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Occupancy of a single site by many random walkers

M. Boguñá,1 A. M. Berezhkovskii,2,* and G. H. Weiss1
1Center for Information Technology, Bethesda, Maryland 20892

2National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
~Received 12 April 2000!

We consider an infinite number of noninteracting lattice random walkers with the goal of determining
statistical properties of the time, out of a total timeT, that a single site has been occupied byn random walkers.
Initially the random walkers are assumed uniformly distributed on the lattice except for the target site at the
origin, which is unoccupied. The random-walk model is taken to be a continuous-time random walk and the
pausing-time density at the target site is allowed to differ from the pausing-time density at other sites. We
calculate the dependence of the mean time of occupancy byn random walkers as a function ofn and the
observation timeT. We also find the variance for the cumulative time during which the site is unoccupied. The
large-T behavior of the variance differs according as the random walk is transient or recurrent. It is shown that
the variance is proportional toT at largeT in three or more dimensions, it is proportional toT3/2 in one
dimension and toT ln T in two dimensions.

PACS number~s!: 05.40.Fb, 02.50.2r, 05.40.2a
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I. INTRODUCTION

The theory of random walks generally deals with prop
ties of a single random walker. Several more recent stu
deal with aspects of the theory for properties ofN indepen-
dent random walkers, in particular outlining the behavior
the expected number of distinct sites visited by a lattice r
dom walker inn steps@1#. The result of these calculations
that, although the random walkers move independently,
lowing the use of single-particle propagators to analyze th
properties, they nevertheless generate a rich qualitative
havior as a function of the parametersN and the step num
ber. A somewhat similar theory has been developed for
average volume of the Wiener sausage generated bN
spherical Brownian particles in Ref.@2#. A calculation of the
average volume visited by randomly injected spheri
Brownian particles was done in Ref.@3#. While there is no
interaction between the random walkers, the kinetic beha
of such systems can still exhibit surprisingly complex colle
tive behavior.

In this paper we analyze another property of multiple ra
dom walks on a lattice; the fluctuations in the occupancy
a single site resulting from the motion of an infinite numb
of lattice random walkers initially uniformly distributed ove
the entire lattice. This is a crude model that mimics a me
brane pore that can be occupied by one or more metab
molecules that initially diffuse throughout a bathing soluti
@4#. Since characteristics of the motion of molecules tran
ing the pore differ from those in solution, the model allow
the transition rates at the target point to differ from those
solution. Similar models, based on lattice random wal
have been successfully applied to the study of photons
fusing in a tissue, in which a localized region may ha
optical properties differing from those of the remainin
tissue@5,6#.

*Permanent address: Karpov Institute of Physical Chemistry
Vorontsovo Pole Street, 103064 Moscow K-64, Russia.
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II. THE MODEL

Our theory is based on a continuous-time random walk
a d-dimensional simple cubic lattice, in which transitions a
allowed only to nearest neighbors and in which the proba
ity density for the time between successive jumps start
from any site excluding the origin, is

c~ t !5ke2kt. ~1!

The corresponding pausing-time density for a random wa
at the origin will be denoted byc0(t)5k0e2k0t. These very
specific definitions are for convenience only, since t
asymptotic behavior for any pausing-time density that ha
finite first moment will be essentially the same. We deve
the theory for isotropic nearest-neighbor random walks,
which the probability of moving to any specific neighborin
point is 1/(2d), whered is the dimension.

When all of the sites have the same pausing-time dens
the model is exactly solvable for all values of the timet
@7,8#. In what follows we will measure rates in terms of th
common ratek. This is equivalent to takingt to be a dimen-
sionless time and settingk51. With this understanding the
probability that a random walker is atr5( l 1 ,l 2 ,...,l d) at
time t, having been atr05„l 1(0),l 2(0),...,l d(0)… at t50 is

pF~r ,tur0!5e2tI l 12 l 1~0!S t

dD I l 22 l 2~0!S t

dD¯I l d2 l d~0!S t

dD ,

~2!

where the subscriptF indicates that it is a propagator in fre
space on a homogeneous lattice and theI j (u) are modified
Bessel functions@9#. Since the lattice is translationally in
variant the propagator is seen to be a function only of
vector distancer2r0 .

The initial condition for the ensemble of random walke
is chosen so that the probability of findingn random walkers
at a given site is the Poisson
0

3250 ©2000 The American Physical Society
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bn5
cn

n!
e2c ~3!

whose expected value is equal to the concentrationc. In ad-
dition it will be assumed that initially there are no rando
walkers at the origin.

III. CONCENTRATION AT THE ORIGIN

In this section we prove that the time-dependent distri
tion of the population at the origin is a Poisson, and depe
only on the concentration of random walkers at that site
time t. To do so we assume that initiallyN random walkers
are uniformly distributed in a hypercube of volumeV. We
then pass to the thermodynamic limitN,V→`, with N/V
5c. The probability that a random walker that is initially
r0 is at the origin at timet, is the propagatorp(0,tur0), and
the probability that a single random walker is at the origin
time t can be expressed in terms of the propagator by

uV~ t !5
1

V21 (
r0Þ0

p~0,tur0!. ~4!

Therefore, in the finite system defined above, the probab
that there aren random walkers at the origin is

Qn,N~ t !5S N
n D @uV~ t !#n@12uV~ t !#N2n, ~5!

which is a binomial distribution. In the thermodynamic lim
as defined earlier, it can be shown thatQn,N(t) goes over
into a Poisson distribution@10#. If Qn(t) is the probability
that there aren random walkers at the origin att, this line of
reasoning leads to

Qn~ t !5
@c0~ t !#n

n!
e2c0~ t !, ~6!

wherec0(t) is the concentration of random walkers at t
origin.

The concentration at the origin can be shown to dep
only on the single propagatorp(0,tu0). To see this we star
from the obvious definition

c0~ t !5c (
r0Þ0

p~0,tur0! ~7!

and invoke the condition of detailed balance@11# which can
be expressed as

p~0,tur0!5p~r0 ,tu0!/k0 . ~8!

This allows us to reexpressc0(t) as

c0~ t !5
c

k0
@12p~0,tu0!#5c0

eq@12p~0,tu0!#, ~9!

wherec0
eq5c0(`)5c/k0 . The important point here is tha

only the propagator for the transition0→0 is needed to find
the concentration at the origin, and hence, by Eq.~6!, the
probability Qn(t).
-
s
t

t

y

d

The reader should notice that the argument we have g
to derive the Poisson distribution is quite general, and d
not depend on a specific model for the dynamics. The o
requirements for the validity of Eq.~6! are that the targe
region~in the present case, the point at the origin! should be
small with respect to the remainder of the space and that
thermodynamic limit be taken.

Equation~6! indicates that the time-dependent concent
tion at the origin contains all the information required
calculate the probability distribution of the number of ra
dom walkers at that site. An exact formula can be derived
the case when all sites have the same pausing-time de
c0(t)5c(t). In contrast, only the asymptotic behavior ca
be found whenc0(t)Þc(t) since only the Laplace trans
forms of the relevant functions can be found. When t
pausing-time densities are identical we can immediat
write

c0~ t !5c0
eq@12p~0,tu0!#

5c0
eqF12e2tI 0

dS t

dD G
'c0

eqF12S d

2pt D
d/2G , t→` ~10!

so that the higher the dimension, the quicker will be the r
at which the concentration at the origin reaches its equi
rium valuec0

eq . We will see that whenk0Þk51 the time
dependence of the asymptotic form ofc0(t) remains un-
changed but a prefactor appears that depends onc0(t).

As shown in Eq.~9! the concentration at the origin has
simple relation to the propagatorp(0,tu0). To keep the pre-
sentation self-contained we derive an expression for
Laplace transform of this function in terms of the propaga
for the random walk in free space. For this purpose we
quire the probability density for a random walker that is o
lattice site from the origin att50, to reach the origin for the
first time att.0. This function will be denoted byf (t). An
elementary argument then allows us to write the followi
integral equation forp(0,tu0):

p~0,tu0!5e2k0t1k0E
0

t

e2k0tdt

3E
0

t2t

f ~t8!p~0,t2t2t8u0!dt8, ~11!

where the integral term accounts for cases in which it has
the origin at least once during~0, t!.

A solution to Eq.~11! can be found in terms of Laplac
transforms. It is expressed in terms of the Laplace transfo
of the first-passage time density,f̂ (s) as

p̂~0,su0!5
1

s1k0@12 f̂ ~s!#
. ~12!

But f̂ (s) is, in turn, related to the transform of the probabili
of moving from a nearest neighboring point to the origin in
time t on a homogeneous lattice@8# by
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f̂ ~s!5
p̂F~0,sunn!

p̂F~0,su0!
. ~13!

By p̂F(0,sunn) we mean the Laplace transform of the fre
space propagator from a nearest-neighboring site to the
gin. An expression for the free-space propagator ind dimen-
sions for the nearest-neighbor random walk has been g
in Eq. ~2!. Using this propagator one can see that

pF~0,tunn!5e2tI 0
d21S t

dD I 1S t

dD
5e2t

d

dt
I 0

dS t

dD
5

dpF~0,tu0!

dt
1pF~0,tu0!. ~14!

In the Laplace domain this means

p̂F~0,sunn!5~s11! p̂F~0,su0!21, ~15!

which provides a relation betweenp̂(0,su0) and p̂F(0,su0):

p̂~0,su0!5
p̂F~0,su0!

sp̂F~0,su0!1k0@12sp̂F~0,su0!#
. ~16!

Thus, in the small-s regime we have

p̂~0,su0!' p̂F~0,su0!/k0 ~17!

from which we can infer that at larget

p~0,tu0!'
1

k0
S d

2pt D
d/2

~18!

and

c0~ t !'c0
eqF12

1

k0
S d

2pt D
d/2G . ~19!

This asymptotic behavior is equivalent to our earlier ass
tion that the time dependence of the approach to equilibr
remains unchanged when properties of a single point
modified.

IV. OCCUPANCY TIMES

A. General relations

Another random variable, suggested by the physical pr
lem motivating the present paper, relates to the occupa
time of the site at the origin byn random walkers. By this we
will mean the amount of time that the origin has been oc
pied byn random walkers during a time interval (0,T). We
begin by calculating the first moment of this time. This w
be denoted bŷ tn(T)&, and can be expressed in terms
Qn(t). The contribution of the time interval (t,t1dt) to
^tn(T)& is equal toQn(t)dt. From this observation we infe
that

^tn~T!&5E
0

T

Qn~ t !dt, n50,1,2 . . . . ~20!
ri-

en
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After inserting the expression forQn(t) in Eq. ~6! we find
the large-T limit of ^tn(T)&:

lim
T→`

^tn~T!&5Qn~`!T5
~c0

eq!n

n!
e2c0

eq
T. ~21!

In similar fashion we can infer that, ifQnn(t1 ,t2) is the
joint probability, that there aren random walkers at the ori
gin at timest1 and t2 , and the contribution tôtn

2(T)& from
the pair of intervals (t1 ,t11dt1) and (t2 ,t21dt2) is equal to
Qnn(t1 ,t2)dt1dt2 . Consequently,̂tn

2(T)& is

^tn
2~T!&52E

0

T

dt2E
0

t2
Qnn~ t2 ,t1!dt1dt2 , ~22!

where the factor of 2 reflects the symmetry inherent
Qnn(t1 ,t2) with respect to an interchange oft1 and t2 .

We now proceed to calculate a representation of the fu
tion Q00(t1t,t) to be used in evaluating the expression
^t0

2(T)& in Eq. ~22!. For convenience of notation we defin
p(r 8,t1t;r ,tur0) be the probability that a random walker
initially at r0 , then is atr at time t and atr 8 at t1t. Since
the random walk is Markovian, this joint probability can
decomposed into a product of the propagators by the rela

p~r 8,t1t;r ,tur0!5p~r 8,tur !p~r ,tur0!. ~23!

The probability that a single random walker initially atr0 is
not at the origin at both the timest and t1t is

U~ t,t1tur0!5(
rÞ0

(
r8Þ0

p~r 8,t1t;r ,tur0!, ~24!

The joint probabilityQ00(t1t,t) can be written in terms o
this function as

Q00~ t1t,t !5e2c )
r0Þ0

(
n50

`
cn

n!
Un~ t,t1tur0!

5expF2cH 12 (
r0Þ0

U~ t,t1tur0!J G ~25!

sincee2ccn/n! is the probability that an arbitrary site~other
than at the origin! has n particles initially and Un(t,t
1tur0) is the probability that none of them will be at th
origin at t(.0) andt1t. This leaves us only with the tas
of evaluating the sum overr0 that appears in the exponentia
This is easily done by successively adding in and subtrac
out the contributions fromr50 andr 850 in the definition
of Eq. ~24!, noting that

(
r

(
r8

p~r 8,t1t;r ,tur0!51 ~26!

so that

Q00~ t1t,t !5expF2c (
r0Þ0

$p~0,t1tur0!1p~0,tur0!

2p~0,tu0!p~0,tur0!%G ~27!



t
th

tr
e
m

n

-
ite
t o
m

cy
th
th
e

d-
n
-
a

ed
of

der-
s,

e

an-

un-
on

u
-

or

r-
n

e
e
e
th

PRE 62 3253OCCUPANCY OF A SINGLE SITE BY MANY RANDOM WALKERS
where we have made use of Eq.~23!. We can invoke detailed
balance as expressed in Eq.~8! to write Q00(t1t,t) in terms
of the single propagatorp(0,tu0). This is done by taking
account of the relation in Eq.~9! between c0(t) and
p(0,tu0), allowing us to write

Q00~ t1t,t !5expF2H c0~ t1t!1
c0~ t !c0~t!

c0
eq J G

5Q0~ t1t!exp@2c0~ t !$12p~0,tu0!%#.

~28!

Having this representation in hand enables us to calculate
mean and variance of the cumulative time during which
origin is unoccupied.

These quantities are of use in the case of low concen
tionsc!1. In this regime it is overwhelmingly likely that th
origin will either be occupied by none or a single rando
walker. Some simulated results for this regime are show
Fig. 1, for c518/729'0.025 andT51000. The first peak
~dark circles! which is identified with the possibility of hav
ing two random walkers at the origin, is seen to lie qu
close to 0. The dominant feature of the figure is that mos
the time the origin is empty or occupied by one rando
walker, and only rarely by two.

It appears to be quite difficult to solve the occupan
problem for an arbitrary number of random walkers at
origin. However, some progress can be made in finding
large-T behavior of the probability density for the total tim

FIG. 1. Plots of the probability densities for the fractional occ
pation time,gn(t/T), wheren is the number of the state. The re
sults are shown forn50, 1, and 2, which are represented byn
50 ~m!, 1 ~j!, and 2~d!, respectively. The results shown are f
a three-dimensional lattice, withT51000(k51) andk050.1. The
initial concentration here is 18/729'0.025. The data were gene
ated by randomly placing 18 random walkers in a three-dimensio
box of dimensions 93939 and with periodic boundaries. Asid
from the two peaks centered att/T'0.19 and 0.77 there is a larg
peak at very smallt/T, indicating that the cumulative residenc
time in the state in which there are two random walkers at
origin, is very close to zero.
he
e
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in

f
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e

that the origin is unoccupied. This follows from the consi
eration that asT→` there will have been many occasions o
which the origin is unoccupied. With this in mind it is rea
sonable to conjecture that the probability density will be
Gaussian at largeT. In order to specify the Gaussian we ne
the first moment and the variance. The asymptotic form
the first moment is found in Eq.~21! with n50. We there-
fore proceed to calculate the large-T form of the variance.

B. Asymptotic forms of the variance

1. Transient random walks

The asymptotic dependence of the variance onT differs in
one, two, and three or more dimensions, because the un
lying random walk is recurrent in one and two dimension
and transient in three or more dimensions.

A formal expression for the variance,s0
2(T)5^t0

2(T)&
2^t0(T)&2, is found by combining Eqs.~20! and ~22! with
n50. On differentiatings0

2(T) with respect toT we find

ds0
2~T!

dT
52E

0

T

@Q00~T,t !2Q0~ t !Q0~T!#dt. ~29!

If we invoke Eq.~28! we can factorQ0(T) out of the integral
transforming this equation to

ds0
2~T!

dT
52Q0~T!E

0

T

@ep~0,T2tu0!c0~ t !21#Q0~ t !dt

~30!

or

s0
2~T!52E

0

T

Q0~j!djE
0

j

@ep~0,j2tu0!c0~ t !21#Q0~ t !dt.

~31!

In the limit T→` we can assert thatc0(T)→c0
eq and

Q0(T)→exp(2c0
eq). Further, whent→`, p(0,tu0) goes to

zero ast2d/2 in d dimensions. This, in turn, implies that th
integral with respect tot will be finite in the limit T→` for
d>3. Hence the lowest-order term in an asymptotic exp
sion of s0

2(T) is

s0
2~T!'2e22c0

eq
TE

0

`

@ep~0,tu0!c0
eq

21#dt. ~32!

The integral on the right-hand side converges when the
derlying random walk is transient. In the low-concentrati
limit s0

2(T) becomes

s0
2~T!'2

c0
eq

k0
TE

0

`

e2rI 0
3S r

3Ddr. ~33!

A convenient expansion ofs0
2(T) in powers ofc can be

given for the three-dimensional case whenk051, i.e., all of
the lattice sites have identical properties. In this case Eq.~32!
reduces to

s0
2~T!52e2cTE

0

`

@e2c0~ t !2e2c#dt. ~34!
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3254 PRE 62M. BOGUÑÁ, A. M. BEREZHKOVSKII, AND G. H. WEISS
If the term in brackets in the integral is expanded in pow
of c, one arrives at the representation

s0
2~T!52e2cT(

n51

`
cn

n! E0

`

e2nrI 0
3nS r

3Ddr

52e2cT(
n51

`
cn

nn! E0

`

e2rI 0
3nS r

3nDdr. ~35!

When n51, the integral is approximately equal to 1.5
whenn52 it is approximately equal to 1.1, and withn>3

FIG. 2. ~a! Plots of the probability densities for the fraction
occupation timegn(t/T), wheren is the number of random walker
at the origin. The results are shown forn50, 1, and 2 and forT
5500 steps. The rate constants were taken to bek51 and k0

50.1 so that random walkers tend to remain at the origin lon
than on any other site. Ten-thousand trials were used in the s
lations and the initial concentration was 36/729'0.05. The data
suggest a Gaussian form for all three values ofn. The solid curves
represent the Gaussian densities to which the data were fit~b!
Similar data except that hereT51000. The trend towards Gaussia
behavior is evident.
s

the integral is approximately equal to 1, which considera
simplifies the evaluation of the variance.

2. Recurrent random walks

When the random walk is recurrent, that is whend51 or
2, the integral in Eq.~32! diverges asT tends to infinity due
to the behavior of the integrand in the neighborhood ot
5T. In this case, to analyze the large-T behavior ofs0

2(T)
we use Eq.~30! to find that, at largeT,

ds0
2~T!

dT
'

2c0
eqe22c0

eq

pk0
HA2pT, d51

ln T, d52.
~36!

After taking this into account we find the approximations

r
u-

FIG. 3. ~a! Simulated data and the Gaussian approximations
a two-dimensional lattice. HereT51300,c531/625,k51, andk0

50.1. The fit is considerably improved over that in the case of o
dimension.~b! Simulated data and the associated Gaussian appr
mations for one dimension. The parameters used to generate
data areT52800,k51, k050.1, andc525/499'0.0501.
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s0
2~T!'

2c0
eqe22c0

eq

pk0
H 2A2p

3
T3/2, d51

T ln T, d52.

~37!

These estimates can also be derived from the general th
of randomly interconverting two-state systems developed
Ref. @12#.

V. NUMERICAL RESULTS

To verify some of the results just found, we perform
simulations using the parametersk51 andk050.1 so that
random walkers that arrive at the origin tend to remain th
longer than at any other lattice point@13#. In Figs. 2~a! and
2~b! we show plots of the probability density for the fractio
of time spent by a three-dimensional system in differ
states. A concentration of 36/729~'0.05! was used to gen
erate the figure together with observation times ofT5500
and T51000, respectively. The generated points indic
that for this choice of parameters the probability densities
both zero and one random walkers occupying the origin t
towards a Gaussian, the approximation improving asT in-
creases. The results summarized in Figs. 2~a! and 2~b! sug-
gest that the probability densities for the times correspond
to any occupancy number are all approximately Gauss

FIG. 4. A plot of the dimensionless variableks0
2(T)/T gener-

ated by replacingc in Eq. ~35! by c/k0 and replacingk by k0 . The
agreement between the calculated and simulated data is seen
best in the low-concentration limit.
H.

.

ry
in

e

t

e
r
d

g
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Figures 3~a! and 3~b! display results ford52 andd51 with
T51300 andT52800, respectively. The two sets of simul
tions are for approximately the same value of initial conce
tration. One sees an evident tendency towards Gaussian
havior, but the approach to this functional form is clea
much slower in one dimension than in two. This is to
expected from the different behavior ofs0

2(T) in these di-
mensions. There is good agreement between the theore
and simulated results. The average value approache
asymptotic form faster than does the variance.

We have not been able to find a rigorous extension of
result in Eq.~35! for the casek0Þ1, but, as a heuristic ap
proximation, we have replacedc in that equation byc/k0 and
k by k0 . The results of doing so are shown in Fig. 4, whe
one sees good agreement between simulated data an
proposed approximation for low concentrations.

VI. DISCUSSION

This paper, motivated by studies of the kinetics of t
transfer of metabolite molecules through membrane po
@4# analyzes the occupancy of a single lattice site by one
more continuous-time random walkers. The restriction to
single site is done mainly to keep the analysis simple. T
analysis can be extended to a set of sites by using forma
developed in Ref.@14#, but qualitative aspects of the resul
would not be changed by doing so. Since, in realistic sit
tions, a molecule tends to move more slowly through a p
than in a bathing medium, we have assumed that
pausing-time density for transitions out of the site represe
ing the pore, can differ from those at other lattice sites. W
have addressed the problem of calculating statistics relate
the cumulative time during which the origin is unoccupie

A more complicated problem is that of determining s
tistical properties of the fraction of time that the origin
occupied by one or more random walkers. This is related
the local time, which is an important property of diffusio
processes@15#. An argument based on the central-limit the
rem predicts that the probability density for the fraction
time that the origin is occupied byn random walker over a
long periodT should also be Gaussian centered at^tn(T)&
given in Eq.~21!. This agrees with findings based on sim
lations. The results depend on whether the random walks
transient or recurrent. A more difficult problem in this cla
is posed if one is interested in first-passage time densi
e.g., the probability density for the first time that the origin
occupied byn random walkers. We have obtained part
results in this area, and will present them at a later time.
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