
Quantum Resistant Authentication
Methods for Quantum Key Distribution

A thesis presented for the degree of Master in Quantum Science and
Technology by

Paula Alonso Blanco

Supervised by
Dr. Marc Manzano
Dr. David Joseph

Faculty of Physics
SandboxAQ, Universitat de Barcelona and others

July 11, 2022

Abstract
Quantum Key Distribution (QKD) can distribute keys securely, even in the
era of quantum computers, only if the classical channel has been authenticated.
This master thesis investigates several methods and optimal parameters for
authenticating the classical channel as quickly as possible in the QKD protocol
BB84. We utilized quantum-resistant signature algorithms for authentication
as they withstand attacks from quantum adversaries. We introduce a novel
authentication approach, mono-authentication, which comprises authenticating
only at the end rather than the traditional multi-authentication after each stage
of communication.

We first simulated a simile of what would be performed in classical cryp-
tography to distribute a key, where we ask the QKD for a determined number
of security bits. Next, we studied how four different signature algorithms per-
formed in a noisy quantum channel and found the optimal cases for implement-
ing these algorithms. Then, we obtained a frequency of authentications for
three payloads. Finally, we used the previous results to calculate the minimum
period for each post-quantum algorithm needs for authentication in terms of
the key rate. Results show that the mono-authentication style is at least twice
faster than the multi-authentication case. We conclude that in noisy channels,
the mono-case reduces its cost significantly. Regarding the performance of the
signatures, CRYSTALS-DILITHIUM is shown to be the fastest overall, and in
contrast to the other algorithms, its number of signatures per second fluctuates
with the key rate while being consistently low for the others.

Keywords: quantum key distribution, quantum resistant algorithms, authentication, noise

1

Acknowledgements
I would like to express my gratitude to my supervisors, Marc Manzano and David Joseph,
who guided me throughout this project. Thank you also to Carlos Aguilar and James
Howe for their assistance, which was crucial to completing this work and provided in-
depth knowledge of the topic. Finally, I would also like to thank my friends and family for
their unconditional support.

Contents
1 Introduction 1

2 Preliminaries 2
2.1 The foundation of quantum cryptography: quantum mechanics 2

2.1.1 Measurements . 2
2.1.2 Qubits in noisy channels . 3

2.2 Quantum cryptography and Quantum Key Distribution 3
2.3 The BB84 protocol . 4

2.3.1 Quantum communication . 4
2.3.2 Basis sifting: Alice . 4
2.3.3 Basis sifting: Bob . 5
2.3.4 Error correction and privacy amplification: Alice 5
2.3.5 Error correction and privacy amplification: Bob 6

2.4 Classical cryptography to improve QKD: Post-Quantum Cryptography . . . 7

3 Methodology and contributions 8

4 Results 10
4.1 Photon transmission per blocks: 128, 192 or 256 bits 10

4.1.1 Noise dependence, QBER . 10
4.2 Continuous photon stream . 15
4.3 Discussion . 16

5 Conclusion and outlook 18

Bibliography 19

A Quantum channels I

B How the preparation of a state affects the measurement outcome I

C Qubits I

D One Time Pad II

E No-cloning theorem proof II

F Security in QKD II

G Implementation details II

H Key-pair and signature size for each post-quantum algorithm III

2

I Table with error correction times III

J Plots in linear scale IV
J.1 Signature and verification time vs. QBER IV
J.2 Signature and verification time vs. number of maximum corrected bits . . . V
J.3 Authentication + error correction time vs. maximum corrected bits V
J.4 Signature and verification time vs. security level VI
J.5 Signature and verification time vs. post-quantum agorithms VI

K Minimum times to perform the signatures for key sizes from 0 to 2000 VII

L Table with error probabilities VII

3

1 Introduction
Quantum computing is gaining popularity due to its promising ability to outperform clas-
sical computers in solving complex computational tasks. For example, Grover’s algorithm
[Gro96] can search in an unstructured database quadratically faster than the classical
counterpart. Another example is Shor’s algorithm [Sho97], which can factor large integers
exponentially quicker than the best-known classical algorithm, as well as solve the elliptic-
curve discrete logarithm problem [PZ04]. Simulating the dynamics of complex systems is
another promising application of quantum devices [Llo96].

Recently a significant milestone in this field was achieved when a quantum computa-
tional advantage over classical computers was accomplished at executing a task exponen-
tially faster than its classical counterpart [Pre12, AA19]. However, the implementation of
Shor’s algorithm endangers internet security as modern cryptography relies on the difficulty
of finding solutions to both the integer factorization problem and the discrete logarithm
of a random elliptic curve element [RSA78, Mil86, Kob87]. Even though there is currently
no quantum computer powerful enough to implement this algorithm in a realistic setting,
we must prepare for what the future holds.

The scientific community began several paths to tackle this problem when they became
aware of the situation. The first one was to open a new branch in cryptography dedicated to
developing novel algorithms based on problems that take exponential time to solve, both
for classical and quantum computers. These algorithms belong to the named quantum-
resistant or Post Quantum Cryptography (PQC) [Ber09, BL17]. There is an alternative
mechanism to counter Shor’s algorithm from a quantum angle, lest these mathematical
problems are solved in the future. This second solution exploits some of the unique prop-
erties of quantum mechanics [WZ82] to exchange some bits through an insecure quantum
channel. This communication method is known as Quantum Key Distribution (QKD)
because we distribute a key between parties [BB84, Eke91].

In classical cryptography, we need to ensure confidentiality, identity authentication,
and integrity of the transmitted messages. However, with the existing protocols, QKD can
only guarantee the first property. By combining QKD and PQC, it is possible to implement
the remaining two properties.

For the authentication of the classical channel, we propose using post-quantum algo-
rithms. Although it has been suggested to use existing authentication methods for QKD,
we want to assure the most significant possible quantum resistance. Thus we use algorithms
that have not been yet compromised by algorithms deployed in quantum computers. This
thesis investigates how to combine PQC and QKD in two different situations and through
different approaches. We introduce a novel approach where these signatures, typically
performed during the communication, are performed at the end. We begin with an ex-
amination of an analogy to what is done in classical cryptography, where one wants to
complete a transaction having x bits of security, and the key exchange generates them.
After using the previous study to fix some variables, we obtain the results for the realistic
experimental setup of QKD, in which there is a continuous flow of bits that the QKD must
authenticate continuously. For each algorithm implemented in this work, we determine the
minimum authentication period given a specific key rate.

This work is organized as follows: Section 2 provides the fundamental definitions of
quantum mechanics and cryptography and the essential concepts of classical cryptography,
which will complement the quantum section. Then, we present the methodology in Section
3 before showing the results in Section 4. Finally, the work comes to a close in Section 5,
where we discuss the conclusions of the work and prospects.

1

2 Preliminaries
This chapter lays the groundwork for the results of this thesis. We will first introduce the
fundamental concepts of quantum mechanics, which are essential for quantum cryptogra-
phy, before exploring how cryptography works and how it can make communications more
secure. Then, towards the end of the section, we introduce the essential concepts from
classical cryptography to perform authentication and explain how we integrate them into
the chosen QKD protocol.

2.1 The foundation of quantum cryptography: quantum mechanics
All the information of an isolated quantum mechanical system is completely encoded in
its quantum state |Ψ⟩ =

∑d
i ψi|ψi⟩, where {|ψi⟩}di ∈ H is the basis of its Hilbert space

with dimension d. If |ψ⟩ and |ϕ⟩ are possible pure states of a quantum system, then
|Ψ⟩ = α|ψ⟩+ β|ϕ⟩ only represents a possible physical pure state if |α|2 + |β|2 = 1, where
α, β ∈ C. The coherent superposition of both pure states resulting from this linearity is
known as the principle of superposition. We represent mixed states, in contrast to pure
states, with a density matrix, ρ =

∑
pi |ψi⟩ ⟨ψi|, that is a probability distribution over a

set of pure states.
We will be dealing with more than one physical system later in this work, and we will

describe each by their corresponding Hilbert space, HA and HB. A linear combination
of two possible states of the global system, |ψAψB⟩ , |ϕAϕB⟩ ∈ H, returns a state of the
composite system, i.e. |Ψ⟩ ∈ H, where |Ψ⟩ = α |ψAψB⟩+ β |ϕAϕB⟩. When it is impossible
to write a state of the global system as a tensor product of the states of each subsystem,
|Ψ⟩ ̸= |φAφB⟩, we say that it is entangled. Two entangled subsystems are related to the
other, and any modification in one results in an alteration in the other, providing quantum
mechanics a uniqueness that classical mechanics lacked. In the following section, we discuss
how we can modify quantum states.

2.1.1 Measurements

Quantum channels are the mathematical representation of any possible modification in
quantum states. In Appendix A there is a thorough explanation of a quantum channel. In
this work, we modify the quantum states with quantum measurements, which are the set
quantum channels that follow the following properties. Any measurement ofm outcomes on
a system whose associated Hilbert space has dimension d can be represented by the so-called
Positive Operator Valued Measure (POVM), defined by r positive operators {Mi ≥ 0},
where i = 1, . . . , r, such that

∑
iMi = I. Each measurement is the sum of the projectors,

Pm = |ψm⟩ ⟨ψm|, into the m outcomes where Mi =
∑
Pm.

Measurements destroy the prepared states as they force these states to project into the
measurement basis to obtain one of the m possible outputs of the chosen measurement.
When the initial preparation of a state is unknown, selecting the wrong measurement will
output a random value unrelated to the initial preparation. In Appendix B we prove
mathematically why randomness emerges in the outcome when we do not measure an
eigenstate of the measurement basis. This randomness will be the fundamental concept
behind the confidentiality of quantum communications, as we will see in the following
sections.

Qubits are the states we measure in this work, but measurements are not the only
modification these qubits undergo. The environment sometimes induces undesired modi-
fications that occur naturally to these quantum states, where we have to deal with open

2

quantum system dynamics. The interaction of the states with the environment gives rise
to the so-called incoherent noise described by quantum channels. In Appendix C we find
a complete explanation of what a qubit is.

2.1.2 Qubits in noisy channels

The environment perturbs quantum pure states into mixed states as the states get entan-
gled with it. In a realistic setup these fluctuations with the environment are of striking
importance as they introduce incoherent noise. This noise can be modelled through quan-
tum channels in many ways. In this work we consider a random bit flip under a probability
p, such that after the measurement of the states, we will obtain the opposite expected
outcome knowing the result in beforehand with a probability p. The possible prepared
qubits in this work, either in the X or Z basis, are ρ0 = |0⟩ ⟨0|, ρ1 = |1⟩ ⟨1|, ρ+ = |+⟩ ⟨+|
and ρ− = |−⟩ ⟨−|. Then, the quantum channel Λnoise acts on them as

ρi|i=0,1,+,− −→ Λnoise(ρi) = K0ρiK0† +K1ρiK
†
1 =

Λ(ρ0) = (1− p) |0⟩+ p |1⟩
Λ(ρ1) = (1− p) |1⟩+ p |0⟩
Λ(ρ+) = (1− p) |+⟩+ p |−⟩
Λ(ρ−) = (1− p) |−⟩+ p |+⟩ ,

(1)

where K0 =
√

1− p · I,K1 = √p ·X are the Kraus operators, which are one of the multiple
mathematical representations of a quantum channel. In particular, the probability of ob-
taining the undesired flip when applying those operators in our qubits is p1 = Tr[K1ρiK

†
1].

After outlining all the fundamental ideas underlying quantum cryptography, we can
now introduce what it is.

2.2 Quantum cryptography and Quantum Key Distribution
Cryptography aims to send secure information through an insecure channel where an eaves-
dropper may try to intercept it. It consists of defending protocols against saboteurs and
eavesdroppers looking to take advantage of any leak. To secure this information, we need
to encrypt it. It was shown that it is possible to send private information in a completely
secure way using a pre-shared secret key k⃗, which used on the sent message ensures its
secrecy. In Appendix D there is a deeper explanation of how these keys are applied to the
messages.

However, a problem arises that is to distributing the key securely. Shannon showed the
impossibility of generating secure keys using an untrusted classical channel [Sha49]. This
problem is known as the key distribution problem. However, this limitation does not apply
if the channel is quantum, where we use quantum states and operations. Due to the unique
properties of quantum mechanics, we know we can send bits, ensuring confidentiality. This
concept is encapsulated by the no-cloning theorem [WZ82], which states that quantum
states whose initial preparation is unknown cannot be exactly copied. We can find the proof
of this theorem in Appendix E. This theorem is connected to the fact that measurements
collapse quantum states, leading to a random output if the wrong measurement is chosen,
which would have a detectable effect on the sent state if an eavesdropper was trying to
tamper with the communication. This property gave rise to quantum cryptography, which
in fact refers to any cryptographic protocol using quantum resources.

The protocols allowing this key distribution are grouped under Quantum Key Dis-
tribution (QKD) protocols. These protocols can be classified on prepare-measurement
protocols such as BB84 [BB84], and entanglement based (or prepare-only) protocols such
as E91 [Eke91]. In this thesis, we simulate the BB84 protocol, which is explained hereafter.

3

2.3 The BB84 protocol
The BB84 protocol consists of the following. One can suppose the existence of two users
willing to exchange some key k⃗. In this communication, to exchange the key, they will use
two different channels: a quantum and a classical channel. We name the communications
that happen through the latter as post-processing. The protocol begins in the quantum
setup. To ease the comprehension of the protocol, we give an example with initially 10
bits.

2.3.1 Quantum communication

First, Alice randomly generates a n1-bit-string, ΨA
dAB, and prepares the quantum states

given by a random basis string of length n1, that is ΨA
bA. When a bit is 0, she can either

prepare |0⟩ or |+⟩, while when she has 1, she will prepare either |1⟩ or |−⟩, associating
the eigenvectors with positive eigenvalues to 0 and the ones with negative eigenvalues to 1.
Each bit of information is encoded into photons with different polarisations, representing
the preparation of these four states. Then, she sends them through an untrusted noisy
quantum channel, which means we assume that an eavesdropper may be trying to tamper
with the communication. An example with n1 = 10 can be seen in Table 1.

n1 = 10 random data bits ΨA
dAB = 0 1 1 0 0 0 0 1 0 1

n1 = 10 random basis ΨA
bA = Z X Z X Z X Z Z X X

prepares 10 states |0⟩ |−⟩ |1⟩ |+⟩ |0⟩ |+⟩ |0⟩ |1⟩ |+⟩ |−⟩

Table 1: Alice randomly generates n1 = 10 bits, ΨA
dAB, and n1 = 10 basis choices, ΨA

bA. Then, she
prepares quantum states such that when we have a zero we associate the eigenstate with positive
outcome and the one with negative outcome otherwise.

Once Alice has sent her quantum states to Bob, he randomly generates a string with
random basis choices, ΨB

bB, and uses it to measure and obtain a string of outcomes 1,−1.
One remark is that dealing with 1 and −1 during communication is complex; it is preferable
to work on the binary basis. Therefore, we transform the measurement outcomes to a
binary string, ΨB

dAB, as 1 −→ 0 and −1 −→ 1. In Table 2, we can observe this process in
detail, continuing with the previous example.

n1 = 10 random basis ΨB
bB = Z X X Z X X Z X X Z

measurement outcome 1 -1 -1 -1 -1 1 1 1 1 -1
n1 = 10 data bits ΨB

dAB = 0 1 1 1 1 0 0 0 0 1

Table 2: Bob generates n1 = 10 random basis choices, ΨB
bB, and measures each received qubit in the

corresponding basis choice, obtaining a string of 1,−1. Then he transforms them into a 0, 1 bit-string
to obtain ΨB

dAB .

Ultimately, Alice and Bob aim to obtain ΨB
dAB = ΨA

dAB, so they have to continue with
the protocol. This is the only step of the protocol in which they communicate through the
quantum channel. From this point, they start the post-processing.

2.3.2 Basis sifting: Alice

Bob notifies Alice that he is ready by sending her Alice the basis in which he has measured
each bit, ΨB

bB, and then Alice begins with the process called basis sifting. The process starts
with Alice checking which random basis choice does not match Bob’s. Alice updates her

4

bit-string with the ones with the same basis choice and discards the other bits, changing
the size of ΨA

dAB from n1 to n2, being n1 > n2. Then Alice generates another random
bit-string, ΨA

indAB, of length n2, to decide which bits is she going to make public, ΨA
chkAB,

and which ones is she going to keep secret as a key, ΨA
kAB. In particular, ΨA

chkAB is the
substring of ΨA

dAB for which the bits of ΨA
indAB are 1, and ΨA

kAB when 0. The size of
the sifted key ΨA

kAB will be n3, such that n1 > n2 > n3. After doing this process, Alice
makes public ΨA

bAB, ΨA
indAB, ΨA

chkAB. Notice that Alice is making the basis choice public
in this step. This is of special importance since Bob has already measured the sent qubits;
an eavesdropper can no longer tamper with the quantum communication at this step. In
Table 3 we detail the process with the same example.

n1 = 10 random basis: Bob ΨB
bB = Z X X Z X X Z X X Z

n1 = 10 random basis: Alice ΨA
bA = Z X Z X Z X Z Z X X

matching basis Z X X Z X
n2 = 5 random data bits ΨA

dAB′ = 0 1 0 0 0
n2 = 5 random data bits ΨA

indAB = 0 0 1 0 1
n3 = 3 secret bits ΨA

kAB = 0 1 0
n4 = 2 revealed bits ΨA

chkAB = 0 0

Table 3: Alice first compares both basis and discards the bits in positions (in red) with outmatching
choices. After this process there are n2 = 5 remaining bits, ΨA

dAB′ . Then Alice generates another
random bit-string, ΨA

indAB, of the same length, 5. This string is used as a reference to divide ΨA
dAB′

into the final secret key ΨA
kAB of length n3 = 3 choosing the positions of the bits in ΨA

indAB which are
0, and into the revealed bit-string ΨA

chkAB , of length n4 = 2, where 1.

2.3.3 Basis sifting: Bob

Similarly, Bob compares ΨA
bAB to ΨB

bAB and discards the bits in his measured bit-string
ΨB

dAB in which the basis choice was different. He then using ΨA
indAB performs the same

procedure as Alice to obtain ΨB
chkAB and ΨB

kAB. It is in this step where Bob compares
ΨB

chkAB with ΨA
chkAB to determine how many bits are matching and then estimate the

Quantum Bit Error Rate (QBER) in the key. For this protocol, the maximum allowed of
errors is 11% [CRE04], and if higher, there may be an eavesdropper trying to tamper with
the communication. In the communication, the QBER is calculated as

QBER = (ΨB0
chkAB −ΨA0

chkAB) + (ΨB1
chkAB −ΨA1

chkAB)
n4

, (2)

where ΨB0
chkAB is the number of 0 bits in ΨB

chkAB, and similarly for the other cases. The
length of the string with the revealed bits is n4 = len

(
Ψi

chkAB|i=A or B
)
.

Finally, Bob sends Alice, which is the value of the QBER, and she calculates it as well
to check if they have the same values. If the process is successful, QBER < 11%, we obtain
the sifted key. The length of the key, n3, should be at least the size of the message m we
want to encode to ensure its security, as explained in Appendix D. Finally, we talk about
the QBER in-depth and how this bound of 11% was obtained in Section F.

2.3.4 Error correction and privacy amplification: Alice

Having reached this point, we must remind ourselves that this protocol aims to exchange
a secret key between Alice and Bob. The secret key in the previous process is ΨA

kAB and
ΨB

kAB. However, since we are working in a noisy channel, we expect the communication to

5

have up to a certain number of incorrect bits, hence having ΨA
kAB ̸= ΨB

kAB and of course, we
aim to distribute the same key. In the original work of BB84, the noise was not considered
in the game, so error correction was added later.

After making sure that there was no eavesdropper during the quantum communication,
the parties initiate the error correction process to obtain the same string, which mathemat-
ically traduces as having the maximal mutual information between Alice and Bob. Error
correction can be performed in many ways. In this work, we perform the following. Alice
generates the hash of her secret key ΨA

kAB such that

F : F ′ ←− F (ΨA
kAB) (3)

where F ′ is the hash or digest. Since hash functions are deterministic, we always get the
same output for a given input. However, for different inputs, we always obtain different
outputs of the same length, so it is impossible to distinguish which was the input. The
hash function we implement in this work is F = SHA-3 512.

Hereafter, we need to perform privacy amplification as well, which consists of making
the key more private. Mathematically this traduces as minimizing the mutual informa-
tion between Alice and Eve as much as possible. To this end, Alice generates a random
permutation P ∈ P of length n3, such that P is the set of permutations of the n3 ele-
ments of ΨA

skAB. She applies this permutation to her key, and then she hashes the output
using the same hash function as we introduced in the error correction step, obtaining
ΨA

skAB = F (P (ΨA
kAB)), being ΨA

skAB the same final secret key. The scheme of the process
is

Alice Bob

P ∈ P F,P−−−−−−→ ΨB
skAB := F (P (ΨB

kAB′)).

After this point, Alice finished with the protocol. Finally, she sends Bob the necessary
information about the error correction and the privacy amplification, that is, the output
of the hash of the private key F ′, the random permutation P , and the hash function she
has used F .

2.3.5 Error correction and privacy amplification: Bob

This is the last step of the key exchange. Bob receives the data and begins with the error
correction process using F ′, the hash from Alice. He can calculate the hash of his key
as well to obtain F ′′ = F (ΨB

kAB). If F ′ ≠ F ′′, there are some errors in the key. The
error correction consists of Bob trialing bit-flips in his key until the hashes match. For
an eavesdropper, they would have to brute-force search a pre-image of the hash, however,
which is completely infeasible.

To avoid calculations of long periods, what we perform in the implementation is to
limit how many errors we will tolerate in our key. We call it the maximum corrected errors,
which is a fundamental parameter in this work. Summing up, the process consists of Bob
trying different combinations, first flipping only one of the bits of his key in every position
and hashing each option to then compare it to F ′. If the search is unsuccessful, he repeats
the process with two errors. He will perform the brute force search up to a maximum
number of errors. If he goes through all the combinations and does not find a matching
hash, he will discard this key and restart the QKD process again, aborting the process.
For the cases he finds a matching hash, he will correct these errors and generate ΨB

kAB′ .
Finally, Bob has to perform the privacy amplification as well, to finally obtain the common

6

secret key ΨB
skAB = F (P (ΨB

kAB′)), where ΨB
skAB = ΨA

skAB meaning they have successfully
exchanged a secret key using quantum states.

Finally, this thesis aims to explore several ways to authenticate the classical channel
using classical cryptography, so we explain what it is in the next section.

2.4 Classical cryptography to improve QKD: Post-Quantum Cryptography
We have seen that the post-processing occurs in the classical channel, and it is public;
therefore, the only thing the users need to ensure is that they talk to the right person and
that there are no modifications in the public messages. To fix this lack of security in the
protocol, we introduce authentication.

There are several approaches to authenticate the classical channel in the QKD pro-
tocol. However, some of them rely on having pre-distributed keys in the initial round
[KMG+20, FMC10], which is not scalable. Ideally, we would use a Public Key Infrastruc-
ture (PKI) in which not all the users need to be directly trusted but trust an authority,
the Certificate Authority (CA), which distributes public and private keys associated with
each user. These keys are subsequently utilized, together with signature and verification
algorithms, to authenticate the communication.

Digital signatures are primitives used to verify the authenticity of what is being trans-
mitted. The signature scheme has three components: first, the key-pair, composed of
the public and secret key, which comes from the key generation algorithm, the signing
algorithm, which produces the signature; and finally, the verifying algorithm that takes
the public key and the message and returns either success or failure. These signatures
guarantee integrity and origin. Signatures ensure authenticated key exchange (AKE) when
they are valid. Provided that the authentication is not broken during the communication,
QKD is information-theoretically secure and thus cannot be cracked by future algorithmic
advances, even if the public key signature is later deciphered [MSU12]. So we only need to
rely on the Public Key Signature once. One last remark is that when we refer to signatures,
we also include the verification process, as explained at the beginning of the paragraph.

As we have seen, digital signatures rely upon the complexity of a mathematical problem
which, when combined with the correct public and private keys, is easy but becomes a hard
problem otherwise. In this work, we will only use the algorithms relying on mathematical
problems that are hard to solve for a crypt-analytic attack by a quantum computer, named
post-quantum algorithms.

We can then introduce the mathematical problems that are also hard for quantum
computers and the algorithms we will use in this work. All these algorithms are finalists
of the National Institute of Standards and Technology (NIST) competition which aims to
find the most optimal algorithms to standardize as soon as possible to fight the threat
of powerful quantum computers by undergoing many rounds of analysis. The con is that
these algorithms are still relying on being hard to break, but future cryptanalysis could
undermine their security, which recently happened to one of them.

The first problem is the lattice-based cryptosystems, which are believed to have good all-
round performance. Some post-quantum algorithms based on this problem are CRYSTALS-
DILITHIUM [DKL+18] and FALCON [DLP14], and NIST announced they would standard-
ize both on 5 July.

Another problem is multivariate-based cryptography, which is based on the difficulty
of solving systems of multivariate polynomial equations. The candidate for this type of
problem is Rainbow [DS05], but it was broken and is now out of the process as of 5 July. A
cryptographic primitive is considered broken when an attack is found to have less than its
advertised level of security.

7

Finally, we have hash-based cryptosystems which offer one-time signature schemes
based on hash functions, the security assumptions of one-way functions. The example
for this problem is SPHINCS+[ABB+15], which NIST announced they would standardize
on 5 July.

The last property before finishing this section is that we need to ensure that nobody can
break the algorithms used for the authentication for at least the number of bits exchanged.
The security level, which in our case is an indicator of the effectiveness of the signature
algorithms, embraces this idea. For an exchanged key of n bits, an attacker would have
to perform 2n operations to guess the key. The post-quantum signature algorithms used
in this work are CRYSTALS-DILITHIUM, SPHINCS+, FALCON and Rainbow. Each of
them can ensure different security levels. We will study the security levels for 128, 192,
and 256 bits of security. CRYSTALS-DILITHIUM and SPHINCS+ have algorithms for
all these security levels while FALCON and Rainbow only for two. In Table 4 we show the
names of each algorithm depending on the security level.

Security bits DILITHIUM SPHINCS+ FALCON Rainbow
128 bits Dilithium2 sphincs-128f-simple falcon512 rainbowIIIc-classic
192 bits Dilithium3 sphincs-192f-simple - rainbowVc-classic
256 bits Dilithium5 sphincs-256f-simple falcon1024 -

Table 4: This table collects the names of the post-quantum algorithms with respect to its security level.

Having introduced all the essential concepts, we present the methodology and contri-
butions in this work. Next, we will be interested in comparing the performance of the
four post-quantum algorithms that have just been introduced. In Appendix H, we find a
table with some differences in sizes between the different parameters generated by these
algorithms.

3 Methodology and contributions
In this work, we aim to determine the optimal way to authenticate the classical channel
in the BB84 protocol using post-quantum signature algorithms. Furthermore, we study
specific cases to give a series of recommendations to be used in a BB84 experimental QKD
setup. To this end, we simulate in Python the protocol procedure following the steps
detailed in Section 2.3. In Appendix G we explain in depth the technical details of this
simulation.

First, we begin with the study of a simile of what would be performed in classical
cryptography with a key exchange, where we ask the QKD protocol for a specific number
of bits to be used later as a symmetric key. Then, to study how these algorithms perform
in the authentication of the classical channel in BB84, we first check some variables for the
different security levels. Hereafter we examine the variables studied in this work.

Mono- and multi-authentication
The first problem we study is which steps of the protocol are optimal to authenticate. In
the only existing authenticated QKD experimental implementation [WZW+21], the signa-
ture scheme implemented is to sign and verify in several steps of the protocol [MSU12].
We define multi-authentication as the process in which the authentication is performed in
several steps during the communication. In red in Fig. 1, we indicate where exactly these
signatures are performed. However, this is not the only way to perform the signatures. We

8

Alice Bob

(pkA, skA) PQAlg.KeyGen()
|ψi>

pkA

assert PQAlg.VerifypkB(ϵ, σ'')

(pkB, skB) PQAlg.KeyGen()

σ PQAlg.SignskB(ψB
bB)

σ' PQAlg.SignskA(ψA
indAB,ψB

chkAB,ψA
bA)

σ'' PQAlg.SignskB(ϵ)

σ''' PQAlg.SignskA(F, F', P)

assert PQAlg.VerifypkB(ψB
bB, σ)

assert PQAlg.VerifypkA(ψA
bA, ψA

indAB, ψA
chkAB, σ')

σ', ψA
indAB,ψB

chkAB,ψA
bA

σ''', F, F', P

σ'', ϵ

σ, ψB
dB, pkB

assert PQAlg.VerifypkA(F, F', P, σ''')

a

σ'

Alice Bob

(pkA, skA) PQAlg.KeyGen()
|ψi>

pkA

(pkB, skB) PQAlg.KeyGen()

σ PQAlg.SignskB(ϵ, ψ
B
bB)

σ' PQAlg.SignskA(ψAindAB,ψB
chkAB, F, F', P, ψA

bA)

assert PQAlg.VerifypkB(ϵ, ψB
bB, σ)

assert PQAlg.VerifypkA(ψA
bA, ψA

indAB, ψA
chkAB, F, F', P, σ')

ψA
indAB,ψB

chkAB,ψA
bA

F, F', P

 ϵ

 ψB
dB, pkB

a

σ

MONO-AUTHENTICATION MULTI-AUTHENTICATION

Figure 1: High-level overview of the two signature styles in the BB84 protocol. In red on the right, we
detail the multi-authentication scheme [MSU12]. In blue on the left, we propose the mono-authentication
style. In continuous black arrows, we indicate what is sent through the classical channel, while the
dotted black arrows represent the communication through the quantum one. On top of the diagram,
PQAlg.KeyGen() generates the secret sk and public keys pk for both users, Alice and Bob. PQAlg
indicates the post-quantum algorithm used for the authentication. Sigmas, σ represent the signatures,
which are the output of the PQAlg.Signsk() functions. Then with the PQAlg.Verifypk() we determine if
the authentication was successful, and the process continues.

propose a mono-authentication style, which implies generating the signature after exchang-
ing the key and ending communication. It consists of Alice signing all the information she
has sent to Bob, then sending it to Bob for verification and vice versa. In Fig. 1 we can
find a detailed scheme of how this is performed.

The difference between both styles is that four signatures are performed in the multi-
case, while for the mono case, we only perform two at the end. Another critical difference is
that as the exchanged bit-string goes through a process of error correction where sometimes
the key is discarded and the process restarted, some signatures will be discarded. In the
case of multi-signature, these signatures are performed uselessly, and the calculation time
will be lost, while for the mono-signature case, the only time that counts will be the
non-aborted ones.

QBER, maximum number of corrected errors, aborts, and overhead
We refer to the probability p of having a random flip due to the noise in the quantum
channel as QBER since they are similar. The QBER indicates an estimation of the error
in the quantum channel and p is the probability of having an error. We assume they are
the same to make the notation easier. The QBER is one of the most relevant variables in
this work. We use as a reference the QBER estimated experimentally in the authenticated
QKD implementation [WZW+21]. We study the QBER up to an error of 1.1% as it is the
maximum experimental value obtained. We also study the cost of the authentication with
respect to the time it takes to execute the protocol, which we name overhead. In some
cases, we split the authentication into signature and verification to better compare how
each algorithm performs compared to the others. In those cases, we explicitly refer to the

9

multi/mono-signatures/verifications.
Another parameter is the number of corrected errors. We correct up to 3 errors because

a brute force search of 4 takes too much time. In Appendix I, we show how much time it
takes to correct the errors at worst. Every time the number of errors is higher than the
number of corrected errors, the key is discarded, and we abort that exchange and restart it
again. The number of aborts to distribute a specific number of keys is another parameter
we study.

After studying all the introduced parameters, we wanted to see how the amount of ex-
changed keys affected the performance of the algorithms. It consists of a study of a realistic
QKD setup with a continuous photon stream. We decide to periodically authenticate the
exchanged bits within a fixed time frame given a key rate rather than asking for a specific
number of bits at the start of the round.

Small, medium, and large bins
For the case where we have a continuous photon stream in the QKD protocol, we decided
to study how the key size affects the signature time for each algorithm. First, we explored
how much time it takes every post-quantum algorithm to perform the authentication for
a range of key sizes between 0 and 2000 bits. Then, we averaged these results into three
different bins. When the range is between 0 and 100 bits, we refer to it as small, between
100 and 500 bits as medium, and between 500 and 2000 bits as large. The aim of grouping
the results into three bins is to study how every algorithm performs under situations where
the key length needed is smaller, medium, or larger.

Recommendations for different key rates
Finally, we study how a given key rate affects the cost of the authentication. There is
a continuous basis sifting process, with a defined rate of the sifted key. The difficulty is
knowing when and how often to authenticate and how this varies for each post-quantum
algorithm. We calculate the optimal period so that every signing algorithm performs best
in this continuous period: the minimum execution time of the signatures. We provide a
table with the minimum signature time recommendations for each algorithm, such that
whenever there is a given key rate, we know the minimum time we have to wait between
signatures.

4 Results
In this section, we show the results for the case where the transmission is per blocks and
then as a continuous photon stream. We perform 100 repetitions for each algorithm and
represent the deviation as thin grey bars in the plots.

4.1 Photon transmission per blocks: 128, 192 or 256 bits
We test the performance of the different post-quantum algorithms in both ways of authen-
tication under different parameters. We begin studying the dependence of the results on
the amount of noise in the quantum channel.

4.1.1 Noise dependence, QBER

The following results are for an exchange of 128 bits of security. In Fig. 2 we observe
for every algorithm that the higher the QBER, the higher the dashed bars, which means

10

0 0.0035 0.007 0.011
QBER

10
3

10
2

si
gn

at
ur

e/
ve

rif
ic

at
io

n
tim

e
(lo

g(
s)

)

0.67 %

0.66 %

0.66 %
0.64 %

0.32 % 0.22 % 0.14 % 0.09 %

Dilithium2
% overhead
multi-signature
multi-verification
mono-signature
mono-verification

(a) CRYSTALS-DILITHIUM

0 0.0035 0.007 0.011
QBER

10
2

10
1

10
0

si
gn

at
ur

e/
ve

rif
ic

at
io

n
tim

e
(lo

g(
s)

)

86.97 %

65.43 %
57.91 %

51.92 %

43.28 % 27.73 % 17.45 % 9.86 %

Sphincs_128f
% overhead
multi-signature
multi-verification
mono-signature
mono-verification

(b) SPHINCS+

0 0.0035 0.007 0.011
QBER

10
4

10
3

10
2

10
1

si
gn

at
ur

e/
ve

rif
ic

at
io

n
tim

e
(lo

g(
s)

)

5.44 %
5.35 %

5.29 %

5.22 %

2.71 % 1.8 % 1.14 % 0.64 %

Falcon512
% overhead
multi-signature
multi-verification
mono-signature
mono-verification

(c) FALCON

0 0.0035 0.007 0.011
QBER

10
1

10
0

si
gn

at
ur

e/
ve

rif
ic

at
io

n
tim

e
(lo

g(
s)

)

73.05 %

58.25 %

51.09 %

47.36 %

36.61 % 23.06 % 16.08 % 7.95 %

RainbowIIIc
% overhead
multi-signature
multi-verification
mono-signature
mono-verification

(d) Rainbow

Figure 2: Noise dependence in BB84 under multi- and mono-authentication schemes. In each plot,
different post quantum algorithm is studied. The the darker bars represent the signature time and the
lighter ones the verification. The dashed bars indicate the use of the multi-authentication scheme, while
the plain ones represent the mono-authentication case. In the plots the grey line is the deviation of the
results, as they are the output of an average of 100 repetitions. The overhead of the authentication
with respect to the time of the communication is plotted on top of each pair of bars. Notice that the
time axis is plotted in logarithmic scale. To consult the plots in linear scale check Appendix J.1.

more time for multi-authentication, whereas the plain ones remain constant. We observe
with CRYSTALS-DILITHIUM in Fig. 2a that both dark and light purple plain bars have a
constant value independently of the QBER, while the for dashed bars increase with it. If we
label the overhead for the multi-signature tmulti and the overhead for the mono-signature
tmono, we observe in Fig. 2b (SPHINCS+) that they are related such that tmulti ∝ 2 · tmono

for the case where QBER= 0, and the same happens with the other plots. However, when
the QBER increases, this proportion is lost.

Regarding the authentication methods, we observe in all the plots that the multi-
signature/verification times are always slower than the mono-signature/verification cases.
For example, in Fig. 2d (Rainbow), we can see how the dashed dark red bars, multi-
signature, are always significantly higher than the plain dark red bars, mono-signature,
and the same happens for the salmon bars, which represent the verification.

Another interesting result is that the overhead of the authentication is nearly constant
for the multi-case setting both with CRISTALS-DILITHIUM and FALCON as we observe
in Fig. 2a and Fig. 2c, which is around 0.66% and 5.3% respectively, while it decreases
significantly for the mono-cases. Even though for SPHINCS+ and Rainbow the overhead

11

0 1 2 3
Maximum corrected bits

10
3

10
2

si
gn

at
ur

e/
ve

rif
ic

at
io

n
tim

e
(lo

g(
s)

)

242

64
22

9

219 82 23 5

Dilithium2
aborts per 100 successful corrections
multi-signature
multi-verification
mono-signature
mono-verification

(a) CRYSTALS-DILITHIUM

0 1 2 3
Maximum corrected bits

10
2

10
1

10
0

si
gn

at
ur

e/
ve

rif
ic

at
io

n
tim

e
(lo

g(
s)

)

341

69
15 6

342 54 18 7

Sphincs_128f
aborts per 100 successful corrections
multi-signature
multi-verification
mono-signature
mono-verification

(b) SPHINCS+

0 1 2 3
Maximum corrected bits

10
4

10
3

10
2

10
1

si
gn

at
ur

e/
ve

rif
ic

at
io

n
tim

e
(lo

g(
s)

)

329

52
14 6

319 63 19 4

Falcon512
aborts per 100 successful corrections
multi-signature
multi-verification
mono-signature
mono-verification

(c) Falcon

0 1 2 3
Maximum corrected bits

10
1

10
0

si
gn

at
ur

e/
ve

rif
ic

at
io

n
tim

e
(lo

g(
s)

)
367

58

13
6

287 77 26 10

RainbowIIIc
aborts per 100 successful corrections
multi-signature
multi-verification
mono-signature
mono-verification

(d) Rainbow

Figure 3: Dependance on the amount of maximum corrected bits in BB84 under multi- and mono-
authentication schemes. In each plot, different post quantum algorithm is studied. The the darker bars
represent the signature time and the lighter ones the verification. The dashed bars indicate the use of
the multi-authentication scheme, while the plain ones represent the mono-authentication case. In the
plots the grey line is the deviation of the results, as they are the output of an average of 100 repetitions.
The overhead of the authentication with respect to the time of the communication is plotted on top of
each pair of bars. Notice that the time axis is plotted in logarithmic scale. To consult the plots in linear
scale check Appendix J.2.

in the multi-case decreases, from 86% to 51.92% for SPHINCS+ in Fig. 2b, it is still
really high compared to the results for the mono-case, 9.86% and 7.95% as we can see
in respectively Fig.2b and Fig.2d for Rainbow. Finally, for all the cases but Rainbow the
signature is more expensive than the verification. For the rest of the results in this work
we fixed the QBER to 1.1% as it is the worst case experimentally seen.

Maximum number of corrected bits

The second studied parameter is how the maximum number of corrected bits affects the
authentication performance. We observe that the mono-authentication time, plain bars in
Fig. 3, remains constant with respect to the number of maximum corrected bits, while the
multi-authentication time, the dashed bars, decreases. This decrease results from error-
correcting up to a more significant number of errors, which means fewer aborts. The
numbers on top of the purple bars in Fig. 3a are the number of aborts to exchange 100
keys of 128 bits. We plot this value on the other three subplots as well. Finally, since the
number of aborts is a parameter unrelated to authentication, it is unaffected by the type

12

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Maximum corrected bits

10
2

10
1

10
0

au
th

en
tic

at
io

n+
er

ro
r c

or
re

ct
io

n
tim

e
(lo

g(
s)

)

multi-Dilithium2
multi-Sphincs_128f
multi-Falcon512
multi-RainbowIIIc
mono-Dilithium2
mono-Sphincs_128f
mono-Falcon512
mono-RainbowIIIc

(a) 128 bits

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Maximum corrected bits

10
2

10
1

10
0

10
1

10
2

au
th

en
tic

at
io

n+
er

ro
r c

or
re

ct
io

n
tim

e
(lo

g(
s)

)

multi-Dilithium3
multi-Sphincs_192f
multi-RainbowVc
mono-Dilithium3
mono-Sphincs_192f
mono-RainbowVc

(b) 192 bits

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Maximum corrected bits

10
2

10
1

10
0

10
1

10
2

au
th

en
tic

at
io

n+
er

ro
r c

or
re

ct
io

n
tim

e
(lo

g(
s)

)

multi-Dilithium4
multi-Sphincs_256f
multi-Falcon1024
mono-Dilithium4
mono-Sphincs_256f
mono-Falcon1024

(c) 256 bits

Figure 4: Plots of the authentication time (signature time+verification time) plus the time it takes to
conduct the error correction, with respect to the number of maximum corrected bits. These are plotted
for three different security bits under a QBER of 0.011. The continuous line represents authenticating
at the end of the communication (mono), while the dotted one represents authenticating at every step
of the communication (multi). Notice that the time axis is plotted in logarithmic scale. To consult the
plots in linear scale check Appendix J.3

of signature specified.
Then, we wanted to study the optimal amount of maximum corrected errors for each

algorithm. We have seen in Fig. 3 that the authentication time decreases for the multi-
case when the tolerance in the error correction increases. We also calculated the time to
correct a certain number of errors given a key size and observed that it increases with the
number of maximum corrected bits. A table with the maximum times it takes for each
security level to correct between 0 and 3 errors can be found in the Appendix I. Putting
both information together, we find the optimal values, which are the minimums for each
curve in Fig. 4. All the algorithms for the mono-authentication, the continuous dashed
lines in Fig. 4, have the minimum in origin at 0 corrected bits. However, a displaced
minimum may appear in some algorithms, such as in the case of 128 bits in Fig. 4a with
the multi-cases of Rainbow, discontinuous brown line, FALCON, discontinuous yellow line,
and SPHINCS+, discontinuous orange line. There is a minimum because the optimal
amount of bits corrected at maximum in those cases is not 0. We find that, in the 128 bits
case, it is optimal to correct between 1 and 2 bits at maximum for the multi-authentication
with SPHINCS+ and Rainbow and to correct 1 with FALCON. For the case of 192 bits,
we clearly see in Fig. 4b that the optimal number of corrected bits is 1 for the multi-

13

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Maximum corrected bits

0

250

500

750

1000

1250

1500

R
ej

ec
tio

ns
 to

 e
xc

ha
ng

e
10

0
ke

ys 128bits
192bits
256bits

Figure 5: Plot to compare how many times are the different security levels (128, 192 and 192) rejected
to exchange 10 keys, with respect to number of bits that are chosen to be corrected. These results are
for a noisy channel with a 1% probability of having an error.

authentication in SPHINCS+ and Rainbow and 0 bits for the rest of the cases. Finally,
in Fig. 4c, we obtain a similar result as the previous case, but instead of Rainbow with
FALCON, dotted-blue line.

We can check Fig. 5 to understand better why the authentication is more expensive
for cases with no corrections. We can see that the greater the security level, dark purple,
the more keys are rejected if no errors are corrected. There are more rejections because
we insert a QBER of 0.011, and the longer the key, the more probable it is to have an
error. We have found that the probability of having n errors in a key of length kl is the
probability of having (kl − n) bits correct multiplied by the probability of having n bits
wrong multiplied by all the possible combinations that include n errors, that is

pnerr = 0.99(kl−n) · 0.01n · kl!
n!(kl − n)! . (4)

In Appendix L we find these probabilities for every specific case.

Different security levels for each signature algorithm

The next step is to determine how to do these algorithms work for transactions of 128, 192,
and 256 bits of security. In Fig. 6 the both the dashed and plain bars are higher than the
preceding ones, which means that the cost of the authentication increases with the security
level. Dilithium in dark purple on top left, Fig. 6a, shows that the multi-verification times,
light dashed bars, are greater than the mono-signature times, dark plain bars, whereas
FALCON and SPHINCS+ in Fig. 6c and 6b behave in the opposite way. For Figs. 6a, 6b
and 6c as the security gets higher, the differences in mono/multi increase, which is what
we expect. Falcon and Dilithium, Fig. 6c and 6a differences from 128 to 256 are quite
small (for mono/multi).

Finally, in Fig. 7 we study how the different post-quantum algorithms perform com-
pared to each other. We observe that the performance of the algorithms between the
different security levels is similar. For the signature time we always have DILITHIUM
ahead as the fastest, then FALCON, followed by Rainbow and finally SPHINCS+. Then
for the verification time, we find that FALCON is the fastest, overtaking DILITHIUM.
The latter is followed by SPHINCS+ and finally Rainbow.

14

128 (Dilithium2) 192 (Dilithium3) 256 (Dilithium4)
Bits of security

10
3

10
2

si
gn

at
ur

e/
ve

rif
ic

at
io

n
tim

e
(lo

g(
s)

)

0.63 %

0.59 %
0.43 %

0.33 %

0.32 % 0.25 %

x% overhead
multi-signature
multi-verification
mono-signature
mono-verification

(a) CRYSTALS-DILITHIUM

128 (Sphincs_128f) 192 (Sphincs_192f) 256 (Sphincs_256f)
Bits of security

10
2

10
1

10
0

10
1

si
gn

at
ur

e/
ve

rif
ic

at
io

n
tim

e
(lo

g(
s)

)

65.2 %

50.16 %

62.53 %

43.45 %
37.74 %

60.64 %

x% overhead
multi-signature
multi-verification
mono-signature
mono-verification

(b) SPHINCS+

128 (Falcon512) 256 (Falcon1024)
Bits of security

10
4

10
3

10
2

10
1

10
0

si
gn

at
ur

e/
ve

rif
ic

at
io

n
tim

e
(lo

g(
s)

)

5.24 %

5.36 %

2.73 %

2.98 %

x% overhead
multi-signature
multi-verification
mono-signature
mono-verification

(c) FALCON

128 (RainbowIIIc) 192 (RainbowVc)
Bits of security

10
1

10
0

si
gn

at
ur

e/
ve

rif
ic

at
io

n
tim

e
(lo

g(
s)

)

56.07 %

65.75 %

37.0 %

58.66 %

x% overhead
multi-signature
multi-verification
mono-signature
mono-verification

(d) Rainbow

Figure 6: These plots analyze how the number of security bits impacts the time for the classical
channel authentication in BB84 under multi- and mono-signature authentication schemes, for different
algorithms. The the darker bars represent the signature time and the lighter ones the verification. The
dashed bars indicate the use of the multi-authentication scheme, while the plain ones represent the
mono-authentication case. In the plots the grey line is the deviation of the results, as they are the
output of an average of 100 repetitions. The overhead of the authentication with respect to the time
of the communication is plotted on top of each pair of bars. Notice that the time axis is plotted in
logarithmic scale. To consult the plots in linear scale check Appendix J.4

4.2 Continuous photon stream
In this section, we investigate which are the minimum times needed to wait to restart the
QKD authentication for a given bit rate of photons transmitted in the quantum channel.
But before doing so, we needed to determine how much time it takes for each algorithm
to authenticate a certain number of bits. In the following results, we are not taking into
account the multi-signature case anymore as we have already seen that the performance
of the mono-signature surpasses the case with several steps.

In Fig. 8 we observe that CRYSTALS-DILITHIUM, all the purple triangles, has the
fastest authentication rate, while Rainbow, red squares, and SPHINCS+, yellow diamond,
are the worst. In most cases, we observe that the authentication performance is almost
independent of the number of bits being signed, at least when we sign up to 2000. The
last remark is that to reach these results we first studied how much time every algorithm
takes to authenticate from ≈ 0 to 2000 bits before averaging them to the results we just
saw. They can be found in Appendix K.

In Table 5 we determine the number of signatures per second each algorithm can

15

Dilithium2 Sphincs_128f Falcon512 RainbowIIIc
post-quantum algorithm

10
4

10
3

10
2

10
1

10
0

tim
e

(lo
g(

s)
)

0.63 %

62.91 %

5.22 %

63.1 %

0.19 %

39.47 %

1.69 %

28.07 %

128 bits of security
x% overhead
multi-signature
multi-verification
mono-signature
mono-verification

(a) 128 bits

Dilithium3 Sphincs_192f RainbowVc
post-quantum algorithm

10
3

10
2

10
1

10
0

tim
e

(lo
g(

s)
)

0.57 %

48.55 %
66.42 %

0.12 %

8.38 %
28.59 %

192 bits of security
x% overhead
multi-signature
multi-verification
mono-signature
mono-verification

(b) 192 bits

Dilithium4 Sphincs_256f Falcon1024
post-quantum algorithm

10
3

10
2

10
1

10
0

10
1

tim
e

(lo
g(

s)
)

0.43 %

59.04 %

5.39 %

0.07 %

19.19 %

0.45 %

256 bits of security
x% overhead
multi-signature
multi-verification
mono-signature
mono-verification

(c) 256 bits

Figure 7: Plots for three different security bits. In each plot the the signature (dark bars) and verification
times (light bars) for every post-quantum algorithm are calculated for two different signature schemes
(multi, dashed bars, and mono, plain bars). Each algorithm is represented in the same color palette
in the several security levels. On top of the bars we represent the overhead, that is the cost of the
authentication with respect to the communication. The grey bars represent the deviation of the result
as they come from an average of 100 repetitions of the protocol. Notice that the time axis is plotted in
logarithmic scale. To consult the plots in linear scale check Appendix J.5

perform concerning a given key rate. As there is not an exchange of more than 2000 bits
in the indicated times for each algorithm, in the third column in the table, we can keep
authenticating in that period. We observe that CRYSTALS-DILITHIUM is the fastest,
while Rainbow is the slowest. One example of the possible recommendations to be given
is that for a key rate of 50 kbps, the minimum period for authenticating what has been
transmitted during that last period is 0.0013 s. The same would apply to the rest of the
algorithms and key rates.

4.3 Discussion
Having compared multi-authentication and mono-authentication for different parameters,
we find that the novel authentication mode outperforms the standard one. The mono
case improves the authentication as it performs the results in less time than the multi
one, at least twice as fast. Noise is an important parameter that increases the difference
in performance between both signature styles, observing that, for noisy channels, mono-
authentication is the optimal implementation as it does not depend on any parameter of
the QKD.

16

Small (0 to 100) Medium (100 to 500) Large (500, 2000)
Bin class

0

100

200

300

400

500

600

700

800

S
ig

na
tu

re
s/

s

Dilithium2
Sphincs_128f
Falcon512
RainbowIIIc

(a) 128 bits

Small (0 to 100) Medium (100 to 500) Large (500, 2000)
Bin class

0

100

200

300

400

500

600

S
ig

na
tu

re
s/

s

Dilithium3
Sphincs_192f
RainbowVc

(b) 192 bits

Small (0 to 100) Medium (100 to 500) Large (500, 2000)
Bin class

0

100

200

300

400

500

600

S
ig

na
tu

re
s/

s

Dilithium4
Sphincs_256f
Falcon1024

(c) 256 bits

Figure 8: Plots of the authentication rate per bin type for the post-quantum algorithms, each represented
with a different figure. The bin class is the averaged group of keys to be signed divided in three different
bins: small, medium and large.

PQ algorithm Security level 50 kbps 300 kbps 1250kbps
Dilithium2 0.0013 s 0.0024 s 0.0089 s

CRYSTALS-DILITHIUM Dilithium3 0.0015 s 0.0028 s 0.0093 s
Dilithium4 0.0016 s 0.0028 s 0.0092 s

sphincs-128f 0.1271 s 0.1280 s 0.1344 s
SPHINCS+ sphincs-192f 0.1606 s 0.1619 s 0.1684 s

sphincs-256f 0.2231 s 0.2245 s 0.2268 s
Rainbow rainbowIIIc 0.1079 s 0.1091 s 0.1158 s

rainbowVc 0.2546 s 0.2561 s 0.2621 s
FALCON falcon512 0.0081 s 0.0093 s 0.0158 s

falcon1024 0.0174 s 0.0185 s 0.0251 s

Table 5: Minimum period each post-quantum signature algorithm needs for authentication in terms of
key rate.

Regarding the performance of the post-quantum algorithms, we have seen that CRYS-
TALS -DILITHIUM outperforms the rest in terms of signature speed, while FALCON
does in terms of verification speed. However, the algorithm with the minimum overhead is
CRYSTALS-DILITHIUM, which is always under 1%.

Checking closer into the several levels of security, we observe that the cost of the authen-
tication is more expensive, which means it takes more time to be performed. Therefore, the
lower the number of bits of security per transaction, the higher the authentication speed.

Another parameter we have studied is how many errors we correct in Bob’s key. We
have seen that, in general, it has less cost not to make any corrections for the mono-
authentication, while for the multi-authentication, it is better to perform between 1 or 2
error corrections at a maximum. Furthermore, it is optimal to check more errors because
the amount of signatures performed in the multi-case is more considerable as discarding
the key due to a large number of errors also discards the signatures performed in that
round. From this result, we conclude that if the quantum channel is costly, we are more
interested in checking more errors, whereas if the quantum channel is exceptionally cheap,
discarding the keys and repeating the exchange is the optimal solution.

Finally, we studied the case of a realistic QKD setup with a continuous photon stream.
The minimal time to perform the authentication and the post-processing steps that do
not include the basis sifting can be considered constant and almost independent of the
number of bits to be authenticated. The previous statement holds for all the algorithms
but CRYSTALS-DILITHIUM, which decreases its performance significantly for bigger bins.

17

Finally, from the table with the recommendations for the different key rates, we conclude
that CRYSTALS-DILITHIUM outperformed the other post-quantum schemes.

We cannot yet guarantee the superiority of the mono-signature proposal outside of the
confines of our simulation because we have only evaluated the algorithms in selected cases.
However, it appears promising, and it would be fascinating to test the simulations on a
more powerful computer to see if the results hold for a realistic setup.

5 Conclusion and outlook
We numerically analyzed the performance of four post-quantum algorithms from the NIST
standardisation process that are CRYSTALS-DILITHIUM, SPHINCS+, FALCON and
Rainbow. We first conducted a study of those algorithms in both authentication cases
depending on the number of bits we were transmitting during the transaction. In partic-
ular, we studied three different security levels, which correspond to an exchange of a key
of 128, 192, or 256 bits. We concluded that the mono-authentication outperformed the
authentication per step in all the cases. We also found that CRYSTALS-DILITHIUM was
significantly faster in all the situations than the other quantum-resistant algorithms and
significantly faster than the rest of the communication steps. We also concluded that noise
played an important role in a realistic QKD and optimized the relation of corrected bits
for each algorithm. In fact, as quantum channels improve, the tolerance for errors can be
lower. Finally, despite not having had the opportunity to compare these results to the
existing signature algorithms that we use daily nowadays, such as ECDSA or RSA, we
have had the opportunity to test the upcoming generation of algorithms that will replace
the currently existing ones.

Then, we took a new approach to improve the accuracy of our results to a realistic
scenario, a continuous photon transmission in the QKD setup, after discussing the numerics
of the post-quantum algorithms and seeing that these algorithms may not only be used
for these specific blocks of bits. We found that except for CRYSTALS-DILITHIUM, the
time required to accomplish authentication was nearly independent of the number of bits
to be authenticated up to 2000 bits. Then, we provided recommendations aimed at QKD
equipment administrators to adjust which are the best authentication mechanisms to use
depending on the key rates. Indeed, this is the minimum quality of service that each
configuration can give. From here, one possible line of investigation is to study how the
signature algorithms perform with respect to distance. Any multi-user QKD network has
different distances between the users, and the number of signatures we can perform per
second also depends on that.

Finally, there are many ways to continue this research from this point. The next
step could be to design the security proof of the mono-authentication method to prove
mathematically that this method is still as secure as the mono-signature case. Another
path would be to use 2−universal hash functions instead of SHA3512 for the hashing in
the error correction, as was suggested in the original paper of the security proof of any
QKD protocol [ECR04]. Nevertheless, the most essential and promising investigation path
to be continued from this point is the use of KEMTLS instead of signatures [SSW21].
The implementation in QKD of this recently proposed authentication method may be
beneficial as signature schemes generally have larger public key/signature sizes compared
to the public key/ciphertext sizes we can find in KEMTLS.

18

Bibliography
[AA19] Frank Arute and et. al. Arya. Quantum Supremacy using a Programmable

Superconducting Processor. Nature, 574:505–510, 2019.
[ABB+15] Jean-Philippe Aumasson, Daniel J. Bernstein, Ward Beullens, Christoph Do-

braunig, Maria Eichlseder, Scott Fluhrer, Stefan-Lukas Gazdag, Andreas Hüls-
ing, Panos Kampanakis, Stefan Kölbl, Tanja Lange, Martin M. Lauridsen,
Florian Mendel, Ruben Niederhagen, Christian Rechberger, Joost Rijneveld,
Peter Schwabe, and Bas Westerbaan. Sphincs: Practical stateless hash-based
signatures. Springer, 9056, April 2015.

[BB84] Charles H Bennett and Gilles Brassard. Quantum cryptography: Public key
distribution and coin tossing. In Quantum cryptography: Public key dis-
tribution and coin tossing, pages 475–480, Berlin, Heidelberg, August 1984.
Springer-Verlag.

[Ber09] Daniel J Bernstein. Introduction to post-quantum cryptography. In Post-
quantum cryptography, pages 1–14. Springer, 2009.

[BL17] Daniel J Bernstein and Tanja Lange. Post-quantum cryptography. Nature,
549(7671):188–194, 2017.

[CRE04] Matthias Christandl, Renato Renner, and Artur Ekert. A generic security
proof for quantum key distribution, 2004.

[DKL+18] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter
Schwabe, Gregor Seiler, and Damien Stehlé. Crystals-dilithium: A lattice-
based digital signature scheme. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, 2018(1):238–268, Feb. 2018.

[DLP14] Léo Ducs, Vadim Lyubashevsky, and Thomas Prest. Efficient identity-based
encryption over ntru lattices. Springer, 8874, October 2014.

[DS05] Jintai Ding and Dieter Schmidt. Rainbow, a new multivariable polynomial
signature scheme. Springer, 3531:164–175, June 2005.

[ECR04] Arthur Ekert, Matthias Christandl, and Renato Renner. A generic security
proof for quantum key distribution. Hardvard Edu, March 2004.

[Eke91] Artur K. Ekert. Quantum cryptography based on bell’s theorem. Phys. Rev.
Lett., 67:661–663, Aug 1991.

[FMC10] Chi-Hang Fred Fung, Xiongfeng Ma, and H. F. Chau. Practical issues in
quantum-key-distribution post-processing. Physical Review A, 81(1):012318,
January 2010. arXiv: 0910.0312.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search.
arXiv:quant-ph/9605043, November 1996. arXiv: quant-ph/9605043.

[KMG+20] E. O. Kiktenko, A. O. Malyshev, M. A. Gavreev, A. A. Bozhedarov, N. O.
Pozhar, M. N. Anufriev, and A. K. Fedorov. Lightweight authentication
for quantum key distribution. IEEE Transactions on Information Theory,
66(10):6354–6368, October 2020. arXiv: 1903.10237.

[Kob87] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of Computation,
48(177):203–209, 1987.

[Llo96] Seth Lloyd. Universal Quantum Simulators. Science New Series, 273:1073–
1078, August 1996.

[Mil86] Victor S. Miller. Use of elliptic curves in cryptography. In Hugh C. Williams,
editor, Advances in cryptology — CRYPTO ’85 proceedings, pages 417–426,
Berlin, Heidelberg, 1986. Springer Berlin Heidelberg.

19

[MSU12] Michele Mosca, Douglas Stebila, and Berkant Ustaoglu. Quantum Key
Distribution in the Classical Authenticated Key Exchange Framework.
arXiv:1206.6150 [quant-ph], June 2012. arXiv: 1206.6150.

[Pre12] John Preskill. Quantum computing and the entanglement frontier.
arXiv:1203.5813 [cond-mat, physics:quant-ph], November 2012. arXiv:
1203.5813.

[PZ04] John Proos and Christof Zalka. Shor’s discrete logarithm quantum algo-
rithm for elliptic curves, January 2004. Number: arXiv:quant-ph/0301141
arXiv:quant-ph/0301141.

[RSA78] R L Rivest, A Shamir, and L Adleman. A Method for Obtaining Digital Signa-
tures and Public-Key Cryptosystems. Massachusetts Institute of Technology,
page 15, 1978.

[Sha49] C. E. Shannon. Communication theory of secrecy systems. The Bell System
Technical Journal, 28(4):656–715, 1949.

[Sho97] Peter W. Shor. Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer. SIAM Journal on Computing,
26(5):1484–1509, October 1997. arXiv: quant-ph/9508027.

[SSW21] Peter Schwabe, Douglas Stebila, and Thom Wiggers. More efficient post-
quantum KEMTLS with pre-distributed public keys. In Elisa Bertino and
Haya Shulman, editors, Proc. 26th European Symposium on Research in Com-
puter Security (ESORICS) 2021, volume 12972 of LNCS, pages 3–22. Springer,
October 2021.

[WZ82] W. K. Wootters and W. H. Zurek. A single quantum cannot be cloned. Nature,
299(5886):802–803, October 1982. Number: 5886 Publisher: Nature Publish-
ing Group.

[WZW+21] Liu-Jun Wang, Kai-Yi Zhang, Jia-Yong Wang, Jie Cheng, and et. al. Exper-
imental authentication of quantum key distribution with post-quantum cryp-
tography. npj Quantum Information, 7(1):1–7, May 2021.

20

A Quantum channels
A quantum channel is the most general quantum operation and consists of a completely-
positive trace-preserving map, Λ, acting on a quantum state, ρ, such as

Λ : B(Hin) −→ B(Hout)
ρin −→ Λ(ρin) = ρ′, (5)

where B(Hi) is the set of bounded operators acting on Hi. Completely-positive means that
the action of the map on a subsystem has to preserve the positivity of the original density
matrix, that is, if ρin = ρAB, (IA ⊗ Λ)(ρAB) > 0. On the other hand, the trace preserving
property claims that the action of the map should not modify the value of the trace of ρ
after its application. This is mathematically denoted by tr (Λ(ρ)) = tr(ρ).

B How the preparation of a state affects the measurement outcome
If we initially prepared the state |Ψ⟩ in a basis {|ψm⟩}, we will obtain the same output if
we perform the measurement that projects into the same basis as the input of the measure
will be an eigenstate.

p(m|Ψ) = | ⟨ψm|Ψ⟩ |2 =

| ⟨ψm|ψi⟩ |2 =

{
1|∀i=m

0|∀i ̸=m

if |Ψ⟩ is eigenstate∑
i |αi|2| ⟨ψm|ψi⟩ |2 otherwise.

(6)

However, if we choose a different one, from this perspective, the state will be seen as
a superposition that can project into more of the outputs of the measurement and not
always into the same as before.

C Qubits
Qubits are the quantum mechanical units of information and are mathematically defined
as the superposition of an orthonormal two-level basis. An example of a qubit is

|ψ⟩ = α |0⟩+ β |1⟩ , ρqubit = |ψ⟩ ⟨ψ| , (7)

where |α|2 + |β|2 = 1 and α, β ∈ C. In this case we have represented the qubit in the
computational basis, {|0⟩ , |1⟩}. This is not the only basis choice to represent a qubit. In
fact, there are infinite choices, however, in this work we prepared the qubits only in the
computational and in the Hadamard basis, {|+⟩ , |−⟩}, where |+⟩ = 1√

2(|0⟩ + |1⟩) and
|−⟩ = 1√

2(|0⟩ − |1⟩). The Pauli-X and Pauli-Z basis are analogous to the Hadamard and
computational basis, respectively. The Pauli operators X, Y , Z together with the identity
I2 read as

X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
and I2 =

(
1 0
0 1

)
,

which generate the basis of the space of the operators, B, for dimension 2. In this work,
we measure qubits with Z and X, where both have the potential measurement outcomes
of 1 and −1.

I

D One Time Pad
The way of sending private information completely securely is by using a One-Time Pad
(OTP). Two users, Alice and Bob, share a key of N perfectly correlated bits such that
N ≥ M , where M is the length of the message Alice wants to send. To send it securely,
Alice performs a XOR operation between every bit of the secret key ki and the message mi

such that ri = mi ⊕ ki obtaining a random bit-string r⃗ that is sent through the insecure
classical channel but it can be shown it reveals no information about the original message.
When Bob receives r⃗, he performs the XOR operation again obtaining the original message
ri ⊕ ki = (mi ⊕ ki)⊕ ki = mi. If the secret bits are never reused, i.e., the key is used only
once, this message is indecipherable to an eavesdropper.

E No-cloning theorem proof
Proof. We seek to prove that it does not exist any unitary transformation U acting on the
couple of states |ψ⟩ |ref.⟩, where |ψ⟩ is the state to be copied and |ref.⟩ the reference state
acting as a copy machine, such that U |ψ⟩ |ref.⟩ = |ψ⟩ |ψ⟩.

We can begin by assuming that ∃U s.t. U |ψi⟩ |ref.⟩ = |ψi⟩ |ψi⟩, where |ψi⟩ is an element
of an arbitrary basis. Then, if |ϕj⟩ is one element of another basis,

U |ψi⟩ |ref.⟩ = |ψi⟩ |ψi⟩

U |ϕj⟩ |ref.⟩ = |ϕj⟩ |ϕj⟩ .

Hence,
⟨ϕjϕj |ψiψi⟩ = ⟨ϕj | ⟨ref.| U†U |ψi⟩ |ref.⟩ = ⟨ϕj |ψi⟩ (8)

from which we deduce that ⟨ϕj |ψi⟩ = 0 or ⟨ϕj |ψi⟩ = 1. This in general will not hold,
proving that ∄U , because in general |ψi⟩ , |ϕj⟩ are not orthogonals nor proportional.

F Security in QKD
We employ a variable called the QBER to ascertain whether or not an eavesdropper has
intervened. We said that in the case of the BB84 protocol, the maximum allowed value for
the QBER is 11%. This outcome is known as the Holevo bound, consisting of how much
classical information someone can send through a quantum channel. If there is a third
party connected in the quantum channel through an entangled state on its Hilbert space,
meaning that when Bob measures, this action indirectly prepares the eavesdropper’s state,
leaking some information about the states Alice was sending. Mathematically the outcome
of 11% represents the maximum allowed errors until the mutual information between Alice
and Bob is less than the one between Alice and the eavesdropper, which is why we must
remain under that value and discard the keys otherwise.

G Implementation details
To reach these results, we simulate the QKD protocol of BB84 as explained in Section. 2.3.
We write the simulation in a Pyhton3 script and run it in a MacBook Pro (2021) with a
memory of 16 GB and an Apple M1 Pro chip. The script of the simulation of the BB84
protocol, together with the authentication, error correction, and privacy amplification, can
be found in https://github.com/sandbox-quantum/pqc-qkd.git. In this repository, we
also find the data-processing to obtain the plots in this work.

II

https://github.com/sandbox-quantum/pqc-qkd.git

H Key-pair and signature size for each post-quantum algorithm
In Table 6, we have collected the signatures and key pair sizes for each post-quantum
algorithm. Some essential features of the studied algorithms are contained in the following
table. We observe some differences, such that the signature size from Rainbow is compared
to the other algorithms, and the same happens with the key-pair in SPHINCS+.

Post-Quantum
algorithm (bytes) DILITHIUM SPHINCS+ FALCON Rainbow

sk 2544 64 1281 626048
128 bits pk 1312 32 897 882080

sig 2420 16976 659 164
sk 4016 96 - 1408736

192 bits pk 1952 48 - 1930600
sig 3293 35664 - 212
sk 4880 128 2305 -

256 bits pk 2592 64 1793 -
sig 4595 49216 1276 -

Table 6: In this table we show the sizes in bytes of the secret keys, sk, public keys, pk, and signatures, sig.
These sizes are given for three different security bits: 128, 192, and 256, for each post-quantum algorithm
studied in this work. All the values were obtained from https://bench.cr.yp.to/results-sign.
html.

I Table with error correction times
In this section it is calculated the failure time for the error correction. In Table 7 we find
the maximum (averaged) time the script losses in doing brute force search for the error.

Max corrected bits 0 1 2 3
128 bits ≈ 0.004s(1h) ≈ 0.021s(129h) ≈ 0.9s(8257h) ≈ 38s(691000h)
192 bits ≈ 0.005 s (1h) ≈0.035s(193h) ≈3s(18529h) ≈187s(2341089h)
256 bits ≈0.006s(1h) ≈0.06s(257h) ≈7s(32897h) ≈ 580s(5559937h)

Table 7: Maximum time (s) and number of hashes performed in parenthesis, in three different security
levels, 128, 192 and 256, for different maximum numbers of corrected bits.

The number of hashes performed that appears in every cell come from the combinatorial
formula that is

nCr = n!
r!(n− r)! , (9)

where nCr are the total number of hashes performed, n is the number of bits we study
(128, 192 or 256) and r is the maximum number of corrected bits.

In this case, we are also appending the hashes from the previous round. For example,
in a key of length 128, in a brute force search of up to 1 error, we perform first the hash
of the original string (1 hash), and then the possible 128 combinations corresponding of
flipping only one bit (128 hashes). In total, we have 129 hashes. The same applies to the
other cases.

III

https://bench.cr.yp.to/results-sign.html
https://bench.cr.yp.to/results-sign.html

J Plots in linear scale
In this section, we show the plots we have seen in Section 4, but in linear scale. The results
are the same as those in the indicated section but shown in seconds, not log(s).

J.1 Signature and verification time vs. QBER

0 0.0035 0.007 0.011
QBER

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

si
gn

at
ur

e/
ve

rif
ic

at
io

n
tim

e
(s

)

0.67 %
0.66 %

0.66 %
0.64 %

0.32 % 0.22 % 0.14 % 0.09 %

Dilithium2
% overhead
multi-signature
multi-verification
mono-signature
mono-verification

(a) CRYSTALS-DILITHIUM

0 0.0035 0.007 0.011
QBER

0

1

2

3

4

5

6

si
gn

at
ur

e/
ve

rif
ic

at
io

n
tim

e
(s

)

86.97 %
65.43 %

57.91 %

51.92 %

43.28 % 27.73 % 17.45 % 9.86 %

Sphincs_128f
% overhead
multi-signature
multi-verification
mono-signature
mono-verification

(b) SPHINCS+

0 0.0035 0.007 0.011
QBER

0.00

0.05

0.10

0.15

0.20

0.25

0.30

si
gn

at
ur

e/
ve

rif
ic

at
io

n
tim

e
(s

)

5.44 %
5.35 %

5.29 %

5.22 %

2.71 % 1.8 % 1.14 % 0.64 %

Falcon512
% overhead
multi-signature
multi-verification
mono-signature
mono-verification

(c) FALCON

0 0.0035 0.007 0.011
QBER

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

si
gn

at
ur

e/
ve

rif
ic

at
io

n
tim

e
(s

)

73.05 %
58.25 %

51.09 %

47.36 %

36.61 % 23.06 % 16.08 % 7.95 %

RainbowIIIc
% overhead
multi-signature
multi-verification
mono-signature
mono-verification

(d) Rainbow

IV

J.2 Signature and verification time vs. number of maximum corrected bits

0 1 2 3
Maximum corrected bits

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

si
gn

at
ur

e/
ve

rif
ic

at
io

n
tim

e
(s

)

242

64
22 9

219 82 23 5

Dilithium2
aborts per 100 successful corrections
multi-signature
multi-verification
mono-signature
mono-verification

(a) CRYSTALS-DILITHIUM

0 1 2 3
Maximum corrected bits

0

1

2

3

4

5

6

si
gn

at
ur

e/
ve

rif
ic

at
io

n
tim

e
(s

)

341

69 15 6
342 54 18 7

Sphincs_128f
aborts per 100 successful corrections
multi-signature
multi-verification
mono-signature
mono-verification

(b) SPHINCS+

0 1 2 3
Maximum corrected bits

0.00

0.05

0.10

0.15

0.20

0.25

0.30

si
gn

at
ur

e/
ve

rif
ic

at
io

n
tim

e
(s

)

329

52 14 6
319 63 19 4

Falcon512
aborts per 100 successful corrections
multi-signature
multi-verification
mono-signature
mono-verification

(c) FALCON

0 1 2 3
Maximum corrected bits

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

si
gn

at
ur

e/
ve

rif
ic

at
io

n
tim

e
(s

)
367

58
13 6

287 77 26 10

RainbowIIIc
aborts per 100 successful corrections
multi-signature
multi-verification
mono-signature
mono-verification

(d) Rainbow

J.3 Authentication + error correction time vs. maximum corrected bits

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Maximum corrected bits

0

1

2

3

4

au
th

en
tic

at
io

n+
er

ro
r c

or
re

ct
io

n
tim

e
(s

)

multi-Dilithium2
multi-Sphincs_128f
multi-Falcon512
multi-RainbowIIIc
mono-Dilithium2
mono-Sphincs_128f
mono-Falcon512
mono-RainbowIIIc

(a) 128 bits

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Maximum corrected bits

0

10

20

30

40

50

60

au
th

en
tic

at
io

n+
er

ro
r c

or
re

ct
io

n
tim

e
(s

)

multi-Dilithium3
multi-Sphincs_192f
multi-RainbowVc
mono-Dilithium3
mono-Sphincs_192f
mono-RainbowVc

(b) 192 bits

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Maximum corrected bits

0

50

100

150

200

250

300

au
th

en
tic

at
io

n+
er

ro
r c

or
re

ct
io

n
tim

e
(s

)

multi-Dilithium4
multi-Sphincs_256f
multi-Falcon1024
mono-Dilithium4
mono-Sphincs_256f
mono-Falcon1024

(c) 256 bits

V

J.4 Signature and verification time vs. security level

128 (Dilithium2) 192 (Dilithium3) 256 (Dilithium4)
Bits of security

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

si
gn

at
ur

e/
ve

rif
ic

at
io

n
tim

e
(s

)

0.63 %

0.59 %
0.43 %

0.33 % 0.32 % 0.25 %

x% overhead
multi-signature
multi-verification
mono-signature
mono-verification

(a) CRYSTALS-DILITHIUM

128 (Sphincs_128f) 192 (Sphincs_192f) 256 (Sphincs_256f)
Bits of security

0

2

4

6

8

10

si
gn

at
ur

e/
ve

rif
ic

at
io

n
tim

e
(s

)

65.2 %
50.16 %

62.53 %

43.45 % 37.74 % 60.64 %

x% overhead
multi-signature
multi-verification
mono-signature
mono-verification

(b) SPHINCS+

128 (Falcon512) 256 (Falcon1024)
Bits of security

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

si
gn

at
ur

e/
ve

rif
ic

at
io

n
tim

e
(s

)

5.24 %

5.36 %

2.73 % 2.98 %

x% overhead
multi-signature
multi-verification
mono-signature
mono-verification

(c) FALCON

128 (RainbowIIIc) 192 (RainbowVc)
Bits of security

0

1

2

3

4

si
gn

at
ur

e/
ve

rif
ic

at
io

n
tim

e
(s

)
56.07 %

65.75 %

37.0 % 58.66 %

x% overhead
multi-signature
multi-verification
mono-signature
mono-verification

(d) Rainbow

J.5 Signature and verification time vs. post-quantum agorithms

Dilithium2 Sphincs_128f Falcon512 RainbowIIIc
post-quantum algorithm

0.0

0.2

0.4

0.6

0.8

1.0

1.2

tim
e

(s
)

0.63 %

62.91 %

5.22 %

63.1 %

0.19 %

39.47 %

1.69 %
28.07 %

128 bits of security
x% overhead
multi-signature
multi-verification
mono-signature
mono-verification

(a) 128 bits

Dilithium3 Sphincs_192f RainbowVc
post-quantum algorithm

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

tim
e

(s
)

0.57 %

48.55 %

66.42 %

0.12 %

8.38 % 28.59 %

192 bits of security
x% overhead
multi-signature
multi-verification
mono-signature
mono-verification

(b) 192 bits

Dilithium4 Sphincs_256f Falcon1024
post-quantum algorithm

0

2

4

6

8

tim
e

(s
)

0.43 %

59.04 %

5.39 %0.07 %
19.19 %

0.45 %

256 bits of security
x% overhead
multi-signature
multi-verification
mono-signature
mono-verification

(c) 256 bits

VI

K Minimum times to perform the signatures for key sizes from 0 to 2000
We show in Fig. 14 the minimum period to authenticate with every algorithm and the
respective security level. We observe the results both in a linear scale in Fig. 14a and
logarithmic scale in Fig. 14b.

0 250 500 750 1000 1250 1500 1750 2000
Sifted bits

0.00

0.05

0.10

0.15

0.20

0.25

M
in

im
um

 ru
nn

in
g

tim
e

(s
) Dilithium2

Sphincs_128f
Falcon512
RainbowIIIc
Dilithium3
Sphincs_192f
RainbowVc
Dilithium4
Sphincs_256f
Falcon1024

(a) Linear scale

0 250 500 750 1000 1250 1500 1750 2000
Sifted bits

10
3

10
2

10
1

M
in

im
um

 ru
nn

in
g

tim
e

(lo
g(

s)
)

Dilithium2
Sphincs_128f
Falcon512
RainbowIIIc
Dilithium3
Sphincs_192f
RainbowVc
Dilithium4
Sphincs_256f
Falcon1024

(b) Logarithmic scale

Figure 14: Several lengths of bit-strings named sifted bits are authenticated and it determines the time
each algorithm takes to perform them. In grey bars, it is indicated the uncertainty of the outcome as
they are the output of an average. The plot is colored in blue for small bins (0 to 100 bits), green for
medium (100 to 500), and red for large (500 to 2000).

L Table with error probabilities
In this section the probabilities of having n errors in a bit-string of kl bits. It is calculated
using Eq. 4.

Number of errors 0 1 2 3
kl = 128bits ≈ 0.276 ≈ 0.357 ≈ 0.229 ≈ 0.194
kl = 192bits ≈ 0.145 ≈ 0.280 ≈ 0.272 ≈ 0.174
kl = 256bits ≈ 0.076 ≈ 0.197 ≈ 0.254 ≈ 0.217

Table 8: Probabilities of having the indicated number of errors in a key of length kl.

Comparing the numbers on the table, one can easily see that, for example, having 0
errors with a 1% of QBER is highly unusual for a key length of 256 while having 3 errors
happens with a probability of more than 40%. Correcting no errors leads to discarding
many times, but when there is a correction of three bits, the abortion rate drops.

VII

	Introduction
	Preliminaries
	The foundation of quantum cryptography: quantum mechanics
	Measurements
	Qubits in noisy channels

	Quantum cryptography and Quantum Key Distribution
	The BB84 protocol
	Quantum communication
	Basis sifting: Alice
	Basis sifting: Bob
	Error correction and privacy amplification: Alice
	Error correction and privacy amplification: Bob

	Classical cryptography to improve QKD: Post-Quantum Cryptography

	Methodology and contributions
	Results
	Photon transmission per blocks: 128, 192 or 256 bits
	Noise dependence, QBER

	Continuous photon stream
	Discussion

	Conclusion and outlook
	Bibliography
	Quantum channels
	How the preparation of a state affects the measurement outcome
	Qubits
	One Time Pad
	No-cloning theorem proof
	Security in QKD
	Implementation details
	Key-pair and signature size for each post-quantum algorithm
	Table with error correction times
	Plots in linear scale
	Signature and verification time vs. QBER
	Signature and verification time vs. number of maximum corrected bits
	Authentication + error correction time vs. maximum corrected bits
	Signature and verification time vs. security level
	Signature and verification time vs. post-quantum agorithms

	Minimum times to perform the signatures for key sizes from 0 to 2000
	Table with error probabilities

