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Randomly driven granular fluids: Collisional statistics and short scale structure
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We present a molecular-dynamics and kinetic theory study of granular material, modeled by inelastic hard
disks, fluidized by a random driving force. The focus is on collisional averages and short-distance correlations
in the nonequilibrium steady state, in order to analyze in a quantitative manner the breakdown of molecular
chaos, i.e., factorization of the two-particle distribution function,f (2)(x1 ,x2).x f (1)(x1) f (1)(x2) in a product
of single-particle ones, wherexi5$r i ,vi% with i 51,2 andx represents the position correlation. We have found
that molecular chaos is only violated in a small region of the two-particle phase space$x1 ,x2%, where there is
a predominance of grazing collisions. The size of this singular region grows with increasing inelasticity. The
existence of particle- and noise-induced recollisions magnifies the departure from mean-field behavior. The
implications of this breakdown in several physical quantities are explored.
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I. INTRODUCTION

The interesting phenomena observed in recent exp
ments with mono- and multi-layers of granular material
vibrating plates@1–4# show the need to develop kinetic the
ries for rapid granular flows with mechanisms for ener
input, different from those in shear flows or flows throu
vertical pipes. In the present paper, the fluidization is driv
by a random external force, which gives frequent kicks
each particle in between collisions. Such a driving mec
nism has recently been studied by many authors@5–11#. The
basic physical interest is the understanding of the none
librium stationary states~NESS! that exist in the presence o
this random force. The advantage of this fluidization mec
nism, besides its potential physical realizations, lies in
fact that the NESS is linearly stable against spatial inhom
geneities.

In Ref. @10#, to which we will refer to as paper I, we hav
studied the large-scale structure and presented a hydr
namic description of randomly driven granular fluids, mo
eled as systems of smooth inelastic hard spheres~IHS!. The
IHS model accounts for two essential features of granu
matter: hard-core exclusion and dissipative collisions@12#.
The dynamics is described by a constant coefficienta of
normal restitution. In collisions, a fraction of the relativ
kinetic energy is lost, which is proportional to the inelastic
e512a2. The stochastic external force compensates
energy loss, and drives the IHS fluid into a NESS. This s
tionary state, though homogeneous and stable against sp
fluctuations on large space and time scales~at least for
weakly inelastic spheres!, was shown to exhibit long-rang
spatial correlations in density, velocity, and granular te
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perature fields that extend much beyond the mean free p
In fact, the corresponding structure functionsS(k) diverge as
1/k2 as the wave-numberk→0, a behavior caused by th
random external force, which does not conserve momen
whereas the collisions between particles do. These lo
range correlations are of algebraic form,;1/r d22, which
corresponds to lnr in two dimensions (d52). The existence
of such extremely long-range spatial correlations is one
ample of the many nontrivial properties of nonequilibriu
stationary states in general@13,14#.

Differences in the stationary states between fluids w
dissipative and conservative interactions also manifest th
selves in the kinetic properties of the fluid, such as the
locity distribution function, which deviates from a Maxwel
ian, in particular, in the high-energy tail of the distributio
In Ref. @9#, the existence of an overpopulated high-ene
tail f̂ ;exp@2Cv3/2#, whereC is a constant that depends o
the inelasticity, has been obtained from kinetic theory.
similar behavior has been observed experimentally at h
vibrational accelerations@3,4#. This observation indicates
that certain features of the experiment might be reprodu
by modeling the input of energy into the horizontal motion
the beads by a random external force, although other en
injection mechanisms that could be relevant to recover
large-velocity tail have been put forward@15#. In similar ex-
periments@2#, with a vertically vibrating plate covered with
monolayer of steel balls with a packing fraction around 50
the velocity distribution of the horizontal velocities has be
measured, and again, overpopulated non-Gaussian h
energy tails have been observed. In the present paper, we
investigate the kinetic properties and short-scale correlat
that characterize the stationary state. More specifically,
will compare molecular-dynamics~MD! simulations of in-
elastically colliding disks with analytic predictions based
the assumption of molecular chaos.
©2001 The American Physical Society03-1
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PAGONABARRAGA, TRIZAC, van NOIJE, AND ERNST PHYSICAL REVIEW E65 011303
The Boltzmann equation for dilute gases of particles t
interact via short-ranged repulsive interactions is based
the assumption ofmolecular chaos, also called the Stosszah
ansatz or mean-field approximation. It assumes that the
locities of colliding particles just before collisions are unco
related, i.e., their pair-distribution function factorize

f̂ (2)(x1 ,x2 ,t)5 f̂ (x1 ,t) f̂ (x2 ,t), where xi5$r i ,vi% denotes
the position and velocity of particlei. Enskog’s extension o
the Boltzmann equation to a dense system of hard sph
@16#, referred to as Enskog-Boltzmann equation, is a
based on the fundamental assumption of the absence o
locity correlations. Here, the assumption of molecular ch

postulates that f̂ (2)(x1 ,x2 ,t)5x f̂ (x1 ,t) f̂ (x2 ,t) for ap-
proaching particles (v12•r12,0) just beforecollision (r 12
5s10), where x is assumed to be the radial pai
distribution function at contactg(r 125s10) in local equi-
librium. It implies theadditionalassumption that spatial cor
relations between colliding particles just before collision a
independent of their velocities, i.e., the absence of posit
velocity correlations. The Enskogx factor enhances the co
lision frequency at higher densities. For dilute gases, the
sumption of molecular chaos seems to be justified. Rece
Lutsko @17# and Soto and Mare-schal@18# derived for a
freely evolving inelastic hard disk fluid a relation betwe
pre- and post-collision radial distribution function at conta
as a function of the angle,u5cos21(v̂12• r̂12), between the
relative velocityv12 of the colliding particles, and their rela
tive position at contactr12, and they confirmed their result
by MD simulations. Their observations made it clear th
further arguments are needed to clarify the meaning of thx
factor in Enskog’s formulation of the molecular chaos a
sumption. This will be done in Sec. II A.

The breakdown of molecular chaos at higher densitie
classical fluids with conservative forces has been extensi
investigated in the 1960s and 1970s@19#. This breakdown is
caused by sequences of correlated binary collisions, the
called ring collisions@20#. They lead to long-time tails in
velocity and stress autocorrelation functions@21,22#, and to
long-range spatial correlations in NESS@13#. The quantita-
tive effects of velocity correlations on transport coefficien
at liquid densities are also significant. For instan
molecular-dynamics simulations on elastic hard-sphere
tems at liquid densities@23# have shown that the long- tim
tails increase the measured self-diffusion coefficientD typi-
cally by 15 to 20 % with respect to the prediction of th
Enskog theoryDE5DB /x, whereDB is the Boltzmann value
of the self-diffusion coefficient.

A well-known example of short-scale structure in granu
fluids are the position-velocity correlations leading to t
phenomenon of inelastic collapse@24,25#, which is adiver-
genceof the collision frequencyv in a finite time. The col-
lapse singularity implies that an infinite number of collisio
occurs within a finite-time interval in a subset of~nearly!
touching particles, ordered in linear arrays. The phenome
is, however, an artifact of the assumption that the coeffic
of restitution a is independent of the impact velocitie
whereas on physical groundsa(v12)→1 ~elastic limit!, as
the relative velocityv12 vanishes. Molecular-dynamics simu
01130
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lations have shown that the assumption of molecular chao
also violated in undriven granular fluids in their late stages
evolution, the so-called nonlinear clustering regime. For
stance, the measured distribution of impact parameters is
uniform, as expected on the basis of molecular chaos,
biased toward grazing collisions@26–28#.

As shown below, in the driven IHS fluid there is an im
portant additional reason for the breakdown of molecu
chaos, namely, the strong increase in collision frequenc
small relative velocities between two isolated particle
caused by the so-called noise- induced re-collisions. T
correction to the collision frequency, that is important at
densities, is also neglected in the molecular chaos assu
tion.

The main goal of this paper is to quantify, analyze, a
interpret the effects of the breakdown of molecular chaos
the NESS of inelastic hard spheres that are subject to a
dom external force between collisions. We will focus in pa
ticular on velocity-velocity correlations and position-veloci
correlations between particles almost in contact, i.e.,
short-scale structure.

Section II presents the analytic results, based on
Enskog-Boltzmann equation, which has been modified to
count for the external energy input. In Sec. III, we prese
molecular-dynamics results for several quantities that ch
acterize the collision processes and related short-scale s
ture of the NESS, and make a comparison with predictio
based on molecular chaos.

II. KINETIC THEORY FOR THE NESS

A. Molecular chaos and Enskog approximation

The Enskog-Boltzmann equation for the single-parti
distribution f̂ (v1 ,t) in a spatially homogeneous random
driven fluid of inelastic hard spheres of diameters reads in
d52 or 3 dimensions@9#

] t f̂ ~v1 ,t !5nxsd21E dv2E dŝQ~v12•ŝ!~v12•ŝ!

3H 1

a2
f̂ ~v1** ,t ! f̂ ~v2** ,t !2 f̂ ~v1 ,t ! f̂ ~v2 ,t !J

1
j0

2

2 S ]

]v1
D 2

f̂ ~v1 ,t !, ~1!

wherev125v12v2 andn the number density. The Heavisid
function Q(x) restricts theŝ integration to the hemispher
v12•ŝ.0, whereŝ is the unit vector along the line of cen
ters of the colliding spheres at contact, pointing from parti
2 to 1. In the sequelâ5a/uau denotes a unit vector. The gai
term of the collision integral describes therestituting colli-
sions that convert the precollision velocities (v1** ,v2** ) into
(v1 ,v2), while the loss term describes thedirect collisions,
and contains the precollision velocities (v1 ,v2) leading to
postcollision velocities (v1* ,v2* ). The postcollision and resti
tuting velocities have been defined in@29#. Thex factor will
be discussed below.
3-2
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RANDOMLY DRIVEN GRANULAR FLUIDS: . . . PHYSICAL REVIEW E 65 011303
As derived in@9#, the Fokker-Planck term accounts for th
external energy input, and describes diffusion in veloc
space with a diffusivity proportional to the rate of ener
input j0

2 per unit mass. Here,j0 is the strength of the random
driving force, which is assumed to be Gaussian white no
@9,10#.

Before studying the short-scale structure, we consider
single- particle distribution functionf̂ (v) in the NESS. The
stationary solution of Eq.~1! is determined by the balanc
mj0

25G, of external heatingmj0
2, and internal loss of energ

due to collisions,G. It is characterized by a time-independe
temperatureT5^mv2/d& defined as the average kinetic e
ergy per particle, and discussed in paper I. As mentione
the introduction, this stationary solution exhibits an ov
populated high-energy tailf̂ ;exp@2Cv3/2#. The structure of
the tail distribution is determined by collisions of very ene
getic particles with ‘‘thermal’’ particles, and may be obtain
by neglecting the gain term in the Boltzmann equation@9#.

In Ref. @9#, f̂ (v) has been calculated by solving th
Enskog-Boltzmann Eq.~1! by an expansion in Sonine poly
nomials. To formulate this result, it is convenient to intr
duce a rescaled distribution functionf (c), defined by f̂ (v)
[@1/v0

d# f (c) with c[v/v0, wherev0[A2T/m is the thermal
velocity andd the dimensionality. This gives

f ~c!5w~c!H 11a2F1

2
c42

1

2
~d12!c21

1

8
d~d12!G1•••J ,

(2)

where the Maxwellianw(c)[p2d/2exp(2c2). Note thata2 is
proportional to the fourth cumulant of the scaling formf (c),
i.e.,

a25
4

d~d12! F ^c4&2
1

4
d~d12!G5

4

3
@^cx

4&23^cx
2&2#,

~3!

and vanishes in the elastic limit. An explicit calculation
linear order ina2 gives @9#

a25
16~12a!~122a2!

73156d224ad2105a130~12a!a2
. ~4!

In the next section, this prediction will be tested agai
molecular-dynamics simulations.

Consider first the exact expression for the mean collis
frequency in the homogeneous NESS, defined as

v5nsd21E dv1E dv2E dŝQ

3~2v12•ŝ!uv12•ŝu f̂ (2)~v1 ,v2 ,s!, ~5!

where f̂ (2)(v1 ,v2 ,s) is the dynamic or constrainedpair-
distribution function with velocities aiming to collide, jus
beforecontact withr125s. Molecular chaos, also referred to
as mean-field theory, requires the complete factorization
the dynamic precollisional pair function,
01130
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f̂ (2)~v1 ,v2 ,s!5x f̂ ~v1! f̂ ~v2!. ~6!

What is the meaning of thex factor, used in formulating the
molecular chaoshypothesis? This hypothesis fordilute gases
concerns the absence of correlations inprecollision veloci-
ties, and inprecollisionpositions (x51). In dense fluidson
the other hand, the precollision position correlationx is dif-
ferent from 1, but the precollision velocity-velocity an
position-velocity correlations are still assumed to be abse

In the literature, it is common to takex equal to the radial
distribution function at contact inlocal equilibrium, i.e., x
5xE[geq(r→s10), which mainly accounts for precolli
sion hard-core exclusion effects. For hard disks and h
spheres, the latter function is approximately given by
Verlet-Levesque~2D! and Carnahan-Starling~3D! approxi-
mations@31#,

xE~f!5S 12
7

16
f D Y ~12f!2 ~2D!,

xE~f!5~22f!/2~12f!3 ~3D!, ~7!

where the packing fraction ind dimensions is defined asf
5n(s/2)dVd /d, andVd52pd/2/G(d/2) is the surface area
of a d-dimensional unit sphere. In this paper, we refer to
molecular chaos approximation withx5xE, as theEnskog
approximation.

In principle, different options are open for thex factor. As
f̂ (2) is the dynamic precollision pair-distribution function
contact, an alternative choice for thex in the factorized form
could be the dynamic precollision radial distribution functio
at contact, defined as an average over the precollision he
sphere,

x (2)[@2/Vd#E dv1E dv2E dŝQ~2v12•ŝ! f̂ (2)~v1 ,v2 ,s!.

~8!

Another option could be the unconstrained radial distrib
tion, g(r ), in the NESS, extrapolated to contact (r→s). This
function is further discussed in Sec. II D.

For the randomly heated fluid under study here, the
namics is not purely hard-sphere like. The random force a
ing on the particles may be expected to contribute to
value of the pair- distribution function at contact. This effe
will be addressed in the subsequent sections.

Equation~5! with f̂ (v) replaced by the Maxwellian, yields
for the collision frequency in the molecular chaos appro
mation vmc(T)5xv0(T) , and more specifically, in the
Enskog approximation,

vE~T!5xEv0~T!. ~9!

Here, the Boltzmann collision frequency for dilute gases
given by

v0~T!5Vdnsd21AT/pm, ~10!

and the small correction ofO(a2) appearing in Eq.~2! has
been neglected.
3-3
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Spatial correlation functions in nonequilibrium stationa
states are quite different from local equilibrium ones, a
show long-range correlations due to correlated sequence
ring collisions, also referred to as mode-coupling effe
@13#. In paper I, we have shown the existence of verylong-
range correlations;1/r d22 in the randomly driven IHS
fluid. Theshort-range correlations in the NESS may, in pri
ciple, be obtained from the ring kinetic equation for IHS~see
Ref. @29#!. However, systematic methods to evaluate co
sion integrals and pair-correlation functions at short d
tances using this ring kinetic theory have not yet been de
oped. In the section on simulation results, we return to
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effects of ring collisions, and present arguments why th
contributions are expected to be more important here than
elastic hard spheres.

B. Collisional averages

In hard-sphere systems, there are many properties
involve the pair-distribution function of particles just befo
collision. To study these, it is convenient to introduce t
collisional averagê . . . &coll for a quantityA in the NESS,
defined as
^A~v1 ,v2 ,s!&coll5

E dv1E dv2E dŝQ~2v12•ŝ!uv12•ŝuA~v1 ,v2 ,s! f̂ (2)~v1 ,v2 ,s!

E dv1E dv2E dŝQ~2v12•ŝ!uv12•ŝu f̂ (2)~v1 ,v2 ,s!

. ~11!
-

r
n

-
the

-
or

for

-

the
S,
In the sequel, it is more convenient to work with
rescaled pair-distribution function f̂ (2)(v1 ,v2 ,r12)
5@1/v0

2d# f (2)(c1 ,c2 ,r12). To express the collisional average

~11! in rescaled variables, one replacesf̂ (2) by f (2),vi by
ci ,v12 by g5c12c2, andA(v1 ,v2 ,s) by A(v0c1 ,v0c2 ,s).

These objects may be conveniently computed in eve
driven molecular-dynamics algorithms for hard-sphere s
tems@30#. Collisional averages are defined for particles th
are about to collide~i.e., ur 12u5s10), and may be calcu
lated from kinetic theory using the molecular chaos assu
tion, possibly supplemented with the Enskog approximat
at higher densities.

Collisional averages of great importance are the co
sional energy loss per unit time (d/2)nG, and the excess
hydrostatic pressurep2nT, resulting from collisional trans-
fer of momentum. With a minor generalization tod dimen-
sions, we obtain from Ref.@32# the exact expression for th
pressure in the NESS

p~T!

nT
215S 11a

2d DnsdE dc1E dc2E dŝ

3Q~2g•ŝ!ug•ŝu2f (2)~c1 ,c2 ,s!

5S 11a

2d D sv

v0
^ug•ŝu&coll . ~12!

The second equality is obtained by introducing the co
sional average~11! and expressing its denominator in term
of the collision frequency given by Eq.~5!. In fact, inserting
Eq. ~6! into the first line of Eq.~12! allows one to carry
out the ŝ integration, and the right-hand side becom
proportional to the rescaled velocity avera
*dc1*dc2g2f (c1) f (c2)52 without any further assumptio
about neglecting the term proportional toa2 in Eq. ~2!. This
argument is special for the pressure, as other mom
t-
-
t

p-
n

-

-

s

ts

involve the knowledge of the completef (c). Indeed,
the generic collisional average becomeŝug•ŝum&coll
52m/2G@(1/2)m11#, independent of dimensionality, assum
ing molecular chaos~6! and replacingf (c) by the Maxwell-
ian w(c) ~the contributions coming froma2 are quite small
and may be neglected; they have been computed in@9#!.
Finally, the pressure-may be expressed as

pmc~T!

nT
2152d22~11a!xf. ~13!

Different choices forx yield different approximations. Fo
instance, withx5xE, we obtain the Enskog approximatio
pE(T) for the pressure of IHS.

In the elastic limitpE(T) at a51 gives the standard equa
tion of state for elastic hard disks or spheres. Notice that
pressure for IHS is only definedkineticallyas the momentum
flux, which leads to Eq.~12!. A statistical mechanical deri
vation of the equation of state from the partition function
free energy for the IHS fluid does not exist.

In a similar manner, we obtain the exact expression
the collisional damping rate

G~T!5S 12a2

2d Dnsd21v0TE dc1E dc2E dŝ

3Q~2g•ŝ!ug•ŝu3f (2)~c1 ,c2 ,s!

5g0vT^ug•ŝu2&coll5m j0
2 , ~14!

where g05(12a2)/2d is the dimensionless damping con
stant introduced in Refs.@9,10#. The last equality~14! ex-
presses the balance between the energy input due to
white noise, and the collisional loss of energy in the NES
and determines the temperatureT in the NESS. By special-
3-4
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FIG. 1. Kinetic temperatureT/TE and collision frequencyv/vE whereTE and vE are defined in Eqs.~17! and ~19!, for a packing
fractionsf50.05 andf50.2.
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izing this equation to the Enskog mean-field approximati
f (2)5xEf f , where ^ug•ŝu2&coll52, we obtain the approxi-
mate result

GE~T!52g0vE~T!T ~15!

and similar relations for different choices ofx. It is conve-
nient to define areferencetemperatureTE through the rela-
tion

GE~TE!5mj0
2 , ~16!

or more explicitly

TE5mS j0
2Ap

2g0VdxEnsd21D 2/3

. ~17!

Moreover, the definition ofTE combined with the NESS con
dition G(T)5mj0

2 implies the relationG(T)5GE(TE), and
consequently,

G~T!

GE~T!
5

GE~TE!

GE~T!
5S TE

T D 3/2

. ~18!

In the sequel, we will also use a reference frequencyvE
without any argument to denote

vE[vE~TE!5xEVdnsd21ATE/pm. ~19!

Although we will discuss the simulation results in detail
the next section, it is of interest already at this point to n
that for these systems, as shown in Fig. 1, the ratio of
kinetic temperature and the reference temperature,T/TE, is
only somewhat larger than one for alla, that it approaches
one in the elastic limit (a→1), and that it monotonically
increases with decreasinga ~see Fig. 1!. The same figure
shows that the ratio,v/vE also approaches one fora→1,
with a steep increase to a value 5.6 asa→0. Further discus-
01130
,

e
e

sion of these points is postponed untill Sec. III. If the Ensk
factorization f̂ (2)5xEf̂ f̂ would be exact, thenT5TE andv
5vE.

A third quantity of interest, the precollisionalx (2) factor,
defined in Eq.~8!, may also be expressed as a collision
average using Eq.~11!,

x (2)5~2v/Vdnsd21v0!^ug•ŝu21&coll . ~20!

Before closing this section, acaveatabout internal con-
sistency is appropriate. To obtain consistent theoretical p
dictions for the pressurep or dissipation rateG, it is para-
mount that both factorsv and ^ug•sum&coll be calculated
using identical approximations forf (2). For instance, the
mean-field or molecular chaos approximation for the dissi
tion rate,GE(T)52g0vT, —an expression commonly use
in granular hydrodynamic equations—should necessarily
combined withvE(T) in Eq. ~9!. Any improved theoretical
calculation forv without a concomitant correction to th
mean-field result for̂ ug•sum&coll is inconsistent.

C. Velocity distributions

We study a variety of collisional averages and cor
sponding probability distributions. By choosingA(c1 ,c2 ,s)
5d(ugu2g) we obtain the probabilityPr(g) that two collid-
ing particles have a relative speeduc12u5g. From here on, we
only quote results for two dimensions.Analytic calculations
are based on the molecular chaos assumption~6! in combi-
nation with Eq.~2!. Inspection of Eq.~11! shows that under
this assumption, the collisional averages are independen
the x factor. Straightforward algebra gives for the co
strainedg distribution,

Pr~g!5^d~ uc12u2g!&coll

5A2

p
g2e2 1/2 g2H 11

1

16
a2~g428g219!J .

~21!
3-5
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Similarly, we obtain the probability distribution for the cen
ter of mass velocityG[1/2(c11c2),

PCM~G!5^d~ uCu2G!&coll54Ge22G2
$11a2~G42G2!%.

(22)

It equals the unconstrained equilibrium distribution functi
apart from a small term ofO(a2). Furthermore, the probabil
ity that the precollision speeduci u of one of the colliding
particles (i 51,2) has a valuev is

P~v !5^d~ uc1u2v !&coll

5A2ve23v2/2H ~11v2!I 0S 1

2
v2D1v2I 1S 1

2
v2D J ,

~23!

whereas the unconstrained distribution is;v exp(2v2). In
evaluating this collisional average, we neglect thea2 contri-
bution, and carry out the constrainedŝ integration. To cal-
culate the remaining integral*dc2c12w(c2), we change inte-
gration variables tog expressed in polar coordinates$g,f%,
and use the relation*0

pdf exp(22c1gcosf)5pI0(2c1g). The
subsequentg integration follows from~6.618.4! in Ref. @33#.
Using the asymptotic expressions I 0(x);I 1(x)
;exp(x)/A2px for the modified Bessel functions of the z
roth and first order, we obtain the high-energy behav
P(v);2A2/pv2exp(2v2).

In a similar manner, we obtain the following velocity mo
ments and correlations, using the molecular chaos assu
tion:

^g2&coll53H 11
1

4
a2J , ^G2&coll5

1

2 H 11
1

2
a2J ,
ic
ibu

n

01130
r

p-

^g* 2&coll5^g2&coll2~12a2!H 11
1

4
a2J ,

^c1
2&coll5^G2&coll1

1

4
^g2&coll5

5

4 H 11
7

20
a2J ,

^c1•c2&coll5^G2&coll2
1

4
^g2&coll52

1

4 H 12
1

4
a2J ,

^c1* •c2* &coll5^c1•c2&coll1
1

2
~12a2!H 11

1

4
a2J . ~24!

Here,ci* are the postcollision velocities, as defined in pap
I. The sum of the third and fourth equality depends only
the center-of-mass velocity, i.e.,^G2&coll . In the elastic limit
a→1, the average energy of a particle that is about to coll
^c2&coll5(5/4)^c2&, is above the mean energy per partic
^c2&, which equals unity.

In the molecular chaos approximation, an average suc
^(c1•c2)mgn&coll with $m,n% integers, is in general nonvan
ishing, except in the special casen521. Then,
^(c1•c2)m/g&coll reduces to an unconstrained average, p
portional ^(c1•c2)m&, which vanishes for odd values ofm.
Additional information about the relative orientation of th
incoming velocities may be obtained from the distribution
the anglec12, defined byc1•c25c1c2cosc12. A numerical
calculation ~again neglecting a2 corrections! gives
^cosc12&coll.20.233, which is close to the value20.2, es-
timated from^c1•c2&coll.^c1

2&coll^cosc12&coll using the above
results.

A very sensitive probe for studying the violation of mo
lecular chaos is the probability distributionP(b) of impact
parametersb5uĝ3ŝu5sinu, where u5cos21(ĝ•ŝ) is the
angle of incidence. It is defined as the collisional averag
P~b!5^d~b2uĝ3ŝu!&coll5

E dŝE dc1E dc2d~b2uĝ3ŝu!ug•ŝu Q~2ĝ•ŝ! f (2)~c1 ,c2 ,s!

E dŝE dc1E dc2ug•ŝuQ~2ĝ•ŝ! f (2)~c1 ,c2 ,s!

, ~25!
ore

e

-

and P(b) can be easily computed in a molecular-dynam
experiment. As long as molecular chaos holds, the distr
tion of b is independent of the functional form off and we
obtain straightforwardly

P~b!5H ~d21!bd22 if 0 ,b,1

0 otherwise,
~26!

which reduces in two dimensions to the uniform distributio

P~b!5H 1 if 0,b,1

0 otherwise.
~27!
s
-

,

In order to analyze molecular chaos breakdown in m
detail, we have introduced a collection of momentsMnm and
their dimensionless counterpartsBnm for n,m5$0,1,2 . . .%,
~see definition below!, to analyze in detail the possibl
breakdown of the molecular chaos factorization~6!. These
momentsMnm(T) of the pair distribution at contact are de
fined as,

Mnm~T![
2

Vd
E dv1dv2E dŝQ

3~2v12•ŝ! f̂ (2)~v1 ,v2 ,suT!v12
n ucosuum,

~28!
3-6
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which are averages over the precollision hemisphere, wh
u5cos21(ĝ•ŝ). Let Mnm

E (TE) denote the same quantit
evaluated in Enskog’s formulation of themolecular chaos
approximation,and evaluated at the reference temperatu
TE, i.e., evaluated with f̂ (2)(v1 ,v2 ,suT) replaced by
xEf̂ (v1uTE) f̂ (v2uTE), then the reduced moments are defin
as

Bnm~T!5Mnm~T!/Mnm
E ~TE!, ~29!

whereMnm
E (TE) is evaluated in Eq.~A2!. It is proportional to

vE
n , wherevE5A2TE/m. We prefer to normalize the reduce

moments byMnm
E (TE), because its analytic form is give

explicitly. One could also normalize byMnm
E (T)

5(TE/T)n/2Mnm
E (TE). The disadvantage ofMnm

E (T) is that
the computation requires the simulated values of the kin
temperatureT. The collisional averageŝv12

n ucosuum&coll ex-
pressed in terms of these new moments give

^v12
n ucosuum&coll5

Mn11,m11~T!

M11~T!
. ~30!

We first observe that the average collision frequencyv, de-
fined in Eq.~5!, is proportional toM11(T), so that

B11~T!5
M11~T!

M11
E ~TE!

5
v

vE
~31!

with vE defined in Eq.~19!. This implies that the reduce
momentsBnm(T) may all be expressed in collisional ave
ages, i.e.,

Bnm~T!5
v

vE

^v12
n21ucosuum21&coll

^v12
n21ucosuum21&coll

E
. ~32!

The average^•••&coll
E is defined through Eq.~30! with

Mnm(T) replaced byMnm
E (TE), and calculated in Eq.~A2!. It

represents the collisional average, evaluated with the Ens
factorizationf (2)5xEf f and alsotaken at the reference tem
peratureTE. Note that the equality~32! consists of two fac-
tors,v and^•••&coll , which are measured separately in eve
driven MD simulations.

We also observe that the equalityG(T)5GE(TE), ex-
plained above Eq.~18!, implies that

B33~T!5
M33~T!

M33
E ~TE!

5
G~T!

GE~TE!
51. ~33!

Furthermore, we have for the excess pressurepex(T)
[p(T)2nT,

B22~T!5
pex~T!/nT

pE
ex~TE!/nTE

5
v

vE
3

^uv12cosuu&coll

^uv12cosuu&coll
E

~34!

and for the dynamic pair correlation at contactx (2),
01130
re

e
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B00~T!5
x (2)

xE
5

^uv12cosuu21&coll

^uv12cosuu21&coll
E

. ~35!

In the Appendix, we present a more complete set of relati
for the Bnm .

In the next section MD simulations will show that th
predicted deviation from a Maxwellian@see Eq.~2!# in the
~unconstrained! velocity distribution of a single particle ma
be observed for small inelasticities. However,larger devia-
tions are found between the observed constrained probab
distributions and averages, and the corresponding kin
theory predictions given by Eq.~24!, based on molecula
chaos. Consequently, the small corrections resulting froma2
in Eq. ~2! may be neglected in most cases.

D. Radial distributions

The static or unconstrained radial distribution function
the spatially homogeneous IHS fluid is defined as

g~r !5E dŝ

Vd
E dc1dc2f (2)~c1 ,c2 ,r ŝ!. ~36!

It may be averaged over all directions ofr because of statis
tical isotropy. The unconstrained radial distribution functi
at contact is defined as the extrapolation,Y5g(r→s10).
By splitting the ŝ integration into a precollision (ĝ•ŝ,0)
and postcollision hemisphere (ĝ•ŝ.0), we obtainY as sum
of two terms,

Y5
1

2
~Y(2)1Y(1)!. ~37!

The definitions ofY(2),Y(1) follow from Eq. ~36! by adding,
respectively, factorsQ(2ĝ•ŝ) andQ(ĝ•ŝ) under the inte-
gral sign in Eq.~36!. The dummy integration variables i
Y(1) represent the postcollision velocities, (c1* ,c2* ), corre-
sponding to the precollision ones, (c1 ,c2).

On the other hand, we have the dynamic precollision c
relationx (2), defined in Eq.~8!, and a similar postcollision
one, x (1), defined by replacingQ(2ĝ•ŝ) in Eq. ~8! by
Q(ĝ•ŝ). They are related by continuity of flux. Because t
incident flux of (c1c2) pairs just before collision is equal t
the scattered flux of (c1* c2* ) pairs just after collision, we have
inside dynamic averages the equality

Q~2gn!ugnu f (2)~c1c2 ,s!dc1dc2dŝ

5Q~gn* !ugn* u f (2)~c1* c2* ,s!dc1* dc2* dŝ, ~38!

wheregn5g•ŝ5g cosu. The reflection lawgn* 5augnu, for
inelastic collisions in combination with the continuity of th
flux and Eq.~8! yields at once,

x (1)5~1/a!x (2). ~39!

In principle, Eqs. ~37! and ~20! provide two alternative
routes to compute the precollisional pair correlation at c
3-7
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tact: the first one, denoted byY(2), may be implemented
numerically as a static or unconstrained average, namely
extrapolation to contact of the pair-correlation function f
pairs aiming to collide. The second one, denoted byx (2),
may be computed as a dynamic collisional average, ca
lated from f (2)(c1 ,c2 ,s) at contact. It is important to stres
that the dynamicx (2) is calculated as a time average ov
thesubset of colliding pairs at contact, and the staticY(2) as
a time average overall pairs, satisfying the relation,g•ŝ
,0 and extrapolated tor→s10, i.e., calculated from
f (2)(c1 ,c2 ,r ), where the limit is taken after all integration
have been performed. This may lead to different results,
cause the integrand contains the the functionf (2) that turns
out to be singular nearr 5s andv12 small ~see discussion in
Sec. III C!.

Physically, it is also clear why the averages in the NE
need not be the same. For instance, the relation~38! may not
hold for the limiting (r→s) values,Y(2) andY(1), because
non-mean-field effects~in particular, the ‘‘rotation-induced’’
recollisions discussed at the start of Sec. III, or noise-indu
recollisions, see below! may result in differences betwee
the two methods to evaluatex (2) and Y(2). The reason is
that the validity of Eq.~38!, expressing flux continuity for
the limiting values (r→s10), is questionable in the pres
ence of the external random force. When the kicking f
quency is much larger than the collision frequency~situation
considered here!, a pair of particles may indeed be put
contact under the action of the random force only. We w
investigate possible numerical differences betweenx (2) and
Y(2) in the next section on MD simulations.

In paper I, we have studied the long-range spatial co
lation functionsGab(r ) of the density fieldn(r ,t) and the
flow field u(r ,t) in the NESS. These functions are close
related to Eq.~36!, i.e.,

Gnn~r !5
1

n2 K (i
d~r i2r !F(

j
d~r j !2nG L

5
1

n
d~r !1„g~r !21… ~40!

and, in the notation of paper I,

Guu~r !5
1

n2 K (i , j vi•vjd~r i2r !d~r j !L
5Gi~r !1~d21!G'~r !

5
d

2

v0
2

n
d~r !1v0

2g~r !^c1•c2&~r !, ~41!

where ^•••& is an average over theN-particle nonequilib-
rium steady state and the static velocity correlatio
^c1•c2&(r ), is defined as
01130
by
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,

^c1•c2&~r !5E dŝ

Vd
E dc1dc2f (2)~c1 ,c2 ,r ŝ!~c1•c2!/g~r !.

~42!

The correlation functionsGab(r ) above are very long
ranged, decaying similar tor 22d for large distances. In the
first part of this section, we have introduced the static cor
lations,Y, Y(6), and the dynamic ones,x (6). In Eq.~A8! and
~A9! we have done the same for the dynamic counter p
^c1•c2&dyn and ^c1•c2&dyn

(2) of the static correlation̂c1•c2&(r
→s), introduced in Eq.~41!.

In the next section, the short-range behavior of these fu
tions will be studied by MD simulations.

III. SIMULATION RESULTS FOR THE NESS

To investigate the short-scale structure characterizing
NESS and the validity of molecular chaos, we will present
this section MD simulation results, and compare these w
our theoretical predictions whenever possible. The detail
the simulations of the randomly driven inelastic hard d
system have been reported elsewhere@10#. We will work in
the limit in which the kicking frequency of the external ra
dom force is much larger than the collision frequency. This
the limit in which the Fokker-Planck term in Eq.~1! models
the random energy input through the random kicks. The
ternal random force will, in principle, have a quantitativ
influence on the short range structure of the fluid. There
only one important difference with respect to the simulatio
carried out in@10#. There, the random rotation proposed
@36# was implemented to avoid inelastic collapse at high
elasticities (a,0.5). This procedure amounts to rotating t
relative velocityg by a small random angle after each col
sion. Consider the completely inelastic situationa50 for the
sake of the argument. After each collision, the vectorg lies
exactly at the border of the precollisional hemisphere (g•ŝ
50), so that if the aforementioned random angle has eq
probable positive and negative values, the rotation proced
will lead to a recollision with probability 1/2. This leads to
spurious increase of the number of collisions by a fac
(n50

` 1/2n52 ~the recollision may itself induce a recollisio
with probability 1/2 etc. so that the frequency of collisio
effectively doubles!. Whena is small but nonvanishing, this
effect is still present but weaker. This is clearly an artific
violation of molecular chaos that has been discarded in
present paper: fora,0.5, we have also implemented th
rotation procedure, but if a small rotation leads to a reco
sion, a new angle is drawn until the pair separates. In
way, we reduce an important source of correlations~the ef-
fect is dramatic on all the low-order momentsBnm , not only
on the collision frequency; in particular, the moments w
n<1 that correspond to collisional averages of negat
powers ofg, are strongly biased toward bigger values if t
‘‘rotation-induced recollisions’’ are present!. After applying
this rule, we are then left only with correlations induced
the hard sphere dynamics plus the ones induced by the n
itself ~see below!.
3-8
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A. Cumulants

First, we focus on the single-particle velocity distributio
function f averaged over all particles, which deviates from
Maxwellian distribution due to the inelasticity of the coll
sions. In the previous section, we presented predictions
these deviations, assuming molecular chaos. The resu
expression given by Eq.~4! for the fourth cumulanta2 of the
distribution as well as the prediction for its overpopulat
tail are in perfect agreement with three-dimensional~3D! di-
rect simulation monte carlo~DSMC! results over the whole
region of inelasticities@34#. As DSMC itself invokes molecu-
lar chaos, this observation merely justifies the approxim
tions made in the analytic calculation. Information about
validity of molecular chaos may only be obtained from
comparison with molecular- dynamics simulations, and F
2 shows this comparison for the fourth cumulanta2 as a
function of the coefficient of restitutiona in 2D. The simu-
lation results are in agreement with Eq.~4! for small inelas-
ticity, but start to deviate significantly from the theoretic
prediction ata50.6. These deviations, together with the p
fect agreement between the theoretical prediction and DS
results, provide direct evidence for the breakdown of m
lecular chaos fora&0.6. The theoretical result~4! is inde-
pendent of the density. Asa2 represents only a small correc
tion in Eq. ~2!, one needs a large number of collisions an
large number of particles to reach sufficient statistical ac
racy. So, high densities, for which one may use linked li
@30#, are well suited. The data in Fig. 2 are typically obtain
at high- packing fractions (f50.63 ata50.92 and 0.7, and
f50.55 ata50.6) andN510 201 particles. At low densi
ties and weaker inelasticities (a*0.6) we are unable to col
lect enough statistics to measure the small correction, re
sented bya2. Simulations at higher inelasticities did no
show any density dependence ofa2 in the range 0.2&f
&0.6, suggesting that the cumulant expression~3!, obtained
from the Enskog-Boltzmann equation also applies at liq

FIG. 2. Fourth cumulant as a function of the coefficient of re
titution. Comparison is made between the two-dimensional vers
of Eq. ~4! and MD results~circles! obtained for a system of 10 20
inelastic disks, measured at several densities~see Sec. III A!.
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densities. Similar results as those displayed in Fig. 2 h
been observed for the 3D version of the present model@11#.

B. Radial distribution function

Next, we present results for the static or unconstrain
radial distribution functiong(r ), and in particular, its ex-
trapolated values at contactY,Y(2),Y(1). Here,g(r ) is es-
sentially the density-density correlation function, whose lo
range behavior was studied in Ref.@10#.

Figure 3 shows the measured values ofg(r ) for short
distances and packing fractionf50.2, at different inelastici-
ties. At small inelasticities (a.0.9), g(r ) resembles the ra
dial distribution function for elastic hard disks~EHD!. At
higher inelasticities, deviations start to appear: the first a
second maximum in the measuredg(r ) are enhanced with
respect to their EHD values at the same density. Moreo
the functional shape also deviates from the correspond
pair distribution of EHD at an appropriately chosenhigher
density; e.g., if this density is chosen such that the value
the second maximum of the pair distribution of EHD coi
cides with the simulation result for IHD, the observed val
at contact would still be underestimated by the EHD p
distribution.

It seems worthwhile to compare these results with ex
ing experiments on granular fluids in which the pair dist
butiong(r ) has been measured. In the experiment of Ref.@2#
on a vertically vibrated thin granular layer,g(r ) has been
measured atf50.46. In the fluidized~‘‘gaslike’’ ! phase, it
follows the equilibrium result for elastic hard disks almo
identically. This result may be compared to our simulatio
for a randomly driven fluid of inelastic disks ata50.9, cor-
responding to the value for stainless steel balls used in
experiment. It would be of interest to measure experim
tally how g(r ) in the fluidized phase depends on the inela
ticity, and see if a behavior similar to that of Fig. 3 is o
served. It is also interesting to note that the pair-correlat

-
n FIG. 3. Pair-distribution functionsg(r ) versus distance betwee
the particles at a packing fractionf50.2. The arrow indicates the
value at contact for an elastic hard disc~EHD! fluid ~from Verlet
and Levesque@31#!.
3-9
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FIG. 4. ~a! Static or unconstrained pair-distribution functions at contactY,Y(2),Y(1), as extrapolated from the corresponding pa
distribution functiong(r→s) at f50.05, compared with the dynamic correlationx (2) at contact. The straight line corresponds to the EH
prediction (xE51.084).~b! Ratio of dynamic to static correlationx (2)/Y(2), to be compared with 1, and the static ratioY(2)/Y(1), to be
compared with the dynamic ratiox (2)/x (1)5a.
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function g(r ) in a non-Brownian suspension of spheric
particles, fluidized between two vertical parallel plate
shows an enhanced value at contact as well@35#.

In Fig. 4~a!, we show the value at contact,Y, obtained by
extrapolation fromg(r ) at f50.05, together with the ex
trapolated values for approaching and receding pairs,Y(2)

andY(1), respectively. Fora*0.8, no significant deviations
are found from the Verlet-Levesque valuexE51.084 for
elastic hard disks at the same density. More surprising is
value of g(r 5s) at large inelasticities, reaching a valu
around 40 fora→0. This property, combined with the ob
servation that the first and second maximum ing(r ) are
shifted to smallerr values, and are larger~up to 20% at small
a) than the corresponding hard disks values, may be in
preted as a tendency to cluster, i.e., to stay in continuo
rearranging configurations with large-density inhomoge
ities. We return to this point in Sec. III G.

Figure 4 also shows the dynamic correlation,x (2)

5xEB00, measured as a collisional average. Figure 4~b!
compares the static ratioY(2)/Y(1) with the dynamic one,
x (2)/x (1)5a, and also shows the ratioY(2)/x (2). The plots
clearly show that the dynamic and static correlationsx (6)

andY(6) are different. Fora&0.5, the differences are large
and fora*0.6, both functions are about equal. For the ca
of a freely evolving IHS fluid, Soto and Mare´schal@18# have
recently observed a similar behavior, and explained it
terms of the effect of the increase of grazing collisions on
effective x (2). In the randomly driven IHD fluid the sam
effects are present. All correlations,x (2),Y(6) are large, es-
pecially at smalla. This is caused by the divergence
f (2)(c1 ,c1 ,s) at smallg and small cosu, which corresponds
to grazing collisions and will be further discussed in the n
section. As a result of noise-induced recollisions, collisio
with small g and small cosu are oversampled; consequent
a dynamical average involving negative powers ofg cosu
such asx (2) is expected to be larger than its static count
part Y(2). This feature may be observed in Fig. 4~b!. More-
over, in the absence of recollisions, we would expectY(2)

5aY(1) as a result of plain hard-sphere dynamics. Howev
in the heated system, the flux continuity, as expressed in
01130
l
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~38!, is no longer satisfied for the extrapolatedY’s; some
pairs are put in precollision configuration under the action
the random force, which leads toY(2).aY(1). The break-
down of Y(2)5aY(1) signals the inelasticity beyond whic
noise-induced correlations become relevant. It is furtherm
possible to consider situations where the recollisions do
nate the dynamics, e.g., at smalla by allowing rotation-
induced recollisions. In this extreme limit, we expectY(2)

.Y(1), the pairs being put in pre- or post-collision config
ration essentially at random. In the same limit, the populat
of colliding pairs with smallg and small cosu is enhanced,
leading to a more pronounced discrepancy between dyna
and static averages@i.e., a much smaller ratioY(2)/x (2) than
observed in Fig. 4~b!#.

C. Equation of state. Molecular chaos breakdown

To what extent does the extrapolated static radial distri
tion function, Y5g(r→s) describe the nontrivial depen
dence in the NESS of collision frequency in Eq.~5!, colli-
sional damping in Eq.~14! and pressure in Eq.~12! on the
inelasticity? If molecular chaos holds, the latter quantit
depend, according to Eqs.~6!, ~13!,~9!, and~15!, on the pre-
collisional pair function at contact,x (2), where the particles
are aiming to collide. This function differs from the extrap
lated staticY(2) at high inelasticities~see Fig. 4!. Consider
first the collision frequency in the molecular chaos appro
mation,vmc5xv0(T) above Eq.~9!, with x5x (2) the dy-
namic correlation, i.e.,

vmc~T!

vE
5

x (2)

xE

v0

vE
5B00A T

TE
, ~43!

where we have used Eqs.~9! and ~35!. This is an extremely
poor approximation, as can be seen from Fig. 1, which sho
that the measured valuev/vE approaches 5.6 asa→0,
whereasB00 is essentially divergent. Next, we replacex (2)

in Eq. ~43! by its static counterpartY(2), shown in Fig. 4.
This yieldsvstat(T)/vE5Y(2)v0 /x (2)vE. Its limiting value
for a→0 is about a factor three too large when compared
3-10
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RANDOMLY DRIVEN GRANULAR FLUIDS: . . . PHYSICAL REVIEW E 65 011303
v/vE. We conclude that all mean-field approximations f
the collision frequency, including the Enskog approximati
vE(T)/vE5AT/TE, break down fora,0.6.

Figure 5 shows the pressure of the IHD fluid, compa
with the molecular chaos prediction given by Eq.~13!, taking
for x either the Enskog approximationxE in Eq. ~7!, or the
simulated Y(2), or x (2). The Enskog approximation, ac
counting for the short-range geometric exclusion effects
the precollision state, gives a reasonable description ofp(T)
for all a, while both the staticY(2) and the dynamicx (2)

give an extremely poor description except fora.0.8.
Consistent with this conclusion is the good estimate

the temperatureTE in the NESS, obtained by balancing th
energy dissipation rateGE(TE) in Eq. ~16! with the energy
input from the random force, as shown in Fig. 1. Moreov
the collisional energy lossG(T)/GE(T)5(TE/T)3/2 in Eq.
~18!, is in agreement with MD simulations over the wholea
interval within 30%. All other mean-field approximation
with vE replaced byvmc(T) or vstat(T) give very poor re-
sults forG(T)5mj0

2.
How can these paradoxical results be reconciled? Le

compare the individual definitions ofx (2),v,p, and G,
which all contain factors ug•sunf (2)(c1 ,c2 ,s) with n
50,1,2,3. To find a possible explanation of these paradox
results, we test the following scenario:the molecular chaos
assumption (6) only breaks down at very small relative

locities g, and more precisely, at very small gn5g•ŝ
5g cosu, which is the component ofg, parallel to the line of
centers of the colliding particles~physical arguments for this
scenario will be offered in Sec. III F where we discuss t
noise-induced recollisions!. On the basis of this scenario, th
singularity in f (2) at smallg makes the dynamic correlatio
x (2)5B00xE ~shown in Fig. 6! very much larger thanxE,
essentially divergent asa→0. In calculating the collisiona
frequency from Eq.~5!, the extra factorgn in the integrand

FIG. 5. Pressure versus coefficient of restitution at a pack
fraction f50.05. The simulations results~direct or throughB22)
are compared with molecular chaos prediction~13!, where x is
either the staticY(2) in Eq. ~37!, or the dynamicx (2) in Eq. ~8!, or
the Enskog approximationxE in Eq. ~7!, corresponding toB2251.
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makes the smallgn singularity integrable, giving afinite cor-
rection to the Enskog collision frequency, also fora→0 ~see
Fig. 1!. The contributions of the smallgn2singularity in
p(T) andG(T) are essentially suppressed by extra factors
ug•ŝun.

This possibility has been analyzed systematically by m
suring the behavior of the momentsBnm(T), which are use-
ful tools to investigate the breakdown of the molecular cha
assumption. We have maden and/or m small in order to
analyze the nature of the singularities inf (2) near small rela-
tive velocities and near grazing collisions, as displayed
Fig. 7. All deviations of these quantities from unity give
quantitative measure for the violation of the molecular cha
assumption. In the elastic limit, we have carefully check
for a large number of cases that the reduced momentsBnm
tend to one. Figure 6 shows the values of different mome
Bnn(T), and one can clearly see how the deviations from
elastic limit rapidly decrease asn increases ton53, after
which they start to increase slowly. For largern-values, the
moments are reasonably close to unity, but statistical inac
racy precludes any definite conclusion about the largen be-
havior.

Further evidence for the above scenario is shown in F
7, where we display two sequences of momentsBnm . To
draw some further conclusions from Figs. 6 and 7, we n
that the integrands inBnn ,B0n , andBn0, as defined in Eq.
~28!, contain apart from f (2), respectively, the factors
gnucosuun,ucosuun,gn. The reduced momentsB01 andB10 con-
tain again very large contributions from the divergence
f (2) near vanishinggn5g cosu. Figure 7 suggests that th
presence of equal powers ofg and cosu in Bnn simulta-
neously suppresses the large contributions from the sin
larities atg50 and cosu50.

We conclude that the numerical results, displayed in F
6 and 7, give support to the previous scenario, showing
molecular chaos breaks down only in a very small portion

g

FIG. 6. Reduced momentsBnn for n51,2,3 as a function of the
restitution coefficient atf50.2 andN55041. A similar behavior is
observed at lower densities.
3-11
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FIG. 7. Reduced momentsB0m andBn0 as a function ofa at f50.2 andN55041.
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the phase space, aroundgn5g•ŝ5g cosu50. The size of
this ‘‘pocket’’ in phase space increases asa decreases
Therefore, only those collisional quantities that contain l
powers ofg and cosu ~such asx (2) and v) will be very
sensitive to this breakdown as the inelasticity increas
while physical quantities involving higher powers ofg and
cosu, such as the temperature, pressure, or energy diss
tion will be well approximated by their molecular chao
counterparts.

D. Velocity correlations at contact

In the previous section, we have considered the pair-
tribution functionf (2)(c1 ,c2 ,s) in the precollision state, and
have examined how molecular chaos is broken down,
which physical quantities are most sensitive to it. Now
will analyze the effect of the breakdown of molecular cha
on collisional statistics.

We show in Fig. 8 different velocity collisional average
at f50.05. In the simulations, these quantities are obtai
by averaging over successive collision events in the ste
state. We first observe that the simulation results in Fig
approach fora→1 the analytic results for elastic sphere
calculated in Eq.~24!. At small inelasticities, the simulation
data follow the trends of the theoretical prediction with sy
tematic deviations depending on the quantity considered.
instance, the behavior of the center- of-mass motion^G2&coll
is close to the analytical prediction of Eq.~24! in the whole
range ofa values. This indicates that the center of ma
velocity G is not correlated with the relative velocityg. Con-
sequently,f (2)(c1 ,c2 ,s) in the collisional average~11! fac-
torizes, and we may expect the contributions in numera
and denominator in Eq.~11! coming fromG integrations to
cancel. Consistent with this behavior, we observe that
two curves in Fig. 8,^c1

2&coll ~labeled by circles! and
^c1•c2&coll ~labeled by squares!, are symmetric around 1/2. I
Eqs. ~A4! and ~A5! of the Appendix, these quantities hav
been expressed in reduced moments

^c1•c2&coll5
1

2
2

3

4

b31

b11
,
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^c1
2&coll5

1

2
1

3

4

b31

b11
, ~44!

where

bnm5
Mnm~T!

Mnm
E ~T!

5S TE

T D n/2

Bnm . ~45!

The reduced moments have been measured independ
~see Figs. 6 and 7!, and used to calculate the expressions~44!
and ~45!. The results have been plotted in Fig. 8 as das
and dashed-dotted lines, which agree very well with the
rect measurements of these quantities as collisional avera
shown in Fig. 8, respectively, as squares and circles. In
riving Eq. ~44! and~45!, we have again used that the veloci

FIG. 8. Values of different collisional averages obtained in M
simulations, as a function ofa at f50.05 ~see Sec. II B for defi-
nitions!. For a,0.5, the random rotation introduced to avoid i
elastic collapse has a maximum deviation angle of 2.5°. The s
bols bnm are defined in Eq.~45!.
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variablesG andg are statistically uncorrelated. The prese
results strongly support this assumption.

The correlation^ĉ1• ĉ2&coll5^cosc12&coll , also plotted in
Fig. 8, cannot be expressed inB moments. However, the
approximate relation already employed to show t
^cosc12&coll.^c1"c2&coll /^c

2&coll in Sec. II C, holds for the
simulation data over the whole range of inelasticities. As
system becomes more inelastic, the typical ‘‘temperature
colliding particles~defined as the collisional average^c2&coll)
decreases and even becomes lower that the unconstr
averagê c2& that defines the temperature. On the other ha
as already noted below~24!, ^c2&coll55/4.1 in the elastic
limit. This decrease of̂c2&coll is directly related to the in-
crease of the smallg portion of phase space where molecu
chaos is violated. At smalla, most of the collisions occu
between particles with small and even vanishing relative
locities. An extreme example is the inelastic collapse, m
tioned in the Introduction.

The correlation function̂c1•c2 /g&coll for the freely evolv-
ing IHD fluid has been simulated by Soto and Mare-sch
and was shown to be small, but nonvanishing@18#.

We have also investigatedr 2v correlations by measuring
the expectation value of̂c1•c2&(r ) for two particles sepa-
rated by a distancer, as defined in Eq.~42!. The results are
shown in Figs. 9 and 10. The plot shows an intermed
range ofr values with an exponentially decaying correlatio
It is again of interest to compare the extrapolation of
static correlation^c1•c2&(r→s) with its dynamic counter
part ^c1•c2&dyn calculated at collision. The results, derived
Eqs.~A8! and ~A9! of the Appendix, read for hard disks

^c1•c2&dyn5
1

2 S 12
b20

b00
D1

12a

4

b22

b00
. ~46!

The first term on the right-hand side~RHS! represents the
precollision part,

FIG. 9. Distribution of^c1•c2&(r ) as a function of the distanc
between the particles atf50.05.
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^c1•c2&dyn
(2)5

1

2 S 12
b20

b00
D . ~47!

Figure 10 compares the extrapolation̂c1•c2&(r→s)
~circles! of the static correlation with its dynamic analog
~46! and~47!. The numerical data for both correlations agr
well for a*0.8, but for a&0.5, the dynamic correlation
~solid line! is substantially larger than the static one. This
consistent with the difference betweenx (2) and Y(2) ob-
served in Fig. 4. For comparison, the dynamic precollis
correlation~dashed line! is also shown. It should be note
that the divergence off (2) at smallg and small cosu implies
in particular thatB00@B20.B22, so that Eq.~46! predicts
that the dynamic correlation at contact^c1•c2&dyn should in-
crease ata→0 and saturate close to 1/2. By the same ar
ments, its precollision part in Eq.~47! approaches the sam
limit. This can be observed in Fig. 10.

The velocity correlation̂ c1•c2&coll in Eq. ~44! involves
the reduced momentsb31 andb11. Consistent with the sce
nario, developed in Sec. III C, the divergence
f (2)(c1 ,c2 ,s) nearg50 and cosu50 is largely suppressed
in these higher moments, which remain finite fora→0,
where b11.4b31. Consequently,̂ c1•c2&coll does not ap-
proach the value 1/2 asa→0, but a value close to 0.3, as ca
be deduced from Fig. 8.

E. Grazing collisions

The data in Fig. 8 for ^c1•c2&coll , ^cosc12&coll ,
^A12b2&coll , and ^b&coll clearly illustrate that the violation
of molecular chaos strongly increases with increasing ine
ticity. Consider first the average

^b&coll5E
0

1

dbbP~b!. ~48!

FIG. 10. Mean-velocity-velocity correlation function at contac
as extrapolated from̂c1•c2&(r ) ~previous figure!, compared with
the dynamic analogŝc1•c2&dyn and^c1•c2&dyn

(2) , defined in Eq.~A8!
and ~A9!.
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This average remains at a plateau value 1/2 fora*0.5 ,
which is determined by the uniform distributionP(b) corre-
sponding to molecular chaos in two dimensions. Recall t
the value 1/2 holds regardless of the functional form of
velocity distribution functionf. It is thus a good probe fo
molecular chaos breakdown. Moreover, from its trend
can also estimate the way in which such a breakdown ta
place. Specifically, as the inelasticity increases the ave
value increases by about 50%, which indicates a strong
toward grazing collisions. To illustrate this, we model t
normalized distribution of impact parameters as a unifo
background and a ‘‘half’’ delta peak atb51, i.e., P(b)51
2p12pd(12b), wherep is the fraction of grazing colli-
sions. This yields the average^b&coll51/2(11p), which im-
plies, according to Fig. 8, that ata50.0,0.1, and 0.3, respec
tively, a fraction of 50, 35, and 5 % is grazing atf50.05.
This qualitative picture is supported in a more quantitat
manner in Fig. 11, which shows the measuredP(b), which is
strongly peaked near grazing collisions (b51). At small in-
elasticity, all impact parameters are equally probable as
pected on the basis of molecular chaos, and consistent
Fig. 8. Only fora&0.5 deviations become significant: upo
decreasing the coefficient of restitution, collisions with
larger impact parameter occur more frequently, implying
increase of the frequency of grazing collisions. The behav
of P(b) is then fully consistent with the divergence off (2) at
small cosu, discussed in Sec. III C.

To avoid inelastic collapse fora<0.5, the postcollision
velocities of colliding pairs are rotated over a small rand
angle as described in Refs.@36,10#, with the important re-
striction mentioned at the beginning of Sec. III. Alternati
algorithms to avoid inelastic collapse are described in R
@37#. For a.0.5, no such rotation was applied. To check
the deviations of the impact parameter fora&0.5 are due to
this applied rotation, we have also performed simulatio
where even fora.0.5 a random rotation was applied. R
gardless of the applied random rotation, we found^b&coll
close to 1/2 fora*0.5. Both Figs. 8 and 11 show that fo

FIG. 11. Distribution of the impact parameterb for different a
values forf50.05.
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a&0.5 molecular chaos is strongly violated, and that
violation is weaker in the small inelasticity regime. The a
erage^A12b2&coll supports the same conclusions.

The data for̂ c1•c2&coll and^cosc12&coll in Fig. 8 are con-
sistent with the predominance of grazing collisions at la
inelasticities. They show the average relative angle betw
the velocities of the incoming particles, which has a stronga
dependence and no plateau value near the elastic limit. N
a51, the particles are on average on approaching traje
ries with ^cosc12&coll.20.25 and̂ c12&coll.105°. Asa de-
creases,̂cosc12&coll increases linearly to a value 0.50, whi
^c12&coll approaches 60°, ata50. This corresponds to colli-
sions of more or less parallel-moving pairs of particle
where faster particles overtake slower ones.

Figures 12 and 13 show the distribution of relative orie
tations of incoming velocities. The distribution of angles b
tween the incoming particles (c12) shows moderate devia

FIG. 12. Distribution of the relative orientation of the velocitie

at collision (cosc12[ ĉ1• ĉ2) at a packing fraction of 5%.

FIG. 13. Distribution of relative velocitiesc1•c2 of colliding
inelastic disks atf50.05.
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RANDOMLY DRIVEN GRANULAR FLUIDS: . . . PHYSICAL REVIEW E 65 011303
tions from what is expected for an elastic system in the ra
0.5&a,1. As an analytic expression for elastic disks is n
available, deviations are compared with the simulation
sults for elastic hard disks~in the absence of a random e
ternal force!. At a50.5, the frequency of collisions o
parallel-moving particles is strongly increased, a trend tha
enhanced upon increasing the inelasticity. Finally, the pr
ability distribution P(c1•c2) is shown in Fig. 13. When the
inelasticity increases, this distribution becomes more pea
around the origin, as the colliding particles on average m
more slowly relative to each other. In the mean time,
typical anglec12 decreases, which causes this peak to shif
positive values.

F. Particle- and noise-induced recollisions

The mechanism for the breakdown of molecular chaos
classical fluids with conservative interactions are sequen
of correlated ring collisions, as discussed in the introducti
The most simple ring collisions are the recollisions~1-2!
~1-3! ~1-2! and cyclic collisions~1-2!~2-3!~3-1! or permuta-
tions thereof@20#.

There is strong evidence that the effects of ring collisio
are considerably enhanced in fluids with dissipative inter
tions, such as granular flows, whererelativekinetic energy is
lost in binary collisions. As a result, the postcollision velo
ties $v1* ,v2* % will be on average more parallel than the pr
collision ones$v1 ,v2% @24#, i.e., the trajectories are less d
verging than in the elastic case, and there is a much la
$r3 ,v3% phase space, in which particle three will knock, s
particle one back to recollide with particle two.

This increase of phase space is confirmed by gathe
recollision statistics. We have counted the fraction of rec
lisions as a function ofa, as shown in Table I. The colum
labeledR1 ~recollisions between two partners mediated b
third particle! shows that at a packing fractionf50.2 in the
elastic case (a51) only a fraction of 6.7% of all collisions
is a recollision. This frequency gradually increases to ab
15% ata50.4.

In the randomly driven IHS fluid, there is the addition
effect of noise-induced recollisions that do not require
intervention of other particles. This type of recollision~de-
noted R0) occurs with high probability when the relativ
velocity after collision is so small that it may be simp
reversed by a random kick. Ata50.6, the frequency of
noise-induced recollisions is about 4%, and it increase
52% ata50 ~see columnR0 in Table I!. The effect is of

TABLE I. Frequency of recollision events as a function of t
inelasticity~see text for the definition ofR0 andR1). The packing
fraction isf50.2 and the system containsN55000 disks.

a R0 R1

0 52% 18%
0.4 14% 15%
0.6 4% 15%
0.95 0.15% 7%
1.0 0% 6.7%
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importance atall densities, because it does not require t
mediation of a third particle. Indeed, at a low-packing fra
tion of 1% and in the completely inelastic casea50, the
frequency of R0-like events is still 34%, whileR1-like
events have dropped to 5%. Moreover, we have verified
inclusion of rotation-induced recollisions modifies most
the collisional quantities we have analyzed, increasing th
deviations with respect to the molecular chaos prediction

At present, more quantitative theories or estimates of
effect of both types of recollisions and other ring collisio
on the short-range behavior of the pair-distribution functi
f (2)(x1 ,x2) are lacking. A natural way to incorporate th
noise-induced recollisions into a kinetic theory descripti
would be to include them into an effective two-particle sc
tering operator, which transforms an asymptotic precollis
state of two independent particles into an asymptotic po
collision state, without involving intermediate two-partic
scattering states, as in the present case. This may lead
instantaneous Boltzmann collision term~without memory ef-
fects!, provided the mean free time and the time betwe
random kicks are very well-separated~dilute gases!. Such a
description would suppress the recollions of typeR0, and
make the violation of molecular chaos less severe, say c
parable to the freely evolving IHD fluid.

G. Cold dense inhomogeneities

In Ref. @10#, we have shown by analyzing the Fouri
modes of the granular hydrodynamic equations, which
valid for small inelasticities~saya.0.7), that the NESS in a
randomly driven IHS fluid is linearly stable against spat
inhomogeneities. Consequently, when observed over s
ciently long times, the NESS should be spatially homog
neous. However, it was also shown that the NESS exhi
strong fluctuations, resulting in long-range spatial corre
tions in density, flow field, and granular temperature. T
observation of density inhomogeneities for large inelast
ties has already been reported by Peng and Ohta@8#. These
density inhomogeneities, as shown by the snapshot of
density in Fig. 14, are not quasistatic, as in the freely evo
ing case@38,36,39,24#, but seem to behave as dynamic a
semblies of particles that dissolve and reassemble ag
Also, for a uniform shear flow, dynamical density inhom
geneities have been reported@40#. The existence of density
inhomogeneities was already suggested by the static p
distribution functionsg(r ), which showed an enhanceme
of the first few maxima as compared to their elastic valu
~see Fig. 3!.

In Fig. 8, we show that the mean energy^c1
2&coll , of par-

ticles aiming to collide, is above the mean,^c2&51, for
small inelasticity. It decreases from its elastic value 5^c2&/4
with decreasinga, then crosses the mean value value^c2&
51 at a.0.2, and further decreases to approximat
0.7̂ c2& at a50.

It is interesting to observe that in the strong dissipat
range, the mean kinetic energy or granular temperature
particles that are about to collide islower than the average
temperature. We combine this observation with Figs. 3~a!
and 3~b! of Peng and Ohta@8#, which show that essentially
3-15
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all collisions occur inside ‘‘cold’’ regions of high densities
This last observation applies even more so to undriven
fluids @38,41#. We expect that, also in the randomly drive
IHS fluid, the majority of collisions takes place inside co
high-density regions.

If the predominance ofcold particles in strongly inelastic
collisions, ^c2&coll,^c2& is indeed a signal for the appea
ance of density inhomogeneities, then Fig. 8 suggests th

FIG. 14. To illustrate the slow reorganization of density inh
mogeneities, four consecutive snapshots of the system are sho
a50.1, f50.2, and N55000 ~the full simulation box is dis-
played!. The time interval between two consecutive snapshots
responds to 50 collisions per particle.
01130
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at

a packing fractionf50.05 density inhomogeneities may o
cur for a&0.2. This is indeed confirmed by the snapshots
Figs. 14. In Fig. 15, we illustrate the existence of cold inh
mogeneous dense regions fora50.2 andf50.2. The par-
ticles with a less~more! than median kinetic energy ar
shown on the left~right!. The formation of inhomogeneitie
is more clear for the colder particles. The temporal evolut
of these regions show that they dissolve after some ti
while inhomogeneous regions appear. The formation of ‘‘l
ing’’ inhomogeneous regions may be understood using
hydrodynamic picture put forward in@10#, where it was
shown that the structure factor behaves asS(k);k22, im-
plying density correlationsincreasingwith distance as ln(r)
in two dimensions. These long range spatial correlations
duce a slowing down of the dynamics, as in critical pheno
ena. This, in turn, implies the slow decay of density pert
bations, which could lead to visible density inhomogeneit
as the kicking frequency is reduced~in this respect, see Refs
@6#!. We may also expect that upon decreasing the forc
frequency, the dynamics should be closer to its ‘‘free co
ing’’ counterpart so that well-defined clusters are then like
to appear.

More details about the predominance of cold particl
among those involved in collisions, may be seen in Fig.
which shows the constrained probability distributionP(c),
defined in Sec. II C and obtained from MD-simulations
different inelasticities. Fora&0.5, the distribution has sig
nificantly shifted to smaller impact velocities. For the com
pletely inelastic case, collision events involving ‘‘immobile
particles are more than twice as frequent as for the ela
case. The second moment of the distribution displayed
Fig. 16 decreases when increasing the inelasticity. In fact

at

r-
f

s

FIG. 15. Snapshot of a typical instantaneous configuration of the system ata50.2, f50.2, andN55000. To illustrate the existence o
cold dense inhomogeneities, on the left~right! the particles with a less~more! than median kinetic-energyE* are shown at real scale~i.e.,
the cutoffE* is chosen such that there are exactly half of the particles on each graph!. Lengths on thex andy axes are expressed in unit
of the simulation box length.
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FIG. 16. Velocity distribution of the colliding particles atf50.05 andN55041: ~a! Original distribution;~b! scaled velocity distribu-
tions as a function of the rescaled velocityc/AT(a) for different values ofa.
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functional forms with simulation data at differenta can es-
sentially be collapsed onto a single universal curve~the elas-
tic one! by plottingAT(a)P(cua) as a function ofc/AT(a),
whereT(a)5^c2&coll is the mean temperature of a particle
collision. The collapse plot is shown in Fig. 16~b!. This data
collapse confirms the concept of cold dense regions domi
ing the energy dissipation. This could point to a possi
relevant two fluid picture of a ‘‘hot’’ dilute background ga
coexisting with continuously rearranging configurations
‘‘cold’’ dense regions.

IV. CONCLUSION

We have performed extensive MD simulations to stu
the kinetic properties and short-range correlations in the n
equilibrium steady state of a randomly driven fluid of inela
tic hard disks, as a model for fluidized granular material. T
MD results have been compared with kinetic theory pred
tions derived from the Enskog-Boltzmann equation, prope
modified with a Fokker-Planck diffusion termj0

2(]/]v)2 to
account for the applied random driving force@9#.

It appears that the kinetic theory predictions, based
molecular chaos, are essentially in agreement with the
results for small inelasticities (a*0.5) at f50.05. For
larger inelasticities, the deviations from the molecular ch
predictions start to become manifest: the radial distribut
function at contact differs strongly from its local equilibriu
form; there is a predominance of grazing collisions. Wh
increasingf, the effects of the inelastic collisions becom
relevant at smaller inelasticities; e.g., atf50.2 andf50.5,
we observe already significant deviations fora<0.7.

To avoid inelastic collapse of the system at lowa, we
have implemented a modified rotation procedure~see the be-
ginning of Sec. III!. In its original version, this procedur
induces dramatic violations of molecular chaos. It could th
be argued that the important deviations of low-order-redu
momentsBnm are also spurious consequences of the ab
rotation procedure. However, we checked that circumven
the collapse by applying elastic collisions when the relat
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velocity of a pair is below a certain cutoff@37#, also induces
very important violations of molecular chaos~quantified by
B00 for instance!, unless the cutoff is chosen unphysical
high.

Sequences of ring collision processes, which lead to
breakdown of molecular chaos in classical fluids with co
servative interactions, are strongly enhanced in fluids w
dissipative interactions, such as rapid granular flows.
have analyzed how molecular chaos is broken, i.e., es
tially only through pairs of colliding particles at very sma
relative velocities. This means that molecular chaos is v
lated only in a small portion of phase space, implying th
only certain physical properties will be sensitive to this vi
lation. This explains why quantities such as the collision f
quency, or the pair-distribution function at contact are ve
sensitive to the inelasticity parameters, while others such
the pressure or the energy dissipation rate are well appr
mated by their Enskog prediction. Disentangling the effe
of hard disk and noise-induced correlations remains an in
esting point to explore. The studies performed in a fre
evolving IHS fluid also shows the predominance of graz
collisions at long times. The fact that we have observed
analogous behavior for this homogeneous steady state
cates that the mechanism of breakdown of molecular ch
in granular fluids through grazing collisions is generic f
this type of fluids.

The extra feature of noise-induced recollisions, which
not require mediation of a third particle, will further enhan
the violation of the molecular chaos assumption. A natu
way to develop a kinetic theory for randomly driven fluid
thereby presumably restoring the validity of the molecu
chaos assumption in the dilute gas case, could be to inc
the noise-induced recollisions in an effective two-partic
scattering operator. It would be of interest to study its pro
erties, either analytically or by simulating a two-particle i
elastic collision in the presence of external noise. An ad
tional theoretical complication here is the validity of th
Boltzmann Eq.~1! with Fokker-Planck diffusion term due to
the fact that there are two limits involved when dealing w
3-17
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hard spheres in combination with external white noise. T
actual properties of the effective collision operator depend
the order in which both limits are taken. In the simulation
one always takes the hard sphere limit first, while the wh
noise is approximated by discrete kicks that are applied
the particles at discrete times.

In Ref. @10#, we have calculated the equal-time spat
correlations of the fluctuations in the hydrodynamic densi
in the NESS. Here, we have focused on the dynamic pr
erties of these enhanced fluctuations, in particular of the
namic inhomogeneities observed in the density field. T
collisional velocity moments, introduced in Sec. II and me
sured in MD simulations, reveal that the dense regions c
sist mostly of particles colder than average. This is clea
shown in the velocity distributionP(vua) of particles that
are about to collide.

The MD simulations have been carried out in the limit
which the time interval between the external random kick
much shorter than themeanfree time between collisions. In
this limit, regions with density larger than average are
seen to survive for a long time. Rather, they form, dissol
and reappear elsewhere. The spatial correlations analyz
@10# show long-range correlations, which imply also a slo
down in the temporal decay of density perturbations. The
fore, we expect than the decrease of the kicking freque
will be accompanied by the appearance of apparent clus
This fact, together with the shape modification of the velo
ity distributionP(vua) ~see Fig. 16! suggests the picture of
two-fluid model, in which a ‘‘hotter’’ more dilute back
ground gas coexists with continuously rearranging confi
rations of ‘‘cold’’ dense clusters. This point remains open
subsequent investigation; for example, it would be intere
ing to analyze separately the collisional statistics in the de
and dilute regions to assess the role of density fluctuatio
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APPENDIX: REDUCED MOMENTS Bnm„T…

In the body of the paper, we have considered the co
sional averageŝgnucosuum&coll and the momentsMn,m(T)
andBn,m(T). We first list the Enskog values of these qua
tities, which have have been calculated from its definitio
given below Eq.~28!: i.e.,

Mnm
E ~TE!5vE

nxE2n/2
G„~d1n!/2…G„~m11!/2…

ApG„~d1m!/2…
, ~A1!
01130
e
n
,
e
to

l
s
p-
y-
e
-
n-
y

s

t
,
in

-
-
y
rs.
-

-
r
t-
se
.

-

-
l,
e

e

i-

-
,

^gnucosuum&coll
E 52n/2

G„~d1n11!/2…G„~m12!/2…

G„~d1m11!/2…
.

~A2!

Many physical quantities of interest may be expressed
terms of reduced momentsBnm , as already illustrated in Sec
II C for x (2),v,p, and G. Analogous relations hold for the
velocity moments ^gn&coll , which are proportional to
Mn11,1. This yields

Bn11,15
v

vE
3

^v12
n &coll

^v12
n &coll

E
5

v

vE
3

^gn&coll

^gn&coll
E S T

TE
D n/2

, ~A3!

where the denominator has been calculated in Eq.~A2!.
Velocity correlations between nearby particles may a

be expressed in the reduced momentsBnm(T). First, consider
the constrained averages^c1•c2&coll , defined in Eq.~24!.
They contain̂ G2&coll , which equals d/4 from the MD simu
lations, in agreement with Eq.~24! ~see Fig. 8 of Sec. III!.
The center of mass velocityG is consequently uncorrelate
with the relative velocity, and independent of the inelastic
Substitution of̂ G2&coll5d/4 in Eq. ~24! yields

^c1•c2&coll5
d

4
2

1

4
^g2&coll5

d

4
2

d11

4 S TE

T D B31

B11
, ~A4!

^c1
2&coll5

d

4
1

1

4
^g2&coll5

d

4
1

d11

4 S TE

T D B31

B11
. ~A5!

Similarly we find

^c1•c2 /g&coll5^G2/g&coll2
1

4
^g&coll

5
d

4A2

G~d/2!

G~~d11!/2!
A T

TE

3
B01

B11
H 12S TE

T DB21

B01
J ~A6!

and

^c1•c2 /ug cosuu&coll5^G2/ug cosuu&coll2
1

4
^g/ucosuu&coll

5
d

4
Ap

2
A T

TE
3

B00

B11
H 12S TE

T DB21

B01
J .

~A7!

Note that the last two averages are vanishing in the ela
case.

In the body of the paper we have considered the extra
lation of the static correlation̂ c1•c2&(r→s). Here, we
calculate its dynamic analoĝc1•c2&dyn, obtained by inter-
changing limits and replacingf (2)(c1 ,c2 ,r ) under the inte-
gral sign in Eq.~41! by its value at contact,f (2)(c1 ,c2 ,s).
We proceed in the same fashion as in Eqs.~36!–~39!, and
3-18
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split the numerator in Eq.~42! in a pre- and postcollision
part, as done in Sec. II D. One finds after a lengthy calcu
tion,

^c1•c2&dyn5
d

4 H 12S TE

T DB20

B00
J 1

12a

4 S TE

T DB22

B00
. ~A8!

Here, the first term on the RHS is its precollision part, i.e
ev
.

-

.

P.

ga

ev

f
e,

01130
-
^c1•c2&dyn

(2)5^c1•c2ug cosuu21&coll /^ug cosuu21&coll

5
d

4 H 12S TE

T DB20

B00
J . ~A9!

In Sec. III, these quantities are compared with MD simu
tions.
o-

ev.
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