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Occupancy of a single site by many random walkers
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We consider an infinite number of noninteracting lattice random walkers with the goal of determining
statistical properties of the time, out of a total tifigthat a single site has been occupiedhlandom walkers.
Initially the random walkers are assumed uniformly distributed on the lattice except for the target site at the
origin, which is unoccupied. The random-walk model is taken to be a continuous-time random walk and the
pausing-time density at the target site is allowed to differ from the pausing-time density at other sites. We
calculate the dependence of the mean time of occupanay fandom walkers as a function of and the
observation tim&. We also find the variance for the cumulative time during which the site is unoccupied. The
large-T behavior of the variance differs according as the random walk is transient or recurrent. It is shown that
the variance is proportional t® at largeT in three or more dimensions, it is proportional T8 in one
dimension and td@ In T in two dimensions.

PACS numbse(s): 05.40.Fb, 02.50:r, 05.40-a

I. INTRODUCTION Il. THE MODEL

The th f rand Kk v deals with Our theory is based on a continuous-time random walk on
. ? e_oryl N rag om W?k S gSenera Iy eais wi propg_r-a d-dimensional simple cubic lattice, in which transitions are
ties of a single random walker. Several more recent studieg, veq only to nearest neighbors and in which the probabil-

deal with aspects of the theory for propertieshodepen- i gensity for the time between successive jumps starting
dent random walkers, in particular outlining the behavior ofg. o, any site excluding the origin, is

the expected number of distinct sites visited by a lattice ran-
dom walker inn stepg1]. The result of these calculations is Kt
that, although the random walkers move independently, al- P =ke ™. @
lowing the use of single-particle propagators to analyze their
properties, they nevertheless generate a rich qualitative b&he corresponding pausing-time density for a random walker
havior as a function of the parametéysand the step num- at the origin will be denoted byo(t) =koe ¥o'. These very
ber. A somewhat similar theory has been developed for thepecific definitions are for convenience only, since the
average volume of the Wiener sausage generatedNby asymptotic behavior for any pausing-time density that has a
spherical Brownian particles in R4R]. A calculation of the  finite first moment will be essentially the same. We develop
average volume visited by randomly injected sphericakhe theory for isotropic nearest-neighbor random walks, for
Brownian particles was done in R¢B]. While there is no  which the probability of moving to any specific neighboring
interaction between the random walkers, the kinetic behaviopoint is 1/(2), whered is the dimension.
of such systems can still exhibit surprisingly complex collec-  When all of the sites have the same pausing-time density,
tive behavior. the model is exactly solvable for all values of the time
In this paper we analyze another property of multiple ran{7,8]. In what follows we will measure rates in terms of the
dom walks on a lattice; the fluctuations in the occupancy oicommon ratek. This is equivalent to takingto be a dimen-
a single site resulting from the motion of an infinite numbersionless time and setting=1. With this understanding the
of lattice random walkers initially uniformly distributed over probability that a random walker is at=(I,l,,...,l4) at
the entire lattice. This is a crude model that mimics a memtime t, having been aty=(1,(0),1,(0),...14(0)) att=0 is
brane pore that can be occupied by one or more metabolite
molecules that initially diffuse throughout a bathing solution
[4]. Since characteristics of the motion of molecules transit- Pe(rtiro)=e ' 1. (£>|| o (£>|| o (i)
ing the pore differ from those in solution, the model allows 7 Ol d) O d o la@ld)’
the transition rates at the target point to differ from those in
solution. Similar models, based on lattice random walks,
have been successfully applied to the study of photons difwhere the subscrigt indicates that it is a propagator in free
fusing in a tissue, in which a localized region may havespace on a homogeneous lattice andltffe) are modified
optical properties differing from those of the remaining Bessel functiong9]. Since the lattice is translationally in-
tissue[5,6]. variant the propagator is seen to be a function only of the
vector distance —ry.
The initial condition for the ensemble of random walkers
*Permanent address: Karpov Institute of Physical Chemistry, 18s chosen so that the probability of findingandom walkers
Vorontsovo Pole Street, 103064 Moscow K-64, Russia. at a given site is the Poisson
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c" The reader should notice that the argument we have given
,3n=me_° (3)  to derive the Poisson distribution is quite general, and does
' not depend on a specific model for the dynamics. The only

whose expected value is equal to the concentratidn ad- ~ "equirements for the validity of Eq(6) are that the target

dition it will be assumed that initially there are no random region(in the present case, the point at the orjghould be
walkers at the origin. small with respect to the remainder of the space and that the

thermodynamic limit be taken.
Equation(6) indicates that the time-dependent concentra-
tion at the origin contains all the information required to
In this section we prove that the time-dependent distribucalculate the probability distribution of the number of ran-
tion of the population at the origin is a Poisson, and dependgom walkers at that site. An exact formula can be derived in
only on the concentration of random walkers at that site athe case when all sites have the same pausing-time density
time t. To do so we assume that initially random walkers  #o(t)=#(t). In contrast, only the asymptotic behavior can
are uniformly distributed in a hypercube of volurive We  be found wheniy(t) # (t) since only the Laplace trans-
then pass to the thermodynamic linhtV—oo, with N/V forms of the relevant functions can be found. When the
=c. The probability that a random walker that is initially at pausing-time densities are identical we can immediately
ro is at the origin at time, is the propagatop(0,t|ry), and  Write
the probability that a single random walker is at the origin at

IIIl. CONCENTRATION AT THE ORIGIN

time t can be expressed in terms of the propagator by Cco(t)=c5T1—p(0,t{0)]
1 afe]
= =cg|l—e gl =
0= g1, 2, PO (4) 0 ol g
d d/2
Therefore, in the finite system defined above, the probability ~cid1— <_) } t—oo (10)
that there aren random walkers at the origin is 2t

so that the higher the dimension, the quicker will be the rate
[o(D)]"[1— oy, (5)  at which the concentration at the origin reaches its equilib-
rium valuecg?. We will see that wherk,#k=1 the time
which is a binomial distribution. In the thermodynamic limit dependence of the asymptotic form cf(t) remains un-
as defined earlier, it can be shown ti@y \(t) goes over changed but a prefactor appears that dependgoft).

N
Qn,N(t):

n

into a Poisson distributiof10]. If Q,(t) is the probability As shown in Eq.(9) the concentration at the origin has a
that there ara random walkers at the origin atthis line of ~ Simple relation to the propagatp(0,t|0). To keep the pre-
reasoning leads to sentation self-contained we derive an expression for the
Laplace transform of this function in terms of the propagator
[co(H)]" for the random walk in free space. For this purpose we re-
Qn(t)= Te oV (6) quire the probability density for a random walker that is one

lattice site from the origin at=0, to reach the origin for the
wherecy(t) is the concentration of random walkers at the first time att>0. This function will be denoted bf(t). An
origin. elementary argument then allows us to write the following
The concentration at the origin can be shown to depenéntegral equation fop(0,t|0):
only on the single propagatq0,t|0). To see this we start

- . g t
from the obvious definition p(olt|o):efkot+k0J' e kordr
0

co(t)=c >, p(0,t|ro) (7) -7
0 o P I Xft f(r")p(Ot—7—7|0)d7", (11
0

and invoke the condition of detailed balar{dd] which can

be expressed as where the integral term accounts for cases in which it has left
the origin at least once durin@, t).
P(0,t[ro)=p(ro,t|0)/ko. (8 A solution to Eq.(11) can be found in terms of Laplace

transforms. It is expressed in terms of the Laplace transform

This allows us to reexpress(t) as of the first-passage time densifiy(s) as

- % e
Co)= - [1-P(OHO]=c5T1-p(0HO], (9 5(0.5/0)= o 12
s+ko[1—1(s)]
where cg%=cy(*) =c/ky. The important point here is that
only the propagator for the transitidh-0 is needed to find  But f(s) is, in turn, related to the transform of the probability
the concentration at the origin, and hence, by B, the  of moving from a nearest neighboring point to the origin in a

probability Q,,(t). time t on a homogeneous latti¢8] by
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bF(O!S| n n)

Br(0,50) (13

f(s)=

By pr(0,s|/nn) we mean the Laplace transform of the free-
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After inserting the expression fa@,(t) in Eq. (6) we find
the largeT limit of (7,(T)):

(c Sq)” o

lim (7(T))=Qp()T= (21

space propagator from a nearest-neighboring site to the ori- T

gin. An expression for the free-space propagatat dimen-

sions for the nearest-neighbor random walk has been given In similar fashion we can infer that, ®,,(t;,t,) is the

in Eg. (2). Using this propagator one can see that

Lty [t
pe(0,tlnn)=e"d 1(a> I 1(8

d [t
_—d
—e gl (d)
dpe(0,t[0)
=g TP(Ot0. (14
In the Laplace domain this means
F(0,s|nn)=(s+1)pe(0,5/0)— 1, (15

which provides a relation betwed{0,s|0) andpg(0,s|0):

Pr(0,5/0)

P(0SI0= S5 (0.510) + kel L- SPe(0510)]"

(16)

Thus, in the smalk regime we have
P(0,5]0)~pr(0,5/0)/kq (17

from which we can infer that at large

d/2
P00~ | 5] a9
and
1 d d/2
Co(t)~ 1—k—(ﬁ } (19

This asymptotic behavior is equivalent to our earlier asser-
tion that the time dependence of the approach to equilibrium
remains unchanged when properties of a single point are,

modified.

IV. OCCUPANCY TIMES

A. General relations

Another random variable, suggested by the physical prob-
lem motivating the present paper, relates to the occupanc

joint probability, that there ara random walkers at the ori-
gin at timest; andt,, and the contribution t@rﬁ(T)) from
the pair of intervalsf ,t; +dt;) and ¢,,t,+dt,) is equal to
Qunn(ty,t2)dt,dt,. Consequently(72(T)) is

5 _ T ty
(Tn(T)> 2 dt2 an(tZatl)dtldth (22)
0 0

where the factor of 2 reflects the symmetry inherent in
Qnn(ty,ty) with respect to an interchange gf andt,.

We now proceed to calculate a representation of the func-
tion Qq(t+ 7,t) to be used in evaluating the expression for
(73(T)) in Eq. (22). For convenience of notation we define
p(r’,t+;r,t|ry) be the probability that a random walker is
initially at ry, then is afr at timet and atr’ att+ 7. Since
the random walk is Markovian, this joint probability can be
decomposed into a product of the propagators by the relation

=p(r’,7]r)p(r.tlre). (23)

The probability that a single random walker initially rgtis
not at the origin at both the timdsandt+ 7 is

p(r',t+7r,tro)

U(t,t+r|r0)=2 > p(r',t+7r.tro), (24)

r#0 1720

The joint probabilityQg(t+ 7,t) can be written in terms of
this function as

ot r—e I S Sur

tt+7'|r0)
ro#0 n=0 n!
=exp{—c{l—2 U(t,t+7|ro)] (25
1570

sincee™ °c"/n! is the probability that an arbitrary sitether
than at the originh has n particles initially and U"(t,t

+ 7|ry) is the probability that none of them will be at the
origin att(>0) andt+ 7. This leaves us only with the task
of evaluating the sum ovey, that appears in the exponential.
This is easily done by successively adding in and subtracting
ut the contributions fromm=0 andr’=0 in the definition

f Eq. (24), noting that

time of the site at the origin by random walkers. By this we
will mean the amount of time that the origin has been occu-
pied byn random walkers during a time interval {0, We
begin by calculating the first moment of this time. This will
be denoted by 7,(T)), and can be expressed in terms of
Q,(t). The contribution of the time intervalt,¢ +dt) to
(1o(T)) is equal toQ,(t)dt. From this observation we infer

that Qoo(t+ 7,t)= ex;{ -C EO {p(0,t+ 7|rg) + p(O,t|rg)
ro#

> D p(r t+rrtlrg) =1 (26)

o that

.
<T,1(T)>=f0 Qu(tdt, n=012.... (20 —p(O,TIO)p(O,tIro)}} @7
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r ' ' - that the origin is unoccupied. This follows from the consid-
eration that a3 — < there will have been many occasions on
which the origin is unoccupied. With this in mind it is rea-
20 | . sonable to conjecture that the probability density will be a
Gaussian at largé&. In order to specify the Gaussian we need
the first moment and the variance. The asymptotic form of
the first moment is found in Eq21) with n=0. We there-
fore proceed to calculate the largeform of the variance.

10 - g B. Asymptotic forms of the variance

Probability densities

) 1. Transient random walks

A
1 ‘A‘AA The asymptotic dependence of the variancd d@iffers in
one, two, and three or more dimensions, because the under-
°a . A lying random walk is recurrent in one and two dimensions,

0 A 5_ i 'y and transient in three or more dimensions.

0 0.2 0.4 0.6 0.8 1 A formal expression for the variances3(T)=(75(T))

T —(7o(T))?, is found by combining Eqg20) and (22) with
n=0. On differentiatingaS(T) with respect tol we find
FIG. 1. Plots of the probability densities for the fractional occu-

pation time,g,(7/T), wheren is the number of the state. The re- dg’S(T) T
sults are shown fon=0, 1, and 2, which are represented by a7 :ZJ [Qoo(T,1) —Qo(1)Qo(T)Idt. (29
=0 (A), 1 (M), and 2(®), respectively. The results shown are for 0
a three-dimensional lattice, witi=1000k=1) andky,=0.1. The . .
initial concentration here is 18/7290.025. The data were gener- If we Invo!<e Eq:(28) we .can factoQo(T) out of the integral
ated by randomly placing 18 random walkers in a three-dimensionatlranSformlng this equation to
box of dimensions ¥9X9 and with periodic boundaries. Aside 2
from the two peaks centered afT~0.19 and 0.77 there is a large da(T) =2Q4(T) fT [ep(o,T—t|0)cO(t>_ 1]Qq(t)dt
peak at very small/T, indicating that the cumulative residence daT 0 0 0
time in the state in which there are two random walkers at the (30
origin, is very close to zero.

or
where we have made use of E83). We can invoke detailed . ;

balance as expressed in E§) to wrlte.Qo'O(t+ 7,t) in terms U%(T)=2f Qo(§)d§f [ep(O,gftlo)co(t)_1]Q0(t)dt'

of the single propagatop(0,t|0). This is done by taking 0 0

account of the relation in Eq(9) between cy(t) and (3D

p(0,t|0), allowing us to write o
In the limit T—~ we can assert thaty(T)—cg® and

Qo(T)—exp(—cd. Further, whent—c, p(0,t|0) goes to
zero ast” %2 in d dimensions. This, in turn, implies that the
integral with respect to will be finite in the limit T—o for
=Qy(t+ 7)exd —co(t){1—p(0,7]0)}]. d=3. Hence the lowest-order term in an asymptotic expan-
28 sion of g3(T) is

Qoo(t+7,t)= ex;{ - { Colt+ 1)+ %]
0

Having this representation in hand enables us to calculate the US(T)NZG*ZCSqTf [eP(0105"— 1], (32
mean and variance of the cumulative time during which the 0

origin is unoccupied. The integral on the right-hand side converges when the un-

8derlying random walk is transient. In the low-concentration

tionsc<1. In this regime it is overwhelmingly likely that the limit ag(T) becomes

origin will either be occupied by none or a single random

walker. Some simulated results for this regime are shown in el ru
Fig. 1, for c=18/729~0.025 andT=1000. The first peak US(T)~ZLTJ e‘PIS(B)dp. (33)
(dark circle$ which is identified with the possibility of hav- Ko 0 3

ing two random walkers at the origin, is seen to lie quite . . o

close to 0. The dominant feature of the figure is that most of A convenient expansion af,(T) in powers ofc can be
the time the origin is empty or occupied by one randomgiven for the three-dimensional case whey=1, i.e., all of
walker, and only rarely by two. the lattice sites have identical properties. In this casd &).

It appears to be quite difficult to solve the occupancyreduces to

problem for an arbitrary number of random walkers at the .

origin. Howeyer, some progress can b(_a made in findin_g the a(z,(T)=2e‘°TJ [e CoV—e~C]dt. (34)
largeT behavior of the probability density for the total time 0
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FIG. 2. (a) Plots of the probability densities for the fractional ~ FIG. 3. (a) Simulated data and the Gaussian approximations for
occupation timey,(7/T), wheren is the number of random walkers a two-dimensional lattice. HerE=1300,c=31/625,k=1, andk,
at the origin. The results are shown fior=0, 1, and 2 and foT ~ =0.1. The fit is considerably improved over that in the case of one
=500 steps. The rate constants were taken tokbel andk,  dimension(b) Simulated data and the associated Gaussian approxi-
=0.1 so that random walkers tend to remain at the origin longeinations for one dimension. The parameters used to generate the
than on any other site. Ten-thousand trials were used in the simwata areT =2800,k=1, ko=0.1, andc=25/499~0.0501.
lations and the initial concentration was 36/729.05. The data
suggest a Gaussian form for all three values.ofhe solid curves
represent the Gaussian densities to which the data werébfit.
Similar data except that hefle=1000. The trend towards Gaussian
behavior is evident.

the integral is approximately equal to 1, which considerably
simplifies the evaluation of the variance.

2. Recurrent random walks

If the term in brackets in the integral is expanded in powers \When the random walk is recurrent, that is whiea1 or
of ¢, one arrives at the representation 2, the integral in Eq(32) diverges ad tends to infinity due
to the behavior of the integrand in the neighborhoodt of

) R L S =T. In this case, to analyze the largesehavior ofo3(T)
op(T)=2e T, — | e ™I Z|dp we use Eq(30) to find that, at larg€T,
=1 Nl Jo 3
I ey do?(T) 2c8% 2% (27T, d=1
=2e T, | el gs]de. (39 op(T)  2cye” ™ 7T, 39
e e daT Ko InT, d=2

When n=1, the integral is approximately equal to 1.52,
whenn=2 it is approximately equal to 1.1, and witt=3  After taking this into account we find the approximations
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8 . ' ' ' Figures 3a) and 3b) display results fod=2 andd=1 with
T=1300 andT =2800, respectively. The two sets of simula-
tions are for approximately the same value of initial concen-
tration. One sees an evident tendency towards Gaussian be-
. havior, but the approach to this functional form is clearly
. . much slower in one dimension than in two. This is to be
expected from the different behavior oﬁ(T) in these di-
mensions. There is good agreement between the theoretical
and simulated results. The average value approaches its
asymptotic form faster than does the variance.

We have not been able to find a rigorous extension of the
2t . result in Eq.(35) for the caseky# 1, but, as a heuristic ap-
proximation, we have replacexdn that equation by/k, and
k by ky. The results of doing so are shown in Fig. 4, where

one sees good agreement between simulated data and the
% 02 0a 06 0.8 1 proposed approximation for low concentrations.

Co

ko, (T)T

FIG. 4. A plot of the dimensionless variaUIerS(T)/T gener- VI. DISCUSSION
ated by replacing in Eq. (35) by c/ky and replacind by k,. The
agreement between the calculated and simulated data is seen to
best in the low-concentration limit.

This paper, motivated by studies of the kinetics of the
I?Snsfer of metabolite molecules through membrane pores,
[4] analyzes the occupancy of a single lattice site by one or
more continuous-time random walkers. The restriction to a

2¢8%—2¢5° 2 27TT3/2 d=1 single site is done mainly to keep the analysis simple. The
o5(T)~ LI 3 ' (37)  analysis can be extended to a set of sites by using formalism
7Ko TInT d=2. developed in Ref[14], but qualitative aspects of the results

would not be changed by doing so. Since, in realistic situa-
These estimates can also be derived from the general theotns, a molecule tends to move more slowly through a pore
of randomly interconverting two-state systems developed ithan in a bathing medium, we have assumed that the
Ref.[12]. pausing-time density for transitions out of the site represent-
ing the pore, can differ from those at other lattice sites. We
V. NUMERICAL RESULTS have addres_sed_the problem of calculating_ st_atistics rela_lted to
the cumulative time during which the origin is unoccupied.
To verify some of the results just found, we performed A more complicated problem is that of determining sta-
simulations using the parametéts1 andk,=0.1 so that tistical properties of the fraction of time that the origin is
random walkers that arrive at the origin tend to remain thereccupied by one or more random walkers. This is related to
longer than at any other lattice poift3]. In Figs. Za) and  the local time, which is an important property of diffusion
2(b) we show plots of the probability density for the fraction processe§l5]. An argument based on the central-limit theo-
of time spent by a three-dimensional system in differentrem predicts that the probability density for the fraction of
states. A concentration of 36/728-0.05 was used to gen- time that the origin is occupied by random walker over a
erate the figure together with observation timesTef500 long periodT should also be Gaussian centered a{T))
and T=1000, respectively. The generated points indicategiven in Eq.(21). This agrees with findings based on simu-
that for this choice of parameters the probability densities fofations. The results depend on whether the random walks are
both zero and one random walkers occupying the origin tentransient or recurrent. A more difficult problem in this class
towards a Gaussian, the approximation improvingTas-  is posed if one is interested in first-passage time densities,
creases. The results summarized in Figs) 2nd 2b) sug-  e.g., the probability density for the first time that the origin is
gest that the probability densities for the times correspondingccupied byn random walkers. We have obtained partial
to any occupancy number are all approximately Gaussiarresults in this area, and will present them at a later time.
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