is the critical point z∗. Let us consider the size of the
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plot is obtained for U/t = 8, r = 0.15 and we choose L ensuring that the droplets fit inside the lattice.

bound states to be a. When the droplet of size R is fully loaded with bound states thus
an insulator is formed. The magnetization mab will then be,

mab(z
∗) =

〈n̂A〉 − 〈n̂B〉
2

=
〈n̂bs〉

2
=

1

2a
, (12)

where 〈n̂bs〉 is the averaged density in the bulk of the bound states and in the critical point
is equal to 1/a. We also obtain an expression for the critical point z∗,

z∗ =
NA −NB

NA +NB
=
Nbs

nR
=

1

na
, (13)

where Nbs is the number of bound states in the droplet of size R and in the last step we
have used that Nbs = R/a. With eq. (12) and (13) we finally obtain,

mab(z
∗)

z∗ · n(z∗)
=

1

2
. (14)

This prediction is evaluated in Fig. 11 for different number of particles. If we extrapo-
late the values to the thermodynamic limit N → ∞ with a function f(1/NA) = a+ b/NA,
where a and b are free parameters, the prediction in eq. (14) is compatible with numeric
results.

18



5 Conclusions and outlook

In this work we have studied the effect of particle imbalance in a binary bosonic mixture at
zero temperature in a one-dimensional lattice. First, we described the model and reviewed
the formation of quantum droplets in the particle-balanced situation, and we introduced
key quantities that are studied in this work. We also presented the Density Matrix Renor-
malization Group (DMRG), the numerical method used to simulate the system and we
described the values of the parameters used in the computations.

We presented our results of the effect of particle imbalance in the few- and many-body
limits. In the few-body limit, we studied the binding energies of the different bound states,
which have shown the formation of large bound states when there is particle imbalance in
the system. These larger composites are not found in the balanced situation. We extracted
information of these states via the correlation functions and we observed a critical point
in which there were not enough B particles to bind the rest A particles. In the many-
body regime we introduced the quantity of the magnetization. We add particle imbalance
in the system removing the number of B particles and keeping the number of A particles
fixed. As this imbalance is increased we identified two different regions: one where droplets
gain magnetization and create a droplet with difference in the density of both species and
another one where the droplet is not able to support more imbalance, locks the magnetiza-
tion in the bulk and expels particles outside it for larger values of the particle imbalance.
We characterized the coherence between the droplet and the outside gas. The analytical
expression of the magnetization presented for low particle imbalance and the relation be-
tween the expulsion point and the magnetization show very good agreement with numeric
results. We also were able to extract the expulsion point obtaining the chemical potential
of the majority component in the mixture with simulations that approximate the thermo-
dynamic limit. We found an excellent agreement between thermodynamic calculations and
open-boundary ones.

In Appendix A we studied the convergence of some important quantities in our work
with some parameters of DMRG. We detailed the importance of these parameters and we
explained the scaling of the computational time with these. The notes presented in this
Appendix should be interesting for anybody that wants to simulate such systems with
DMRG, since often these numeric details are not explained in literature.

To the best of our knowledge this is the first time that the effect of particle imbalance
has been studied on one-dimensional quantum droplets in an optical lattice. We have
shown that these are robust against a certain amount of particle imbalance and that they
are able to gain magnetization. This feature confirms the viability for an experimental
implementation, in which more than often the perfectly balanced situation is difficult to
achieve. It would be interesting a more in depth study of the correlations between the gas
of expelled particles and the entanglement in the system. In addition, it would also be
interesting a study of the effect of the imbalance in the intra-species interaction strength,
UAA 6= UBB, since that is often the case in experimental setups.
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A DMRG Convergence

In order to obtain the ground state of the system we employ the Density Matrix Renormal-
ization Group (DMRG) algorithm. This allows us to obtain the ground state of the system
given a number of particles and a system size. At the same time, DMRG sets a number of
variational parameters set by the bond dimension χ and the dimension of the local Hilbert
space d. To properly obtain reliable physical results we study how the ground state prop-
erties depend on the number of variational parameters. At the same time, our limited
classical computational resources force us to reduce the size of the simulations in order to
be able to compute them in feasible time. This balance between these two constrains is
what we study in this Appendix.

In each sweep of the DMRG algorithm we apply an effective Hamiltonian over the
Matrix Product State (MPS) updating consecutively one (single-site DMRG) or two sites
(two-site DMRG) in order to minimize the energy [HMSW15]. DMRG computations have
been performed using TeNPy [HP18]. This one uses the two-site DMRG and thus we
focus only on this algorithm in the following. The effective Hamiltonian can be written
as a matrix of dimensions χ2

maxd
2 × χ2

maxd
2 [HP18], where χmax is the maximum bond

dimension in the two-sites updated and d is the dimension of the Hamiltonian in a single-
site. The most computationally expensive part of DMRG is to minimize the energy when
the effective Hamiltonian is applied. To do this, we use the Lanczos algorithm [Lan50],
which typically converges after a few tensor products that scale O

(

χ3
maxDd

2 + χ2
maxD

2d3
)

,
where D is the bond dimension of the Hamiltonian written as a Matrix Product Operator
(MPO).

The convergence criteria to stop DMRG sweeps is when the relative change in the energy
at each tensor update in a sweep is ∆E/|E| < −10−8 and the entropy ∆S/S < 10−5.

The computations used in this work have been produced by three different computers.
Two of these are desktop computers and the third is a cluster of central processing units
(CPU’s). We want to thank Dr. Arnau Rios for letting us access into this computer cluster.
In Table 1 we detail the main hardware specifications of these three computers.

Computer CPU model Number of CPU’s RAM memory

Desktop computer #1 Intel
®

Core
TM

i5-8400 CPU - 2.80 GHz
6 49.321 GB

Desktop computer #2 Intel
®

Core
TM

i5-4430 CPU - 3.00GHz
4 16.456 GB

CPU Cluster Intel
®

Xeon
®

Gold

6240R CPU - 2.40 GHz
96 202.35 GB

Table 1: Hardware specifications of the different computers used in this work.

TeNPy allows to parallelize the code to run in multiple CPU’s. This feature would
enable us to take advantage of the vast number of CPU that the cluster has. Nevertheless
we have seen that the optimal number of CPU’s in TeNPy are 2 − 3. Since in this work we
focus on the effect of particle imbalance, we need to compute a large number of simulations
for different number of particles between both species. Therefore we use our computers to
simulate a great number of these simulations at once which use 2 − 3 CPU’s each.

Another added benefit from working in a CPU cluster is the total RAM size. As
an example, a simulation of a droplet with maximum bond dimension χ = 4096 occupies
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Figure 12: Time of computation of one DMRG sweep as a function of the maximum bond dimension
χ. In a dashed and a dotted line, the functions χ2 and χ3, respectively. This DMRG computation is
for NA = 40, NB = 36, U/t = 8, r = 0.15, L = 100 and M = 4.

approximately 50 gigabytes of RAM memory. In both desktop computers the RAM memory
is inferior to this number. Thus we would only be able to compute this simulation using
the cluster.

Since we have an important but finite computing resources available, a crucial duty is
to minimize the size and total time of computations by reducing key parameters in DMRG.
This has to be done carefully to obtain meaningful results. In the following subsections
we explain our criteria in choosing two of these parameters: the bond dimension and the
maximum number of bosons per site.

A.1 Bond dimension

The bond dimension in a MPS is the dimension of the bond index that connects two
following tensors. This quantity can give a measure of the amount of entanglement in
the wave function [Or4]. As we explained, the most computational expensive part of
DMRG scales as O

(

χ3
maxDd

2 + χ2
maxD

2d3
)

. Therefore in DMRG we have to limit the bond
dimension up to a predefined value χ to perform the simulations in a realistic time. In Fig.
12 we show the scaling of the computational time with the bond dimension. Surprisingly,
this one scales with an exponent of χ smaller than the prediction O

(

χ3
maxDd

2 + χ2
maxD

2d3
)

given in [HP18].
The convergence of the quantities used in this work has to be carefully studied since

the value of χ can have an important role in the results of the simulations. In Fig. 13
we report the convergence of different quantities for a particle-imbalanced droplet with
different maximum bond dimension χ. We are able to obtain a prediction to the limit of
χ → ∞ with a fit of the results to a function of 1/χ. In our work a crucial quantity is the
magnetization mab. For χ = 256 the error in the magnetization is on the forth decimal.
We consider that this error is small enough and we choose this value for simulations in
which we want to obtain mab.

24



−229.97

−229.96

−229.95

−229.94

E
/t

0.1231

0.1232

0.1233

m
a
b

0 500 1000 1500 2000

χ

0.706

0.708

0.710

〈n̂
A
〉

Figure 13: Convergence of different quantities as a function of the maximum bond dimension, χ. We
fit each quantity with a function f(χ) = a+ b/χc, where a, b and c are free parameters. In the second
and third panel we exclude the first value to do the fit. Values obtained with a particle-imbalanced
droplet for NA = 40, NB = 24, U/t = 8, r = 0.15, L = 144 and M = 4.

Although χ = 256 is enough for the mentioned quantities we also show that it is not
sufficient for more complex quantities. In particular, correlation functions measure the
correlation between different parts of the system and thus are quantities highly influenced
by the entanglement [BNSL15]. This means that these functions have harder convergence
on the bond dimension χ. In addition, a limit in the bond dimension is translated into a
limit in the entanglement of the system. Thus we expect correlation between long distances
to need a relatively large χ to converge. In Fig. 14 we present the evolution of the one-body
density matrix (OBDM) 〈â†

i âj〉 as a function of |i − j| for a particle-imbalanced droplet
that has expelled two particles (one in each side of the droplet). The operators âi (â†

i ) are
the annihilation (creation) bosonic operators at site i for the species A. In Fig. 14(b) we
show the OBDM for large values of |i− j| and it can clearly be seen that higher values of
the bond dimension are needed in order to accurately obtain the quantity in this region.
Since we have a somewhat limited amount of computing power, we are only able to work
up to χ = 2048 and we use this value for the OBDM results in our work.

A.2 Maximum number of bosons per site

Our system consists of a one-dimensional lattice with NA and NB atoms of A and B
particles, respectively. Thus we can have from 0 to NA + NB atoms in each lattice
site. This means that the dimension d of the effective Hamiltonian in one site is d =
(NA + 1) (NB + 1). Although this would be the exact way to proceed, it is not computa-
tionally feasible since the dimension of the local Hamiltonian would be too large. Therefore
we put a cutoff on the maximum number of bosons of each species per site M . This sets a
maximum dimension of the local Hamiltonian. In this subsection we study how this value
affects the density profiles and the energy of the system.
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Figure 14: One-body density matrix 〈â†
i âj〉 with i fixed on the middle of the lattice and j scans from

j = i to the end of the lattice. In panel (b) we enlarge the gray area marked in panel (a). Values
obtained with a particle-imbalanced droplet for NA = 40, NB = 24, U/t = 8, r = 0.15, L = 144 and
M = 4.

Before introducing imbalance, we study the effect of the cutoff M in the balanced
situation NA = NB. In Fig. 15 the mean density of the bulk of a droplet for the balanced
situation as a function of the interaction strength U/t is reported. We choose M = 4 as
the value used for computations in our work since it already shows a good convergence in
the averaged density. Moreover, in our work we focus on the strongly interacting regime,
that is the region of sufficiently large U/t, which is also the region where the convergence
in M much is faster.
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Figure 15: Averaged central density in the bulk of the droplet as a function of the interaction strength
U/t for r = 0.15 and different L, ensuring that the droplets fit inside the lattice.
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Figure 16: Convergence of different quantities as a function of the cutoff of maximum number of bosons
of each species per site, M . Values obtained with a particle-imbalanced droplet for NA = 40, NB = 22,
U/t = 8, r = 0.15, L = 144 and χ = 256.

Now we consider a system with particle imbalance and we study the effect of the value
M . In Fig. 16 the convergence of some quantities for different values of M is shown.
For M ≤ 4 the magnetization and density oscillates between the forth and third decimal,
respectively. The energy difference for M > 4 is on the fifth decimal, a value that is
equivalent to the convergence criteria of DMRG. Therefore we conclude that for the range
of U/t ∈ (8, 10), M = 4 is a sufficient value to obtain valid results.
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