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We present a generator of random networks where both the degree-dependent clustering coefficient and the
degree distribution are tunable. Following the same philosophy as in the configuration model, the degree
distribution and the clustering coefficient for each class of nodes of degree k are fixed ad hoc and a priori. The
algorithm generates corresponding topologies by applying first a closure of triangles and second the classical
closure of remaining free stubs. The procedure unveils an universal relation among clustering and degree-
degree correlations for all networks, where the level of assortativity establishes an upper limit to the level of
clustering. Maximum assortativity ensures no restriction on the decay of the clustering coefficient whereas
disassortativity sets a stronger constraint on its behavior. Correlation measures in real networks are seen to
observe this structural bound.
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I. INTRODUCTION

Models in complex network science aim to reproduce
some common empirical statistical features observed across
many different real systems, from the Internet to society
�1–3�. Many of those models are able to recreate prominent
recurrent attributes, such as the small-world property and
scale-free degree distributions with characteristic exponents
between 2 and 3 as measured for networks in the real world.
Other characteristics, such as the presence, the shape, and the
intensity of correlations, are also unavoidable in models in-
tending to help us to understand how these complex systems
self-organize and evolve.

The first reference to correlations in networks appearing
in the literature is the clustering coefficient �4�, which refers
to correlations among three vertices. The clustering is a mea-
sure of transitivity which quantifies the likelihood that two
neighbors of a vertex are neighbors themselves. Then, it is a
measure of the number of triangles present in a graph. In
addition to the empirical evidence that the vast majority of
real networks display a high density of triangles, the concept
of clustering is also relevant due to the fact that triangles
are—together with edges—the most common building
blocks taking part in more complex but elementary recurring
subgraphs, the so-called motifs �5�. It has been argued that
network large-scale topological organization is closely re-
lated to the network’s local motif structure �6� so that these
subgraphs could be related to the functionality of the net-
work and can be fundamental in determining its community
structure �7,8�.

All these mean that a correct quantification and modeling
of the clustering properties of networks is a matter of great
importance. However, most modeling efforts beyond the de-
gree distribution have focused on the reproduction of two-
point correlation patterns, typified by the average nearest-
neighbor degree �9�, so that clustering is just obtained as a
by-product. In most synthetic networks, it vanishes in the
thermodynamic limit, but as to many other respects, scale-
free networks with a divergent second moment stand as a
special case. The decay of their clustering with the increase

of the network size is so slow that relatively large networks
with an appreciable high cohesiveness can be obtained �10�.
Nevertheless, it remains an indirect effect and no control
over its intensity or shape is practicable. Therefore, an inde-
pendent modeling of clustering is required and a few grow-
ing linear preferential attachment mechanisms have been
suggested �11–13�. One of the proposed models �11� repro-
duces a large clustering coefficient by adding nodes which
connect to the two extremities of a randomly chosen network
edge, thus forming a triangle. The resulting network has the
power-law degree distribution of the Barabási-Albert model
P�k��k−3, with �k�=4, and since each new vertex induces
the creation of at least one triangle, the model generate net-
works with a finite clustering coefficient. A generalization of
this model �13� which allows one to tune the average degree
to �k�=2m, with m an even integer, considers new nodes
connected to the ends of m /2 randomly selected edges. Two
vertices and three vertices correlations can be calculated ana-
lytically through a rate equation formalism. The clustering
spectrum is here finite in the infinite-size limit and scales as
k−1. A different approach is able to generate networks with a
given degree distribution and a fixed scalar clustering coef-
ficient, measured as the frequency of triadic closure �14�.

Those models do not allow much freedom in the form of
the resulting clustering coefficient, neither in the ensuing de-
gree distribution, so that, although a valuable first approach,
they constitute a timid attempt as clustering generators. In
this paper, we make headway by introducing a generator of
random networks where both the degree-dependent cluster-
ing coefficient and the degree distribution are tunable. After
a brief review of several clustering measures in Sec. II, the
algorithm is presented in Sec. III. In Sec. IV, we check the
validity of the algorithm using numerical simulations. Sec-
tion V is devoted to the theoretical explanation of the con-
straints that degree-degree correlations impose in the cluster-
ing. We find that assortativity allows higher levels of
clustering, whereas disassortativity imposes tighter bounds.
As a particular case, we analyze this effect for the class of
scale-free networks. We end the section by examining some
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empirical networks, finding a good agreement with our cal-
culations. Finally, conclusions are drawn in Sec. VI.

II. MEASURES OF CLUSTERING

Several alternative definitions have been proposed over
time to quantify clustering in networks. The simplest mea-
sure is defined as �15,16�

C� =
3 � �number of triangles�

�number of connected triples�
. �1�

This scalar quantity does not give much information about
the local properties of different vertices because it just counts
the overall number of triangles regardless of how these tri-
angles are placed among the different vertices of the net-
work.

The clustering coefficient, first introduced by Watts and
Strogatz �4�, provides instead local information and is calcu-
lated as

ci =
2Ti

ki�ki − 1�
, �2�

where Ti is the number of triangles passing through vertex i
and ki is its degree. The average of the local clustering coef-
ficients over the set of vertices of the network, C, is usually
known in the literature as the clustering coefficient. Watts
and Strogatz were also the first in pointing out that real net-
works display a level of clustering typically much larger than
in a classical random network of comparable size, Crand
= �k� /N, with �k� the average degree and N the number of
nodes in the network. Although C and C� are sometimes
taken as equivalent, they may be very different, even though
both measures are defined in the interval �0,1�.

With the definition of ci we have gone to the other ex-
treme of the spectrum—from a global to a purely local
perspective—so that we have highly detailed information.
One can adopt a compromise between the global property
defined by C, or C�, and the full local information given by
ci by defining an average of ci over the set of vertices of a
given degree class �17�—that is,

c̄�k� =
1

Nk
�

i���k�
ci =

1

k�k − 1�Nk
�

i���k�
2Ti, �3�

where Nk is the number of vertices of degree k and ��k� is
the set of such vertices. The corresponding scalar measure is
called the mean clustering coefficient and can be computed
on the basis of the degree distribution P�k� as

c̄ = �
k

P�k�c̄�k� , �4�

which must not be confused with the clustering coefficient
C= c̄ / �1− P�0�− P�1��. In fact, we have implicitly assumed
that c̄�k=0�= c̄�k=1�=0 whereas in the definition of C we
only consider an average over the set of vertices with degree
k�1. This fact explains the difference between both mea-
sures.

In the case of uncorrelated networks, c̄�k� is independent
of k. Furthermore, all the measures collapse and reduce to C
�18–20�:

c̄�k� = C� = C =
1

N

��k2� − �k��2

�k�3 , k � 1. �5�

Therefore, a functional dependence of c̄�k� on the degree can
be attributed to the presence of correlations. Indeed, it has
been observed that c̄�k� exhibits a power-law behavior c̄�k�
�k−� �typically 0���1� for several real scale-free net-
works. Hence, the degree dependent clustering coefficient
has been proposed as a measure of hierarchical organization
and modularity in complex networks �21�.

Recently, a new local clustering coefficient has been pro-
posed, which filters out the bias that degree-degree correla-
tions can induce on that measure �22�

c̃i =
Ti

�i
, �6�

where �i is the maximum number of edges that can be drawn
among the ki neighbors of vertex i. This new measure does
not strongly depend on the vertex degree, remaining constant
or decreasing logarithmically with the increase of k when
computed for several real networks.

III. ALGORITHM

In this paper, we develop and test a new algorithm that, in
the same philosophy of the classical configuration model
�CM�, generates networks with a given degree distribution
and a preassigned degree-dependent clustering coefficient
c̄�k�, as defined in Eq. �3�.

The CM has been one of the most successful algorithms
proposed for network formation �23,24�. The relevance of
the algorithm relies on its ability to generate random net-
works with a preassigned degree sequence—taken from a
given degree distribution—at the user’s discretion while
maximizing the network’s randomness at all other respects.
The algorithm became relevant as soon as more real net-
works were analyzed and proved to strongly deviate from the
supposed Poisson degree distribution predicted by the clas-
sical model of Erdös and Rényi �25,26�. Ever since, the CM
has been extensively used as a null model in contraposition
to real networks with the same degree distribution.

One of the well-known properties of the CM is that clus-
tering vanishes in the limit of very large networks �see Eq.
�5�� and, thus, it clearly deviates from real networks, for
which clustering is always present. In general, a high level of
clustering may change the percolation properties of the net-
work, alter its resilience in front of removal of its constitu-
ents, or affect the dynamics that takes place on top of them.
Since such processes inextricably entangle topology and
functionality, it would be very interesting to have at one’s
disposal an algorithm that generates clustered networks in a
controlled way so that one can check which is the real effect
of transitivity on its topological and dynamical properties.

With this purpose, we introduce an undirected unweighted
static model where the total number of nodes in the network,
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N, remains constant, as in the case of the CM. The algorithm
comprises three different parts: �A� Assignment of a degree
to each node and assignment of a number of triangles to each
degree class according to the expected distributions, �B� clo-
sure of triangles, and �C� closure of the remaining free stubs.
In what follows, we give a detailed description of the algo-
rithm.

A. Degree and clustering from expected distributions

�i� An a priori degree sequence is chosen according to a
given distribution P�k�, so that each vertex is awarded an a
priori number of connections in the form of a certain number
of stubs.

�ii� An a priori clustering coefficient c̄�k� is also fixed, so
that each class of nodes of degree k is assigned an a priori
number of triangles.1 Note that the number of triangles is
fixed for the whole class and not for the particular vertices of
the class. This is a key point of the algorithm because fixing
the number of triangles to each single vertex would impose a
number of constraints that would make nearly impossible to
close the network.

�iii� All nodes begin with a number of 0 associated edges
and all degree classes begin with a number of 0 associated
triangles.

B. Triangle formation

First we give some preliminary remarks. Both stubs and
edges can be selected to form a triangle. Stubs are half links
associated with one node, and edges are entire links associ-
ated with two nodes and thus have double probability with
respect to stubs to be selected to participate in a triangle. Let
us define the set of eligible components �EC’s� as the set of
free stubs and edges associated with nodes belonging to de-
gree classes with a number of triangles below its expected
value �unsatisfied classes�. Stubs and edges of nodes in sat-
isfied classes should not be in the set of EC’s. Edges of nodes
which cannot form more triangles �with only edges as com-
ponents and neighbors without stubs� should not be in the set
of EC’s. Stubs and edges of nodes with only one component
should not be in the set of EC’s. Notice that the set of EC’s
changes dynamically as triangles are formed.

The algorithm then proceeds by choosing three different
nodes and forming a triangle among them whenever it is
possible and it did not exist previously. The selection of the
nodes is performed hierarchically as follows.

�i� For the first node, a degree class k1 among the ones
with an unsatisfied number of expected triangles is chosen

with a certain probability distribution ��k� not necessarily
uniform �the specific form for this function and the motiva-
tion to introduce it will be discussed at the end of the section
and a theoretical explanation is given in Sec. V�. Then, the
node is selected through a component which is chosen with
uniform probability within the subset of eligible components
in the class, EC�k1�. A second different component of the
same node is selected.

�ii� If the two chosen components are edges and the sec-
ond and third nodes at the end of the edges still have free
stubs, the triangle is formed by merging one free stub of the
second node and one free stub of the third node �see Fig. 1�.

�iii� If one component is a stub and the other an edge, a
third node is necessary. First, a new component is selected
for the second node at the end of the edge. If it is an edge,
the triangle is formed by merging one free stub of the first
node and one free stub of the third node. If it is a stub, then
a third node is chosen in the same way as the first one under
the condition that it has two free stubs. The triangle is then
formed by merging these two free stubs with the ones of the
first and second nodes �see Fig. 2�.

�iv� It may happen that the two components of the first
node are stubs. Then, a new node is selected in the same way
as the first one under the condition of having at least one free
stub, and a second component is also chosen for this second

1The expected number of triangles associated with each class is
T�k�= 1

2k�k−1�c̄�k�P�k�N. For very large degrees, it may happen
that this number is smaller than 1. To overcome this problem, one
can determine Tk by allocating a number of triangles, Ti, to each
vertex i using, for instance, the binomial distribution B�p ,Nmax�
with p= c̄�ki� and Nmax=ki�ki−1� /2. Then, the number of triangles,
Ti, are summed up for each class. Once each class has been as-
signed a total number of triangles, individual vertices forget the
initially ascribed Ti.

FIG. 1. The two selected components of the first node, marked
1, are edges. The triangle is formed by connecting nodes 2 and 3,
whenever they have free stubs.

FIG. 2. The two selected components of the first node are one
edge and one stub. A second component is chosen for the second
node. On the left side of the figure, the component is an edge
whereas on the right side it is a free stub.
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node. If both components of the second node are stubs, a
third node with two free stubs is selected and the triangle is
closed. If one component of the second node is a stub and
another an edge, the node at the end of the edge will be the
third node and the triangle is formed linking stubs between
the first and the second node and the first and third nodes
�see Fig. 3�.

�v� After each triangle is formed, all dynamic quantities
are updated: linked stubs are converted into edges and the
corresponding number of new triangles is added to all in-
volved degree classes. It is worth mentioning that not only
one more triangle is computed for the classes of the nodes
forming the triangle, but the degree classes of simultaneous
neighbors of pairs of those nodes may also be affected if
those pairs were not previously connected. The set EC is also
updated, removing components of nodes in new satisfied
classes as well as nodes with only one component or nodes
which cannot form more triangles.

�vi� This process is repeated until all classes are satisfied
or there are no more components in the eligible set.

C. Closure of the network

The final step consists in the closure of the network by
applying the classical configuration model to the remainder
stubs. Pairs of these stubs are selected uniformly at random
and the corresponding vertices are connected by an undi-
rected edge.

In this way, the algorithm is able to reproduce networks
with a given degree distribution P�k� and a given clustering
coefficient c̄�k�, as long as the assortativity—that is, positive
degree-degree correlations—is high enough to avoid con-
straining c̄�k�. This is by no means a deficiency of the algo-
rithm but a universal structural constraint imposed by the
degree-degree correlation pattern of the network. In general,
with the maximum assortativity one can reproduce any de-
sired level of clustering, whereas disassortative networks
have instead a bounded clustering coefficient. A theoretical
explanation is given in Sec. V.

In our algorithm, the level of assortativity is controlled by
the probability by which the degree class is chosen previ-
ously to the selection of the node. This can be done in a
number of different ways. In our case, we tune the assorta-
tivity by choosing a proper form for the probability ��k�. For
instance, an uniparametric function modeling different assor-
tativity levels is given by ��k�	Tr�k�
, where Tr�k� is the
number of triangles remaining to be formed in the degree
class k in a given iteration. The value of 
 typically ranges in

the interval �0,1�, generating more assortative networks as 

approaches 0.

IV. NUMERICAL SIMULATIONS

To check the feasibility and reliability of the algorithm,
we have performed extensive numerical simulations, gener-
ating networks with different types of degree distributions
and different levels of clustering. The chosen forms for the
degree distribuion are Poisson, exponential, and scale free.
The degree-dependent clustering coefficient is chosen to be
c̄�k�=c0�k−1�−�. The numerical prefactor is set to c0=0.5,
and the exponent takes values �=1, 0.7, and 0.4. The size of
the generated networks is N=105, and each curve is an av-
erage over three different realizations.

Simulation results are shown in Figs. 4, 5, and 6, which
correspond to Poisson and exponential degree distributions
with average degree �k�=4 and scale-free degree distribu-
tions with exponent �=3, respectively. As can be seen, the
degree-dependent clustering coefficient is well reproduced in
all cases just by decreasing the value of 
 if necessary �the
values of 
 used in each simulation are specified in the cap-
tion of the corresponding figure�. The standard procedure we
follow is to start with 
=1 and to check whether the tail of
c̄�k� is well reproduced. If not, we decrease its value until the
entire curve fits the expected shape.

Figure 7 shows the degree distributions generated by the
algorithm for the simulations of the previous figures, con-
firming that, indeed, the generated degree distributions match
the expected ones.

V. CLUSTERING vs DEGREE-DEGREE CORRELATIONS

As we advanced in the previous section, degree-degree
correlations constraint the maximum level of clustering a

FIG. 3. The two selected components of the first node, marked
1, are stubs.

FIG. 4. �Color online� Clustering coefficient for networks gen-
erated by the algorithm using a Poisson degree distribution with
average degree �k�=4 and expected clustering coefficient c̄�k�
=c0�k−1�−� �solid lines� with �=1,0.7,0.4, and c0=0.5 in all cases.
Each curve is an average over three different realizations with a
network size of N=105. The parameter 
 is equal to 1 for �=1 and
�=0.7 and 
=0.5 for �=0.4.
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network can reach. A naive explanation for this is that, if the
neighbors of a given node have all of them a small degree,
the number of connected neighbors �and, hence, the cluster-
ing of such node� will be bounded. This is the main idea
behind the new measure of clustering introduced in �22�.
However, we can make a step forward and quantify analyti-
cally this effect. To do so, we need to define new quantities
which take into account the properties of vertices that belong
to the same triangle. Let us define the multiplicity of an edge,
mij, as the number of triangles in which the edge connecting
vertices i and j participates. This quantity is the analog to the
number of triangles attached to a vertex, Ti. These two quan-
tities are related through the trivial identity

�
j

mijaij = 2Ti, �7�

which is valid for any network configuration. The matrix aij
is the adjacency matrix, giving the value 1 if there is an edge
between vertices i and j and 0 otherwise.

It is possible to find a relation between multiplicity, de-
gree distributions, and clustering. Summing the above equa-
tion for all vertices of a given degree class we get

�
k�

�
i���k�

�
j���k��

mijaij = �
i���k�

2Ti. �8�

Now, there are some key relations which can be used:

�
i���k�

�
j���k��

mijaij = mkk�Ekk�, �9�

where mkk� is the average multiplicity of the edges connect-
ing the classes k and k� and Ekk� is the number of edges
between those degree classes. Finally, taking into account
Eq. �3� and the fact that the joint degree distribution satisfies
P�k ,k��=limN→�Ekk� / �k�N, we obtain the following closure
condition for the network:

�
k�

mkk�P�k,k�� = k�k − 1�c̄�k�
P�k�
�k�

. �10�

Let us emphasize that this equation is, in fact, an identity
fulfilled by any network and, thus, it is, for instance, at the
same level as the degree detailed balance condition derived
in �27�. These identities are important because, given their
universal nature, they can be used to derive properties of
networks regardless their specific details. As an example, in
�28� we used the detailed balance condition to prove the
divergence of the maximum eigenvalue of the connectivity
matrix that rules the epidemic spreading in scale-free net-
works, which, in turn, implies the absence of epidemic
threshold in this type of networks.

The multiplicity matrix is, per se, a very interesting object
that gives a more detailed description on how triangles are
shared by vertices of different degrees. In principle, mkk�
does not factorize and, therefore, nontrivial correlations can
be found. The global average multiplicity of the network, m̄,
can be computed as

FIG. 5. �Color online� The same as in Fig. 4 for an exponential
degree distribution. In this case, the parameter 
 is 1 for �=1 and
�=0.7 and 
=0 for �=0.4.

FIG. 6. �Color online� The same as in Fig. 4 for a scale-free
degree distribution of exponent �=3. In this case, the parameter 

is 1 for �=1 and �=0.7 and 
=0.2 for �=0.4.

FIG. 7. �Color online� Degree distributions generated by the
algorithm �symbols� as compared to the expected ones �solid lines�.
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m̄ = �
k

�
k�

mkk�P�k,k�� =
�k�k − 1�c̄�k��

�k�
. �11�

Values of m̄ close to zero mean that there are no triangles.
When m̄	1, triangles are mostly disjoint and their number
can be approximated as T�k�	k /2, and, when m̄1, tri-
angles jam into the edges; that is, many triangles share com-
mon edges.

We are now equipped with the necessary tools to analyze
the interplay between degree-degree correlations and cluster-
ing. The key point is to realize that the multiplicity matrix
satisfies the inequality

mkk� � min�k,k�� − 1, �12�

which comes from the fact that the degrees of the nodes at
the ends of an edge determine the maximum number of tri-
angles this edge can hold. Multiplying this inequality by
P�k ,k�� and summing over k� we get

k�k − 1�c̄�k�
P�k�
�k�

� �
k�

min�k,k��P�k,k�� −
kP�k�

�k�
,

�13�

where we have used the identity �10�. This inequality, in
turn, can be rewritten as

c̄�k� � 1 −
1

k − 1 �
k�=1

k

�k − k��P�k�
k� � ��k� . �14�

Notice that ��k� is always in the interval �0,1� and, therefore,
c̄�k� is always bounded by a function smaller �or equal� than
1. In the limit of very large values of k, Eq. �14� reads

c̄�k� � ��k� 	
k̄nn

r �k� − 1

k − 1
, �15�

where k̄nn
r �k� is the average nearest-neighbor degree of a ver-

tex with degree k. The superscript r �of reduced� refers to the

fact that it is evaluated only up to k and, therefore, k̄nn
r �k�

�k. For strongly assortative networks k̄nn
r �k��k, so that

��k��O�1� and there is no restriction in the decay of c̄�k�. In
the opposite case of disassortative networks, the sum term on
the right-hand side of Eq. �14� may be fairly large and then
the clustering coefficient will have to decay accordingly.

In Fig. 8 we show this effect by changing the level of
clustering while keeping the degree-degree correlations un-
changed by fixing the value of 
 to 
=1. As can be seen,
lower levels of clustering are better reproduced. However,
the clustering collapses to a limiting curve when the ex-
pected value crosses it. That is, any function c̄�k� is possible
whenever it is defined below a limiting curve which is a
function of the degree correlation pattern of the network.

Another way to see the same effect is shown in Fig. 9. In
this case we keep the expected clustering while changing the
assortativity of the network by tuning the parameter 
. As
can be seen, as correlations become more and more assorta-
tive �decreasing values of 
� the expected clustering can be
further reproduced.

We would like to point out that the function ��k� is just an
upper bound for the clustering coefficient. The actual bound
will probably be even smaller due to the fact that we have
only considered the restriction over one edge and the degrees
of the corresponding vertices. A more accurate estimation
would involve more than one edge and the corresponding
vertices attached to them �22�.

A. Scale-free networks

Scale-free networks belong to a special class of networks
which deserve a separate discussion. Indeed, it has been
shown that, when the exponent of the degree distribution lies
in the interval �� �2,3� and its domain extends beyond val-
ues that scale as N1/2, disassortative correlations are unavoid-
able for high degrees �10,29–31�. Almost all real scale-free
networks fulfill these conditions and, hence, it is important to
analyze how these negative correlations constrain the behav-
ior of the clustering coefficient. Let us assume a power-law
decay of the average nearest-neighbor degree of the form

k̄nn�k���k−�. One can prove that this function diverges in

the limit of very large networks as k̄nn�k���k2��kc
3−�, where

kc is the maximum degree of the network �28�. Then, the
prefactor � must scale in the same way which, in turn, im-
plies that the reduced average nearest-neighbor degree be-
haves as

k̄nn
r �k� � k3−�−�. �16�

Then, from Eq. �15� the exponent of the degree-dependent
clustering coefficient, �, must verify the inequality

� � � + � − 2. �17�

Just as an example, in the case of the Internet at the Autono-
mous System level �17�, the reported values for these three

FIG. 8. �Color online� Clustering coefficient for Poisson-like
degree distributions, using 
=1. Different curves correspond to dif-
ferent values of the prefactor c0. Dotted lines are the expected clus-
terings whereas symbols are the ones generated by the algorithm.
The solid line is a guide for the eye of the limiting curve. For lower
values of the prefactor, the expected value can be fitted in a wider
region. Notice that all curves collapse into the same limiting curve,
which indicates the intrinsic constraint Eq. �14�.
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exponents ��=0.75, �=2.1, and �=0.5� satisfy this inequal-
ity close to the limit ��=0.75��+�−2=0.6�.

B. Real networks

The interplay between degree correlations and clustering
can also be observed in real networks. We have measured the
functions ��k� and c̄�k� for several empirical data sets, find-
ing that the inequality �14� is always satisfied. The analyzed
networks are the Internet at the Autonomous System �AS�
level �32�, the protein interaction network of the yeast S.
Cerevisiae �PIN� �33�, an intrauniversity e-mail network
�34�, the web of trust of Pretty Good Privacy �PGP� �35�, the
network of coauthorships among academics �36�, and the
world trade web �WTW� of trade relationships among coun-
tries �37�.

In Fig. 10 we plot the clustering coefficient c̄�k� as a
function of ��k�. Each dot in these figures correspond to a
different degree class. As clearly seen, in all cases the em-
pirical measures lie below the diagonal line, which indicates
that the inequality �14� is always preserved. In Fig. 11 we

show the ratio c̄�k� /��k�. The rate of variation of this fraction
is small and, thus, the degree-dependent clustering coeffi-
cient can be computed as c̄�k�=��k�f�k�, where f�k� is a
slowly varying function of k that, in many cases, can be fitted
by a logarithmic function.

FIG. 9. �Color online� Average nearest-neighbor degree �top�,
k̄nn�k�, and clustering coefficient �bottom�, c̄�k�, for a power-law
degree distribution with exponent �=3 using two different levels of
assortativity, 
=1 and 
=0.2. As we increase assortativity the ex-
pected clustering can be fitted in a wider region. The solid line is
the expected clustering c̄�k�=0.5�k−1�−0.4.

FIG. 10. �Color online� Clustering c̄�k� versus the maximum
value ��k� for several real networks. In all cases, empirical mea-
sures fall below the diagonal line, validating the inequality �14�.

FIG. 11. �Color online� Empirical measures of the ratio between
the clustering coefficient c̄�k� and the maximum value ��k� for dif-
ferent real networks.
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VI. CONCLUSIONS

We have introduced and tested a new algorithm that gen-
erates ad hoc clustered networks with a given degree distri-
bution and degree-dependent clustering coefficient. This al-
gorithm will be useful for analyzing, in a controlled way, the
role that clustering has on many dynamical processes that
take place on top of networks. We have also introduced a
new formalism which backs our algorithm and allows us to
quantify clustering in a more rigorous manner. In particular,
a universal closure condition for networks is found to relate
the degree-dependent clustering coefficient, degree-degree
correlations, and the number of triangles passing through
edges connecting vertices of different degree classes. Using
this relation, we have found how the correlation pattern of
the network constrains the function c̄�k�. In particular, assor-

tative networks are allowed to have high levels of clustering
whereas disassortative ones are more limited. Overall, we
hope that a more accurate shaping of synthetic networks will
improve our understanding of real ones. At this respect, we
believe our algorithm will be useful for the community
working on complex network science.
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