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The percolation properties of clustered networks are analyzed in detail. In the case of weak clustering, we
present an analytical approach that allows us to find the critical threshold and the size of the giant component.
Numerical simulations confirm the accuracy of our results. In more general terms, we show that weak clus-
tering hinders the onset of the giant component whereas strong clustering favors its appearance. This is a direct
consequence of the differences in the k-core structure of the networks, which are found to be totally different
depending on the level of clustering. An empirical analysis of a real social network confirms our predictions.
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I. INTRODUCTION

The general framework introduced in Paper 1 �1� to ana-
lyze clustering in complex networks provide us with the nec-
essary tools to tackle the study of the percolation properties
of clustered networks. The introduction of clustering in per-
colation analysis represents a theoretical challenge due to the
fact that previous analytical approaches, applied to random
two-point correlated directed and undirected networks
�2–10�, are based on the idea of branching process. One
starts from a given vertex and follows all the edges attached
to it. Then, the process is repeated again starting from the
neighboring vertices avoiding the source one. All the vertices
reachable from a given one belong to the same connected
component and the network is said to be in the percolated
phase when the largest component reaches proportions of the
order of the network size, becoming the so-called giant con-
nected component �GCC�. This scheme works well when the
network is locally treelike and thus the clustering coefficient
is very small. Real networks, however, are shown to have a
significant level of clustering—even for very large
networks—that may change the percolation properties sig-
nificantly.

Aside from the theoretical importance of percolation it-
self, there is a significant practical interest. Percolation is
strongly related to epidemic processes. In fact, the simplest
model for epidemic spreading, the susceptible-infected-
removed model �11,12�, can easily be mapped into a bond
percolation problem �13–16�. In its simplest formulation, an
infected individual becomes infected for a random time tr
following a Poisson process, that is, �r�tr�=�e−�tr. On the
other hand, when an infected individual is in contact with a
susceptible one, it takes a random time ti to infect it, this
process being a Poisson process as well, that is, �i�ti�
=�e−�ti. The probability that an infected individual infects a
susceptible neighbor before it becomes removed is then

pinf = �
0

�

�i�t��r�t�dt =
�

� + �
, �1�

where �r�t�=�t
��r���d� is the probability that the vertex re-

mains infected for a time larger than t. Since the infection
uses the network as a template to spread, the infection pro-
cess can be understood as a bond percolation problem over

the original network when each edge is removed with prob-
ability qinf =1− pinf. The percolation threshold corresponds in
this mapping to the onset of pandemic infections whereas the
size of the giant connected cluster corresponds to the number
of infected individuals.

In this second paper, we present analytical results for per-
colation in random networks with weak transitivity, that
is, with degree-dependent clustering coefficient c̄�k� below
�k−1�−1, which extends and completes material previously
published in �17�. In the case of percolation in the presence
of strong transitivity—with c̄�k�	 �k−1�−1 in a given
domain—we present here interesting counterintuitive results
which demonstrate that, in the percolation process, strong
clustering favors the onset of the giant component whereas
weak clustering hinders it. Furthermore, we show how these
outcomes explain previous results by other authors �18,19�.
We also discuss that these properties are intimately related to
the structural organization of networks, in particular to their
k-core decomposition �20,21�. We end this paper by taking a
look at the pretty-good-privacy �PGP� web of trust �22�, a
large social network which turns out to be a nice example of
a real system where our predictions apply.

II. PERCOLATION IN WEAKLY CLUSTERED NETWORKS

The standard percolation formalism based on branching
processes overcounts the size of a node’s second neighbor-
hood when clustering is present. To correct for this effect, the
usual procedure can be modified in the following way. One
starts from a given vertex and follows all its edges. However,
once placed in one of the neighbors, the next edges to follow
are those not pointing to the neighborhood of the source
vertex �23� �the edges pointing to the neighborhood of the
source vertex are the ones responsible for clustering�. It is
worthwhile to notice that, even in this scheme, we are ne-
glecting the fact that higher order loops may be present in the
network. In particular, squares will connect vertices in the
first neighborhood with a common vertex in the second
neighborhood, overcounting it. Besides, when the multiplic-
ity of the edges is large—by multiplicity m we mean the
number of triangles passing through an edge—squares
induced by the merge of two triangles that share an edge
appear. Therefore the implementation of the strategy out-
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lined above will become exact in the case of disjoint tri-
angles but it will represent an upper bound to the real size of
the giant component when triangles jam into edges. As ex-
plained in the preceding paper �1�, weakly clustered net-
works are those which have a degree-dependent clustering
coefficient c̄�k�
 �k−1�−1, ∀k, implying that edge multiplic-
ity is small and triangles disjoint. In contrast, strongly clus-
tered networks have high edge multiplicity and thus triangles
are forced to share edges.

With this in mind, let us start by defining the probability
that a given vertex has s reachable vertices, G�s�. For very
heterogeneous networks this function is not very representa-
tive and we have to define the same probability but condi-
tioned to the degree of the source vertex G�s �k�. These two
functions are trivially related through

G�s� = �
k

P�k�G�s�k� , �2�

where P�k� is the degree distribution. Finally, we need to
introduce an extra function, g�s �k�, which measures the
probability that a vertex can reach s other vertices given that
it is connected to a vertex v of degree k, and that it cannot
visit either v or its neighborhood. This last condition guar-
antees that we do not overcount contributions due to tri-
angles. In this way, functions G�s �k� and g�s �k� are related
through

G�s�k� = �
s1,. . .,sk

g�s1�k� ¯ g�sk�k��s,1+s1+¯sk
. �3�

We can find a recursion relation for g�s �k� in the following
way: we first compute the probability that the vertex under
consideration, vertex u, has degree k� given that it was
reached from a vertex of degree k, vertex v, using an edge of
multiplicity m. In this way, the number of neighbors of u that
are not v or neighbors of v is k�−m−1. Then, the number of
reachable vertices from vertex u is 1 �for itself� plus the
number of vertices reachable from the k�−m−1 available
connections. This procedure can be repeated iteratively lead-
ing to a branching process with the constraint that at each
generation point we can only use the free edges. Using this
argument, function g�s �k� can be written as

g�s�k� = �
k�

�
m

P�k��k���m�kk��

� �
s1,s2,. . .

g�s1�k��g�s2�k�� ¯ g�sk�−m−1�k��

��s,1+s1+s2+¯sk�−m−1
, �4�

where P�k� �k� is the probability that a vertex of degree k is
connected to a vertex of degree k� �29� and where we have
defined ��m �kk�� as the probability that an edge connecting
two vertices of degrees k and k� has multiplicity m. The
multiplicity matrix mkk� can be computed as the first moment
of ��m �kk��, i.e.,

mkk� = �
m=0

m
kk�
c

m��m�kk�� , �5�

where mkk�
c =min�k ,k��−1. For randomly assembled net-

works, we can make use of the probabilistic interpretation of
the edge clustering coefficient c̄�k ,k��=mkk� /mkk�

c �1,24� and
write that

��m�kk�� = 	mkk�
c

m

�c̄�k,k���m�1 − c̄�k,k���m

kk�
c

−m. �6�

In principle, this particular form of the distribution of m is to
be taken as an approximation. However, as we will see, in
the case of randomly assembled networks it works extremely
well.

We define the generating function of g�s �k� as

ĝ�z�k� � �
s

zsg�s�k� . �7�

Using this transformation, Eq. �4� reads

ĝ�z�k� = z�
k�

�
m

P�k��k���m�kk���ĝ�z�k���k�−m−1, �8�

which is a closed set of equations for the functions g’s. Fi-
nally, G�s �k� and g�s �k� are related through

Ĝ�z�k� = z�ĝ�z�k��k. �9�

The percolation transition takes place when Eq. �8�, evalu-
ated at z=1, admits as a stable solution ĝ�z=1 �k�=��k�1,
that is, there is a finite probability �1−��k�� that the branch-
ing process extends up to infinity, meaning that a giant con-
nected component has been formed. Since ĝ�z=1 �k�=1 is
always a fixed point of Eq. �8�, the onset of the giant com-
ponent is the point at which this solution becomes unstable.
To perform the stability analysis, we linearize Eq. �8� by
plugging in a solution of the form ĝ�z=1 �k��1+��k��. In
the limit �→0, this operation yields

��k� = �
k�

�k� − 1 − mkk��P�k��k���k�� . �10�

The critical percolation point is ruled by the maximum
eigenvalue �m of the matrix �k�−1−mkk��P�k� �k�. When
�m	1, the solution ĝ�z=1 �k�=1 becomes unstable leading
the network to the percolated phase, in which a macroscopic
fraction of the system becomes globally connected. The rela-
tive size of the GCC can then be computed as

gcc = 1 − ���k��k� . �11�

To be able to derive an analytic expression for the perco-
lation condition, we have to assume some simplifications at
this point. On one hand, we take mkk�=m0, with m0 a con-
stant within the interval �0, 1�, that is, we restrict to networks
with weak transitivity. In this situation, making use of the
closure condition derived in the preceding paper,
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�
k�

mkk�P�k,k�� = k�k − 1�c̄�k�
P�k�
k�

, �12�

we can see that the degree-dependent clustering coefficient
takes the form c̄�k�=c0�m0��k−1�−1, where c0�m0� is a cer-
tain function of m0 to be determined. The second simplifica-
tion assumes the absence of two-vertex correlations but,
when clustering is present, uncorrelation can be attained for
all degree classes except for the degree class k=1 �see dis-
cussion in Paper I �1��. The reason is that vertices of degree
k=1 cannot participate in triangles and therefore connections
involving these vertices are forced to follow a different pat-
tern. Therefore we assume that P�k ,k���kk�P�k�P�k�� only
for k, k�	1, whereas it takes a different form when k=1 or
k�=1. Using this factorization together with the normaliza-
tion condition and �k�P�k ,k��=kP�k� / k�, the transition
probability P�k� �k� can be found to be

P�k��k� =�
1 − 2

P�1�
k�

+ P�1,1�

	1 −
P�1�
k�


2

k�P�k��
k�

k ∧ k� 	 1

1 −
P�1,1�
P�1�

k�

	1 −
P�1�
k�



k�P�k��

k�
k = 1 ∧ k� 	 1

k 	 1 ∧ k� = 1

P�1,1�
P�1�

k� k = k� = 1,

�
�13�

where P�1,1� is the probability that a randomly chosen edge
connects two nodes of degree 1, which remains as the only
parameter to be determined.

If clustering is absent, then m0=0 and P�1,1� can factor-
ize as P�1,1�= P2�1� / k�2. Otherwise, if clustering is finite,
we can assume that all edges that are not involved into tri-
angles are realized in the most random form. In a random
uncorrelated networks, the probability that an edge is con-
necting two vertices of degrees k and k�, P�k ,k��, factorizes
as P�k ,k��=kk�P�k�P�k�� / k�2. On the other hand, this joint
degree-degree distribution can be expressed in terms of the
number of connections between different degree classes,
Ekk�, and the total number of edges E as P�k ,k��=Ekk� /2E.
Therefore if Ec is the number of edges of our original net-
work participating in triangles, the expected number of edges
between vertices of degree 1 will read E11=N2P2�1� /2�E
−Ec�. This leads to the following expression:

P�1,1� =
E11

2E
=

P2�1�
k�2

1

1 − Ec/E
. �14�

Ec can be computed as

Ec =
1

2�
i,j

aij��mij − 1� , �15�

where ��mij −1� is the Heaviside step function. This equa-
tion can now be rewritten as

Ec = E �
k,k�=2

P�k,k����m − 1��k,k�� , �16�

where the last average is taken over the set of edges connect-
ing nodes of degrees k and k�, that is,

��m − 1��k,k�� = �
m=1

��m�kk�� = 1 − ��0�kk�� , �17�

which can be computed using Eq. �6�. Using this express-
ion, combined with the two-point correlation function,
Eqs. �13� and �14�, we can write the following equation for
P�1,1��x:

x2 − 	 ���
1 − ���

+
2P�1�

k� 
x +
P2�1�

k�2�1 − ����
= 0, �18�

where ��� is the average of ��0 �kk�� over the set of vertices
of degrees larger than 1. P�1,1� corresponds to the smallest
solution of this quadratic equation. Finally, using Eq. �12�,
the clustering factor c0�m0� can be written as

c0�m0� = m0
1 − 2�P�1�/k�� + P�1,1�

�1 − �P�1�/k���
. �19�

Using the results above, the maximum eigenvalue of the ma-
trix �k�−1−mkk��P�k� �k� can be analytically computed,
yielding a percolation condition given by

k�k − 1��
k�

	 �1 + c0�m0��
m0

c0�m0�
	1 −

P�1�
k�


 . �20�

It is easy to prove that the right hand side of this equation is
always larger than or equal to 1. This means that weakly
clustered networks percolate at a higher density of connec-
tions as compared to the unclustered ones. For very low
clustering, this term converges to 1 and so we recover the
percolation threshold of random networks with a given de-
gree distribution.

There is a particular case in which the symbiosis of a
specific form of the degree distribution and a weak clustering
in the frontier, c̄�k�= �k−1�−1, maintains the critical point un-
changed with respect to the unclustered classical random
graph. This model is studied in detail in Ref. �18� as a natural
extension of the Erdös-Rényi random graph �26,27�, where
each possible triangle among a fixed number of vertices is
realized with a given probability. In the thermodynamic
limit, and for sparse networks, all edges in the ensemble
have fixed multiplicity, m=1, and the generating function of

the resulting degree distribution is P̂�z�=exp�k��z2−1� /2�.
Since odd degrees are not present, P�1�= P�1,1�=0 and the
critical condition Eq. �20� becomes k�k−1�� / k�	2 which,
for this particular degree distribution translates into k�	1,
that is, the same percolation condition that applies for the
classical random graph.
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To check the accuracy of the formalism, we generate clus-
tered random networks with the algorithm introduced in �25�
with an exponential degree distribution and a degree-
dependent clustering coefficient of the form c̄�k�=c0�k
−1�−1 �30�. Notice that, when generating the networks, we
fix the value of c0 and not m0, as it is done in the derivation
above. However, we can make use of Eq. �19� to go from one
parameter to the other. Figure 1 shows a perfect agreement
between the empirical values for the parameter P�1,1� as a
function of c0 for different values of the average degree and
the analytical results derived from Eq. �18�. In Fig. 2, we
compare the relative size of the giant connected component
as a function of c0 with the numerical solution of Eqs. �8�
combined with the transition probability given in Eq. �13�.
As it can be seen in the figure, the effect of clustering is to
reduce the size of the giant connected component. The effect

is so strong that, in networks with a moderate average de-
gree, it completely fragments the network when c0 exceeds a
critical value. In other cases, the reduction of the size can be
of more of the fifty percent. For values of c0� �0,0.5�, the
agreement between our theory and numerical simula-
tions is excellent. Beyond this point, our approximation
slightly overestimates the GCC’s size. This is mainly due to
the fact that in this regime, links of multiplicity larger than 1
appear which, in turn, induces the presence of some loops of
order 4.

III. PERCOLATION IN STRONGLY CLUSTERED
NETWORKS

In the strong transitivity regime, the solutions obtained
from our theory become upper bounds to the real size of the
giant component due to the fact that then higher order loops
appear. Unfortunately, it is not easy to extend the analytical
calculations to this case but one can resort to numerical
simulations. Fortunately, we can make use of the algorithm
presented in Ref. �25�, which allows to generate random net-
works with a given degree distribution, a fixed degree-
dependent clustering coefficient, and at the same time, to
exert some control on the assortativity level of the network.

First, it is important to comment on the results by New-
man �19�, who solved exactly the bond percolation problem
for the one-mode projection of random bipartite graphs. One
of the main results in that study is that clustering, although
makes the giant component smaller, favors its onset, which
seems to be just the opposite result to the one that we ob-
tained in the case of weak transitivity networks. To solve this
puzzle, we first need to understand how one-mode projection
networks are constructed. In a bipartite network, two types of
vertices coexist, for instance scientists and scientific papers,
with connections among them. The one-mode projection is
then constructed by retaining just scientists and connecting
them whenever they co-author the same paper. That means
that all papers with more than two authors will give place to
cliques of connected scientists. Therefore edges participating
in triangles will have high multiplicity and the networks so
generated will belong to the strong transitivity class. We
shall see in the following that it is precisely the class the
network belongs to—and not the scalar clustering
coefficient—that determines whether clustering favors or not
the onset of the giant component.

To check this issue, we have generated two networks with
identical degree distribution �exponential with k�=2� and
different forms for c̄�k�, the first one with weak transitivity
and the second one with strong transitivity. Then, we study
their percolation properties by implementing a bond percola-
tion experiment. We remove each edge with probability q
and measure the size of the giant component. Figure 3 shows
the results of this program. As it is clearly seen, in both types
of networks the size of the giant component is smaller than
that of the unclustered network. However, the percolation
threshold for the weak transitivity class is smaller than the
unclustered value, whereas it is larger in the strong transi-
tivity class, despite the fact that both networks have the same
value for the scalar clustering coefficient c̄. In Fig. 3, we also

FIG. 1. �Color online� Values of the parameter P�1,1� as a func-
tion of c0 obtained from numerical simulations as compared to the
analytical solution given by Eq. �18�, for different values of the
average degree and an exponential degree distribution. Symbols are
numerical simulations using the algorithm of Ref. �25� and solid
lines correspond to the analytical solution.

FIG. 2. �Color online� Relative size of the giant component in
the case of c̄�k�=c0 / �k−1� as a function of c0 for different values of
the average degree. Symbols are numerical simulations using the
algorithm of Ref. �25� for an exponential degree distribution. Solid
lines correspond to the numerical solution of the set of equations
�8�.
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show the behavior of the percolation threshold qc for differ-
ent values of the scalar clustering coefficient C= c̄ / �1
− P�1�� �which is defined in the interval �0, 1�� for the strong
and weak transitivity cases, which confirms this trend.

Although illuminating, this analysis has the problem
that we are comparing the resilience properties of networks
with different giant components. Despite that the degree
distribution is the same for all the networks, it could not
be the case for their giant components, potentially changing
then the location of the critical point. To overcome this
problem, we generate a network with strong transitivity and
extract its giant component. Then, using the degree distribu-
tion of this giant component we generate two more net-
works, one without clustering and the other one with weak

clustering. Finally, we check that these two networks are
globally connected. We choose as the degree distribution to
generate the strongly clustered network a function of the
form P�k��k−�, with �=3.5. This particular form is conve-
nient because using this distribution the range of degrees is
relatively wide and, at the same time, the network still has a
finite percolation threshold. We also restrict the degrees to
values larger than two. Otherwise the unclustered network
would not have a GCC. Figure 4 shows the results for the
bond percolation process in these three networks. As it is
clearly seen, the size of the GCC of the highly clustered
network decreases very fast when a small fraction of edges is
removed whereas the unclustered one is more resilient in this
regime. However, as q increases, the unclustered network
undergoes the phase transition �at qc=0.4� whereas the
highly clustered net shows a surprising resilience, decaying
very slowly as q increases. On the other hand, the weakly
clustered network is always less resilient than the unclustered
one and undergoes the phase transition at a lower level of
damage. These results confirm those shown in Fig. 3

To understand which is the origin of this behavior and the
differences between weak and strong clustering, we need to
understand the kind of structures that are formed depending
on the clustering properties. The concept of k-core is particu-
larly suitable for this purpose �see �21� for a very nice work
on k-core percolation in random networks�. The k-core of a
network is the maximal subgraph such that all its vertices
have k or more connections within the subgraph. Therefore
k-cores are subgraphs which are particularly resilient to the
removal of edges if k is large. In Fig. 5, we show the relative
sizes of the giant k-cores of the networks of Fig. 4 as a
function of k compared with the cumulative degree distribu-
tion Pc�k�=�k��kP�k��. This comparison is in order because
Pc�k� is the maximum possible value the giant k-core can
attain. In the cases of weak clustering and unclustered net-
work, the entire network forms a giant 2-core but the k-cores
for k	2 do not exist. This result can be understood using
results from �21� that state that, in random networks, the
giant k-core undergoes a k-core percolation transition which

FIG. 3. �Color online� Top graph: Bond percolation on networks
with exponential degree distribution �k�=2� and weak clustering
�black filled circles�, strong clustering �red filled squares�, and zero
clustering �blue filled triangles�. For both types of clustering the
size of the giant component of the original networks is smaller than
the unclustered one. However, the percolation threshold for the net-
work with weak clustering is smaller than the unclustered net
whereas it is larger for the network with strong clustering, despite
the fact that both networks have the same value of c̄. The inset
shows the degree-dependent clustering coefficient for both net-
works. The area depicted in grey indicates the limits of weak clus-
tering. Outside this region, the multiplicity of edges is necessarily
larger than 1. Bond percolation simulations are performed over a
single network of size N=105 and, then, averaged over 50 different
realizations for each value of q. Bottom graph: Percolation thresh-
old for strong and weak transitivity as a function of the global
clustering C= �1− P�1��−1c̄. The blue dashed line is the percolation
threshold for the unclustered network �qc=1/2�.

FIG. 4. �Color online� Results of the bond percolation process
on networks with a degree distribution of the form P�k��k−�,
�=3.5, and strong clustering �red filled squares�, weak clustering
�black filled circles�, and unclustered �blue filled triangles�. In all
cases, the original networks are single connected components.
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is discontinuous, similar to what happens in first order phase
transitions. In contrast, the strong clustered network has
k-cores for k	2 which do not vanish, with a constant frac-
tion of Pc�k� belonging to them. This behavior extends up to
degree k=7, and the k-core finally disappears at k=8. This
result explains the strong resilience of the strongly clustered
network since, although small, these k-cores with high k are
extremely difficult to break. This suggests that the properties
of the critical percolation threshold in this class of networks
should be tied to their k-core percolation properties. This is
an issue that deserves further consideration and will be ad-
dressed in a future work.

IV. PERCOLATION IN SCALE-FREE CLUSTERED
NETWORKS

Random scale-free �SF� networks with 2
�3 have the
peculiarity of not having a percolation threshold or, equiva-
lently, qc=1. This means that one has to remove the totality
of the edges to break the network into disconnected compo-
nents. In epidemiological language, it means that any dis-
ease, even a low infectious one, can propagate and infect
macroscopic portions of the population. Given the important
implications of this result, it is necessary to discern whether
it can be applied to more general types of networks. For
instance, it has been proved that two-vertices degree-degree
correlations cannot restore a finite epidemic threshold �9,28�.
However, this result cannot be applied to networks with high
levels of clustering since the networks used in the demon-
stration had a vanishing clustering coefficient in the thermo-
dynamic limit.

As we have already seen in previous sections, weak tran-
sitivity hinders the onset of the giant component, with a con-
dition for its existence, in the uncorrelated case, given by Eq.
�20� �that we repeat here for readability�

k�k − 1��
k�

	 �1 + c0�m0��
m0

c0�m0�
	1 −

P�1�
k�


 .

In the case of SF networks, the term on the left in this in-
equality diverges and therefore the condition is always ful-

filled. In short, this means that weak transitivity cannot re-
store a finite percolation threshold.

When the network belongs to the strong transitivity class,
its percolation properties are not much different from net-
works with bounded fluctuations, except for the fact that the
critical threshold is located at qc=1. In Fig. 6, we repeat the
same analysis performed in the previous section but now for
a SF network. We first generate a highly clustered SF net-
work with �=2.5 and extract its giant component. Then, we
randomize it to obtain an unclustered random network pre-
serving the degree distribution. Finally, a bond percolation
process is applied to both networks. As in the case of
�=3.5, the clustered network is less resilient than the unclus-
tered one except for high levels of damage, where the clus-
tered net is more resilient. In this case, the fact that we find a
finite threshold is due to finite size effects. Again, the k-core
analysis reveals a nested structure of k-cores up to k=65
following closely the shape of Pc�k�. In contrast, the k-cores
for the unclustered network decays very fast as k increases.
These results imply strong transitivity cannot restore a finite
percolation threshold either.

V. PERCOLATION IN REAL NETWORKS: THE CASE
OF THE PGP NETWORK

We cannot end this paper without taking a look at the real
world and checking if our results applies also there. To this
end, we chose the pretty-good-privacy �PGP� web of trust
analyzed in Ref. �22�. This is a nice example of a large social
network based on trust. It arises as a consequence of the need
for secure communications through the Internet. Without go-
ing into great detail, when a user A wants to send a message

FIG. 5. �Color online� Relative sizes of the giant k-cores of
networks with P�k��k−� and �=3.5 for weak clustering, strong
clustering, and unclustered, respectively.

FIG. 6. �Color online� Top: results of the bond percolation pro-
cess on a network with a degree distribution of the form P�k�
�k−� and �=2.5 and its randomized version. The inset shows a
detail close to q=1. Bottom: relative sizes of the giant k-cores of
these two networks. The solid line is the cumulative degree distri-
bution Pc�k�.
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to another user B, she encrypts the message using the public
key of user B who, afterwards uses her private key to decrypt
it. In this way privacy is ensured. However, since everybody
can generate his own pair of keys, it is not possible, in prin-
ciple, to be sure that the person holding the key is who she
claims to be. An imaginative solution to this problem is the
web of trust. In this web, any user can sign the public key of
another user, meaning that she trusts the other person is who
she claims to be. This procedure generates a publicly avail-
able web of trust of users that have signed the public keys of
other users. In principle, this web is directed. However, since
we are interested in social ties, we filter out those connec-
tions that are not reciprocal. In this case, an edge among two
persons is likely to represent a social relationship between
them. After the filtering process, we obtain a network with
N=57 243 vertices and a giant connected component of
Ngcc=10 680 vertices. The network has a degree distribution
with a heavy tail �although not a pure power law� extending
up to k�200 and a degree-dependent clustering coefficient
which is constant up to degree k=50 followed by a sharp
decay for k	50, with an overall value of 0.5. This property
sets the PGP network at the heart of the strong transitivity
class.

The bond percolation experiment performed on the giant
connected component of the PGP network reveals the same
type of pattern that we have found before and is shown
in Fig. 7. Again, the randomized version is more resil-
ient except for very high values of q, where the PGP net
is more resilient, with the critical point closer to 1. The

k-core decomposition also shows the same type of result.
The PGP network has a nested k-core structure extending up
to k=31, whereas the randomized network has only k-cores
up to k=7.

We would like to stress that this behavior is by no means
exclusive to the PGP network since many networks in the
real world belong to the strong transitivity class. The results
presented here are extremely relevant in the case of epidemic
spreading. On the bad side, they suggest that real clustered
networks are more prone to suffer epidemic outbreaks than
unclustered networks. Yet, the relative size of the potentially
infected population is smaller, which is indeed a positive
result. We would also like to point out that the knowledge of
the role that the giant k-cores have on the percolation prop-
erties could be used to design and plan more effective im-
munization strategies.

VI. CONCLUSIONS

In this second paper, we have presented an analytical ap-
proximation to percolation in weakly clustered networks. Al-
though this formalism is exact only in the limit of weak
transitivity, it is an upper bound for the size of the GCC in all
cases. Using this approach, we have seen that weakly clus-
tered networks percolate at a higher density of connections
as compared to the unclustered ones. By means of numerical
simulations, we have also proved that the percolation thresh-
old for networks in the weak transitivity class is smaller than
the corresponding to an unclustered network with the same
degree distribution. In contrast, this threshold is larger for
nets in the strong transitivity class. This means that weak
clustering hinders the appearance of the giant connected
component whereas it is favored by strong clustering. To
understand which is the origin of this behavior and the dif-
ferences between weak and strong clustering, we have ex-
plored the structural organization of networks through their
k-core decomposition, finding important differences among
the two classes. In the case of scale-free networks, we have
seen that neither weak nor strong transitivity can restore a
finite percolation threshold. We have checked our results us-
ing a real social network, finding a very good agreement.

To summarize, in this paper and the preceding one we
have developed a full theoretical approach to clustering in
complex networks. We hope that these developments will
improve the topological characterization of complex net-
works but also that they will help to produce a better under-
standing and a more realistic modeling of the dynamical pro-
cesses that conform or use them.
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FIG. 7. �Color online� Top: bond percolation experiment per-
formed on the giant component of the PGP network and on its
randomized version. The inset shows a detail close to q=1. Bottom:
relative sizes of the giant k-cores for the PGP network and its ran-
domized version, respectively. The solid line is the cumulative de-
gree distribution Pc�k�.
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