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Volatility characterizes the amplitude of price return fluctuations. It is a central magnitude in finance closely
related to the risk of holding a certain asset. Despite its popularity on trading floors, volatility is unobservable
and only the price is known. Diffusion theory has many common points with the research on volatility, the key
of the analogy being that volatility is a time-dependent diffusion coefficient of the random walk for the price
return. We present a formal procedure to extract volatility from price data by assuming that it is described by
a hidden Markov process which together with the price forms a two-dimensional diffusion process. We derive
a maximum-likelihood estimate of the volatility path valid for a wide class of two-dimensional diffusion
processes. The choice of the exponential Ornstein-Uhlenbeck �expOU� stochastic volatility model performs
remarkably well in inferring the hidden state of volatility. The formalism is applied to the Dow Jones index.
The main results are that �i� the distribution of estimated volatility is lognormal, which is consistent with the
expOU model, �ii� the estimated volatility is related to trading volume by a power law of the form ��V0.55,
and �iii� future returns are proportional to the current volatility, which suggests some degree of predictability
for the size of future returns.
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I. INTRODUCTION

Volatility measures the amplitude of return fluctuations,
and it is one of the central quantities in finance �1�. Investors
sometimes place even greater emphasis on the level of vola-
tility than on the market trend itself. The reason for this is
mainly that the risk of holding an asset is classically associ-
ated with its volatility �2�. The theoretical framework used to
quantify aspects of price fluctuations has many common
points with areas of physics dealing with noisy signals. The
research of random diffusion aims to describe the dynamics
of particles in random media and its methods have been ap-
plied to a large variety of phenomena in statistical physics
and condensed matter �3�. Time series describing solar flares,
earthquakes, the human heartbeat, or climate records show
strong correlations, multiscaling, non-Gaussian statistics, and
self-organized behavior �4–7�. These are properties also ob-
served in financial time series where volatility is considered
to play a key role �1,8�.

The picture that prices follow a simple diffusion process
was first proposed by Bachelier in 1900 �9�. Later in 1959,
the physicist Osborne introduced the geometric Brownian
motion and suggested that volatility can be viewed as the
diffusion coefficient of this random walk �10�. The simplest
possible assumption—that it is a time-independent
constant—lies at the heart of classical models such as the
Black-Scholes option pricing formula �11�. More recently, it
has become widely accepted that such an assumption is in-
adequate to explain the richness of the markets’ behavior �1�.

Instead, volatility itself should be treated as a random quan-
tity with its own particular dynamics.

Among its most relevant properties �1,8,12–14�, volatility
is the responsible for the observed clustering in price
changes. That is, large fluctuations are commonly followed
by other large fluctuations and similarly for small changes
�1,8�. Another related feature is that, in clear contrast with
price changes which show negligible autocorrelations, vola-
tility autocorrelation is still significant for time lags longer
than a year �8,12,13�. Most of these studies introduce a sub-
ordinated process which is associated with the volatility in
one way or another �15–26�.

The main obstacle of an appropriate analysis of volatility
is that it is directly unobservable. As we have mentioned,
volatility provides important information to traders, but it is
very unclear how reliable the estimates of such a hidden
process can be. Investors use several proxies to infer the
level of current asset volatility. The most common ways are
�i� to make it equivalent to the absolute value of return
changes, �ii� to assume a proportional law between volatility
and market volume �26–29�, and �iii� to use the information
contained in option prices and obtain the so-called “implied
volatility,” which, in fact, corresponds to the market’s belief
of volatility �1�.

This already raises the following questions: What process
is a proper model of volatility and how does one adjust the
possible parameters to describe various stocks and markets?
Among the possible candidates, multifractals �16–20� and
stochastic volatility models �15,21–26� are the most promis-
ing. The fact that volatility is directly unobservable makes it
even more difficult to get a conclusive answer about the best
model. This double challenge has deserved attention from
the most diverse disciplines that look at financial markets.
All of them have converged on a description of what is tech-
nically known as realized volatility and on methodologies for
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reconstructing volatility paths. Several procedures for recon-
structing volatility have already been presented being more
or less dependent on the volatility model chosen. During the
last decade mathematics, econometrics, and finance journals
have published a large number of articles devoted to this
issue �see, e.g., �15,30–41��.

Our research presents an alternative procedure to estimate
volatility from the price dynamics only. Like most of the
papers in the literature, price dynamics is represented by a
two-dimensional diffusion process: one dimension for price
and a second dimension for a volatility described by a hidden
Markov process. Our case estimates the volatility
subordinated-time series through maximum likelihood, but in
contrast with other studies, having fixed in advance the pa-
rameters of the model.

We have decided to focus on a particular stochastic vola-
tility model that is able to circumvent both mathematical and
computational difficulties: the exponential Ornstein-
Uhlenbeck volatility model �21,22�, although the same pro-
cedure can be used for a larger class of models. As its name
indicates, the model assumes that the logarithm of the vola-
tility follows an Ornstein-Uhlenbeck process: that is, a mean
reverting process with linear drift. The resulting model is
capable of reproducing the statistical properties of the finan-
cial markets fairly well �21�.

The paper is organized as follows. In Sec. II we outline
the general stochastic volatility framework and more specifi-
cally the exponential Ornstein-Uhlenbeck model. In Sec. III
we present a maximum-likelihood estimator for a wide class
of stochastic volatility models. For the case of the exponen-
tial Ornstein-Uhlenbeck �expOU� model we present Monte
Carlo simulations to show that it performs remarkably well
in inferring the hidden state of the volatility process. In Sec.
IV the procedure is applied to the Dow Jones Industrial Av-
erage. Conclusions are drawn in Sec. V, and some more tech-
nical details are left to the Appendixes.

II. STOCHASTIC VOLATILITY MODELS

The geometric Brownian motion �GBM� �10� is the most
widely used model in finance. In this setting the asset price
S�t� is described through the following Langevin equation �in
the Itô sense�:

dS�t�
S�t�

= �dt + �dW1�t� , �1�

where � is the volatility, assumed to be constant, � is some
deterministic drift indicating an eventual trend in the market,
and W1�t� is the Wiener process. We define the zero-mean
return X�t� as

X�t� = ln�S�t + t0�/S�t0�� − �ln�S�t + t0�/S�t0��� , �2�

where the symbol �¯� designates the average value and t0 is
the initial time which is usually set to be zero. In terms of
X�t� the GBM is simply written as

dX�t� = �dW1�t� . �3�

However, especially after the 1987 market crash, compel-
ling empirical evidence has become available that the as-

sumption of a constant volatility is doubtful �8�. Nor is vola-
tility a deterministic function of time as one might expect on
account of the nonstationarity of financial data, but a random
quantity �22�.

In the most general setting one therefore assumes that the
volatility � is a given function of a random process Y�t�:

��t� = f„Y�t�… . �4�

Most stochastic volatility �SV� models assume Y�t� is also a
diffusion process that may or may not be correlated with
price. The main difference between various models is only
the parametrization of this scheme. In a general notation the
zero-mean return X�t� defined above is described by the fol-
lowing set of stochastic differential equations:

dX�t� = f„Y�t�…dW1�t� �5�

dY�t� = − g„Y�t�…dt + h„Y�t�…dW2�t� , �6�

where dX=dS /S− �dS /S� and f , g, and h are given functions
of Y�t�. As shown in Eq. �4�, f(Y�t�) corresponds to the
volatility—i.e., the amplitude of return fluctuations. How-
ever, since f�x� is usually chosen to be a monotonically in-
creasing function, it is not misleading to think of Y as a
measure of volatility. Thus, as far as there is no confusion,
we will refer to the process Y�t� as “volatility” as well. On
the other hand, the function g(Y�t�) describes a reverting
force that drives the volatility toward the so-called “normal
level.” This force brings the volatility process to a stationary
regime for long-time horizons, and the normal level is re-
lated to the average volatility in that limit. Finally, the sub-
ordinated process Y�t� may have a nonconstant diffusion co-
efficient defined in terms of the function h(Y�t�) which is
called the volatility-of-volatility �“vol of vol”�. The functions
g and h fully describe the volatility process. The resulting
dynamics is comparable with the one described by a Gauss-
ian particle trapped in a potential well V�y� whose associated
force is −g�y�, where g�y�=V��y�. In finance one typically
proposes convex potentials with only one minimum whose
value is related to the normal level of the volatility.

In what follows we will mostly work with one particular
SV model, the expOU model, which follows from the sub-
stitutions

f�x� = mex, g�x� = �x, h�x� = k ,

that is,

dX�t� = meY�t�dW1�t� , �7�

dY�t� = − �Y�t�dt + kdW2�t� . �8�

Note that in this model the process Y�t� is precisely the loga-
rithm of the volatility, or “log-volatility” for short. The main
statistical properties of the model are thoroughly discussed in
Ref. �21�. We simply recall that the stationary distribution of
the process Y�t� is a Gaussian �i.e., a lognormal distribution
for �� with zero mean and variance �:
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p�y� =
1

�2��
exp�− y2/2�� , �9�

where

� � k2/2� . �10�

III. VOLATILITY ESTIMATION

A. Wiener measure and volatility estimation

Let X and Y denote a simultaneous realization of the
variables X��� and Y��� in the time interval t−s��� t.
Omitting all Y-independent terms, we show in Appendix A
that the probability density �likelihood� of such a realization
is approximately given by

ln P�X,Y� 	 −
1

2



t−s

t � Ẋ���
f„Y���…

�2

d�

−
1

2



t−s

t � Ẏ + g„Y���…
h„Y���…

�2

d� + ¯ . �11�

Before proceeding further, we will discuss the meaning of
this expression. We first note that Eq. �11� has to be under-
stood in the sense of generalized functions �42� since the
Wiener process is only differentiable in this sense and,

hence, Ẋ�t� and Ẏ�t� do not exist as ordinary functions and
Eq. �11� is just a symbolic expression. Nevertheless, the for-
mula is still valid when the integral and the derivatives
therein are discretized with arbitrary small time steps, a re-
quirement that is indeed necessary for numerical computa-
tions.

Let us now see some qualitative properties of Eq. �11�.
The first summand measures the fluctuations of the zero-

mean return with respect to the volatility, �Ẋ��� / f(Y���)�2,
and their contribution to the likelihood �probability density�
of a given return realization. Note that the higher this contri-
bution is, the lower those “relative” fluctuations are. In the
same fashion, the second summand in Eq. �11� measures the
fluctuations of the volatility process Y�t� with respect to the
vol of vol h�Y�, although in this case these fluctuations are
gauged with the mean reverting force −g�Y�. As before, the
lower these fluctuations, the higher their contribution to the
log-likelihood �11�.

While Eqs. �5� and �6� represent a joint model for return
and volatility, the stock market data only include recordings
of the return process X. The Y process and, hence, the vola-
tility f�Y� must be inferred indirectly in a Bayesian fashion
through Eq. �11�. Indeed, the conditional probability density
that the realization of the hidden Y process is Y, given that
the observed return is X, reads

ln P�YX� = ln P�X,Y� − ln P�X� . �12�

In consequence, we can find the maximum-likelihood sample
path of the (hidden) volatility process by maximizing Eq. �12�
with respect to Y �recall that Y is a realization of Y��� in the
interval t−s��� t�. Since the second summand of Eq. �12�

is independent of Y, we can neglect P�X� in this maximiza-
tion process. Therefore, the maximization of ln P�YX�
yields the same result as that of ln P�X ,Y�.

Note that, besides the specification of the stochastic vola-
tility model �that is, the explicit forms of f , g, and h�, the
only free parameter is s: the duration of past return data to
take into account. After substituting the observed return
history as X, we will obtain by maximum likelihood the
quantity

Ŷ = argmaxY ln P�YX� = argmaxY ln P�X,Y� . �13�

We should mention that similar maximization problems have
been studied in the context of hidden Markov models, where
this procedure is called “decoding.” When the state space
�the number of possible X and Y values� is finite, the optimi-
zation can be done exactly by the Viterbi algorithm �43�,
while there has been limited success in the continuous case
�44�. A similar technique has been applied to the forecasting
of volatility assuming a binomial cascade model, which, un-
like stochastic volatility models, has a finite state space �see
Ref. �20��. More focused on the stochastic volatility, we
should also mention the efforts based on Kalman or particle
filtering, Bayesian inference, conditional likelihood, or Fou-
rier methods among other similar techniques �see, e.g., Refs.
�15,30–41��. Most of the cited works assume a specific
model, although they never focus on the expOU model. In
addition, they are mainly worried about intraday �high-
frequency� data, while we are here focused on reproducing
daily �low-frequency� data. The superposition model of Lévy
Ornstein-Uhlenbeck processes for �2, which have been
crafted to describe high-frequency �intraday� data, deserves
special attention since it provides a power-law slow decay
for the volatility autocorrelation �15,32�. All the techniques
mentioned above provide an efficient way to reproduce the
volatility path, but in contrast to our case, the method also
serves to estimate the parameters of the model. We have
decided to provide the parameters beforehand, thus using an
independent way of estimating them �see Sec. IV A�. An
accurate comparison between our method and others should
be left for future research. We may look for a way to imple-
ment parameter estimation in our method.

As we have already stated, our main objective is to design
a method able to filter the Wiener noise dW1�t� out of Eq. �5�
and thus to obtain a reliable estimate Ŷ�t� of the hidden vola-
tility process Y�t�. During the rest of the paper we will de-
note with a hat the estimated value of a certain variable.
Thus, in the current case, the hat denotes that we are using an
estimation of Y�t�, not it’s “true” value. The method, an
extension of the deconvolution procedure previously pre-
sented in �21�, has basically the following five steps.

�i� We simulate a random sample path of the Wiener
process for t−s� t�� and consider it to be an estimation of

dW1̂�t�.
�ii� Then a surrogate realization of Y is generated as
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Ŷs��� = f−1�� dX���

dW1̂���
�� , �14�

where t−s��� t. Note that this equation requires that f�x�
be invertible, which implies that f�x� be chosen to be a
monotonic function.

�iii� Substitute Ŷs and X into Eq. �11� to calculate the
log-likelihood of this realization.

�iv� Iterate �i�–�iii� for I steps, keep the highest likelihood
random realization �the conditional median�, and assume this

to be the proper estimate Ŷ�t�.
�v� The estimate of the hidden process at time t is then

Ŷ�t�. The estimate of the volatility is given by

�̂�t� = f„Ŷ�t�… . �15�

B. Interpretation of the method

Let us further elaborate the meaning of such an estimate.
In finance, the volatility is often identified with the absolute
value of returns variations. Indeed, as a first approximation,
we can replace the noise term in Eq. �5� by its expected value
and write

��t� �
dX�t�

�dW1�t��
, �16�

which shows that the volatility is approximately proportional
to the absolute returns. Equation �5� can be thus thought of
as a first approximation toward estimating volatility. Our
method, based on the maximization of Eq. �12�, takes this
estimation two steps further. In effect, the first step was taken
in Ref. �21� where we replaced the average �dW1�t�� by a
simulated sample path. We are now taking a second and
more refined step in which we are not only replacing the
Wiener noise by a random simulation, but in addition, we
perform the maximum-likelihood method described by items
�i�–�v�.

Thus we are basically separating the observed returns
dX�t� into two sources: ��t� and dW1�t�. To do this, we have
first considered a specific form of stochastic volatility. Sec-
ond, we have taken the driving Wiener noises dW1�t� and
dW2�t� appearing in Eqs. �5� and �6� to be uncorrelated. Fi-
nally, we have assumed that ��t� is approximately constant
over the time step during which we numerically evaluate the

derivatives Ẏ�t� and Ẋ�t� appearing in Eq. �11�. We inciden-
tally note that if h�x�=0—the vol of vol is equal to zero—
then the stationary solution of Eq. �6� is Y�t��0. Thus the
model reduces to the Wiener process in which the volatility
is constant and absolute returns are uncorrelated �9�.

C. Performance of the estimator

In order to test the performance of the estimator, we simu-
late the expOU process by using Eqs. �7� and �8� with the
realistic parameters obtained in Sec. IV. The relationship be-
tween the simulated value of the log-volatility Y�t� and its

estimate Ŷ�t� is given in Fig. 1. The two quantities agree
within error bars, so we may state that

Y�t� � Ŷ�t� �in a mean square sense� .

In what follows we will always use s=10 days of past data
and I=105 iterations for maximization. The time step for
discretization will be 	t=1 day. For random optimization,
the necessary number of iterations I grows very fast, perhaps
exponentially, with s /	t. The values of s and 	t cited here
were chosen to keep the task computationally feasible. As for
the value of I, in this case an increase to I=106 does not
improve the estimates noticeably. The estimates generated
with this parameter set have a negligible bias, and they can
efficiently distinguish between low- and high-volatility peri-
ods �see Appendix B for a discussion on the robustness and
possible bias of the procedure�.

An additional verification of the good performance of our
estimate is shown in Fig. 2, where we give the actual sample
path of Y for a single realization of the expOU model to-

gether with the estimated Ŷ. As we can see, the estimate
follows the true log-volatility Y�t� very closely.

FIG. 1. �Color online� Estimated log-volatility Ŷ as a function of
the actual log-volatility Y taken from 2
105 simulations of the
expOU model. Reconstruction used the last s=10 values of returns
and I=105 iterations. The error bars represent the 25% and 75%
quantiles of the distribution estimated volatility.

FIG. 2. Estimated and actual volatility for a typical sample path
of the expOU model. The estimated values were smoothed by five-
neighbor averaging to reduce noise.
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D. Volatility forecasting

Another possible approach to the utility of the expOU
model is to evaluate its forecasting performance. One can for
example use the mean error of absolute returns dX�t+h� for
a given Monte Carlo–simulated path:

E�h� = �dX̂�t + h� − dX�t + h�� , �17�

where dX̂�t+h� is our estimate for the absolute return

dX�t+h� given an estimate Ŷ�t�, while h is the time horizon
�number of days� to forecast ahead. We recall that for our
estimates we take the conditional median of our Monte Carlo
simulations. Thus for the expOU model we have

dX̂�t + h� = M�dW1�t + h��m exp�Ŷ�t�exp�− �h�� , �18�

where M�dW1�t+h�� denotes the median of the absolute
value of the Wiener increment. Figure 3 compares five meth-
ods to forecast dX�t+h� using only information available
before time t. For clarity we also give the titles of the five
methologies used in parentheses �¯�.

�i� The median of the last 5 absolute returns. This method
clearly has predictive power for h�150 days �“5-day abs.
ret.”�.

�ii� The median of the last 15 absolute returns. The longer
averaging period brings a substantial improvement for short-
term forecasts, but not for long-term �“15-day abs. ret.”�.

�ii� Equation �18� with Ŷ�t�=Y�t�, which is the true value
in the underlying simulation of the expOU model. This gives
a substantial decrease in forecasting error, which persists up
to h�500 days. This curve is also a theoretical lower bound
for error achievable by the expOU model in any time series:
Here the underlying data are perfectly described by the ex-
pOU model, and the parameters and Y�t� are known “per-
fectly.” Neither of these usually happen in real data, and so
there one expects a worse performance �“perfect”�.

�iv� Equation �18� with Ŷ�t� estimated by the reconstruc-
tion procedure of Sec. III. This estimator does not perform

well, due to noise in the optimization procedure �“1-day
forecast”�.

�v� Equation �18� with Ŷ�t� estimated by the reconstruc-
tion procedure of Sec. III, then averaged for the last 5 days.
Such averaging greatly decreases noise, and the accuracy of
the forecast is improved for short times �cf. Fig. 2� �“5-day
forecast”�.

Finally, note that for h�500 days all estimators based on

the expOU model lose any information included in Ŷ�t� and
converge to the same error level. This is consistent with real
data �cf. Sec. IV D�.

IV. APPLICATION TO STOCK MARKET DATA

In this section we present an application of the method to
actual stock market data. We analyze the Dow Jones Indus-
trial Average �DJIA� index in the period 1 Jan. 1900–26 May
2006, a total of 29 038 days. In order to work with zero-
mean returns, the mean return was subtracted from the actual
data. Trading volumes for the index are only available for the
period 1 April 1993–26 May 2006, a total of 3 375 days.

A. Parameter estimation

We recall that in the estimation procedure presented here
one necessarily needs to assume a theoretical model for the
volatility. Having done this, the next step is to estimate the
parameters involved in the model chosen. For the expOU
model, Eqs. �7� and �8�, these parameters are m, k, and �.

Before proceeding further we remark that time increments
in real data have a finite size since the market always works
on discrete times �for daily data the minimum time increment
is 1 day�. Thus, in practice, the �infinitesimal� return varia-
tion dX�t�=X�t+dt�−X�t� corresponds to a �finite� return in-
crement 	X�t�=X�t+	t�−X�t� where 	t is the time step be-
tween two consecutive ticks. Also, the Wiener differentials
dW�t� correspond, in a mean-square sense �45�, to the incre-
ments

	W�t� � ��t��	t , �19�

where ��t� is a Gaussian process with zero mean and unit
variance �45�. In the present case our time step has a fixed
width and is equal to 	t=1 day.

Coming back to the estimation of parameters, we show in
Appendix C that

ln m � � + ln 2�/2 + �ln�	X/�	t�� , �20�

where =0.5772. . . is the Euler constant. Taking into account
that the third summand can be evaluated from data, we see
that Eq. �20� provides a direct estimation of m.

On the other hand, if the expOU model is appropriate,

then the empirical estimate Ŷ�t� of the hidden volatility Y�t�
should also be a Gaussian process with a stationary distribu-
tion of zero mean and variance given by �=k2 /2� �see Eq.
�10��. As shown in Fig. 4, if one takes �=0.61±0.05, the

distribution of Ŷ�t� is Gaussian and coincides with the theo-
retical distribution of Y�t� given by Eq. �9�. The assumption

FIG. 3. �Color online� Median forecasting error E�h� of absolute
returns calculated according to Eq. �18� by five methods. The errors
were normalized by the lowest level of error achievable with the
assumption of a time-independent constant volatility �horizontal
dashed line�. The result was averaged over 150 000 independent
realizations of the expOU process; parameters were chosen as out-
lined in Sec. IV A.
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of a Gaussian distribution for our estimate is robust and it
holds for a wide range of parameters.

To fully specify the model we have to obtain the param-
eter �. We have chosen the value found in Ref. �21� which
was obtained in order to capture the long-range correlations
of the volatility, at least up to 500 days. The model is able to
provide the appropriate long-range behavior with an infinite
sum of exponentials, but it is also true that it does not pro-
vide a pure power-law decay like the models in Refs.
�15,17�. In any case, we have seen in Ref. �21� that at least
for daily data our approach is satisfactory. Our final set of
parameter estimates is thus

m = �7.5 ± 0.5� 
 10−3 days−1/2,

� = �1.82 ± 0.03� 
 10−3 days−1,

and

k = �4.7 ± 0.3� 
 10−2 days−1/2.

The errors were determined based on Fig. 4, similarly to the
error of �. In this parameter range the distributions of the

estimated Ŷ�t� and simulated Y�t� series agree well. The re-
sults reported throughout this paper are insensitive to the
misspecification of these parameters, even beyond these error
bars �see also Appendix B�.

The distributions of log-volatility are compared in Fig. 4
for four cases: our maximum-likelihood procedure applied to
Dow Jones, a simulation of the expOU model, the simple
estimate of Eq. �16�, and the deconvolution procedure intro-
duced in Ref. �21� which can be written as

Ŷdecon�t� = ln
1

m� dX�t�

dW1̂�t�
� , �21�

where W1�t� is a simulation of the Wiener process. Note that
this deconvoluted log-return estimator has indeed a Gaussian
distribution, but with a larger variance as hinted in Fig. 4 in

view of its wider density. We finally mention that the esti-
mate for the log-volatility ln�� /m�� lndX given by Eq. �16�
shows a non-Gaussian and biased distribution as was also

reported in Ref. �21�. This suggests that Ŷdecon is an appro-

priate “null model” to contrast with Ŷ. Both quantities are
generated by dividing dX�t� by the increments of a realiza-
tion of the Wiener process and then taking the logarithm of
the absolute value of this ratio. The difference lays in the fact

that Ŷ takes the realizations that satisfy a maximum-

likelihood requirement while Ŷdecon takes a Wiener process
realization that is purely random. In such a way, our method
keeps the divisor correlated with dX and, as we will see next,
it seems to conserve clustering and memory effects in the
log-volatility time series.

B. Clustering and the estimated volatility

To support our claim that the technique presented is pow-
erful enough in filtering the noise dW1 out of returns we will
give a visual comparison based on the following qualitative
experiments.

Figure 5 �left� displays a comparison over a 1000-day

time interval. One can observe there that the noise level in Ŷ

is substantially smaller than in Ŷdecon, as also inferred from
Fig. 4.

FIG. 4. A comparison of estimates of log-volatility for Dow
Jones. Black boxes �“estimated Y, DJIA”� represent our maximum-
likelihood method applied to empirical data. Open circles �“simu-
lated Y, expOU”� represent the distribution of the simulated sample
path of the log-volatility, assuming that Y�t� follows the expOU
model. We also plot the empirical distributions of two estimates: the
dashed line �“ln �return�, DJIA”� was obtained through Eq. �16� and
the solid line �“ln �deconv. ret�, DJIA”� via Eq. �21�.

(a)

(b)

FIG. 5. �Color online� �Top� A comparison between the estimate

Ŷ�t� and Ŷdecon�t� for a typical 1000-day period of Dow Jones.
These curves were not smoothed in order to show the substantial

reduction of both the noise level and the asymmetry in Ŷ�t� com-

pared to Ŷdecon�t� with a random approximation of the noise term

dW. �Bottom� The estimate Ŷ�t� and the logarithm of absolute re-
turn variations for the whole sample of Dow Jones.
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In order to show that such a correlation is responsible for
suppressing large fluctuations in the ratio, we can perform a
second experiment. Thus in Fig. 5 �right� we see a compari-
son between the logarithm of absolute returns variations,

lndX, and the estimated volatility Ŷ. Note that the proper
clustering of volatility becomes clearly visible.

C. Comparison with the trading volume

The hidden nature of the volatility process has been ad-
dressed by several authors �26–28�. For instance, Ref. �26�
suggests that, instead of the volatility, a good estimate would
be the square root of the daily trading volume—that is,

M���t�� � V�t��, �22�

where �=0.5 and M�·� denotes the median. In Fig. 6 we
show evidence that supports this assumption. Again, the first
estimation for the volatility is dX�t�. Therefore, we regress
lndX�t� versus ln V�t� as shown in Fig. 6. In the same figure
we also present the regression between the maximum-

likelihood estimate Ŷ�t� and ln V�t� which appears to be less
noisy than the former regression in accordance with the

smaller variance of Ŷ�t� compared to that of lndX�t�. Nev-
ertheless, the exponent ��0.55 is the same for both regres-
sions. There have been similar �46�, albeit controversial
�47,48�, findings for the price impact of single transactions.
However, Eq. �22� does not yet imply that volatility is pro-
portional to volume, only that its typical value is �i.e., the
median�. Fluctuations around the average behavior due to
changes in liquidity might have a key role in the process
�48�.

D. Predictive power of volatility

From Eqs. �7� and �8�, we know that for the expOU model
a simple relationship can be given between lndX�t� and
Y�t�:

lndX�t� = ln�mdW1�t�� + Y�t� .

Therefore, the conditional median of lndX�t� given Y�t� is

M�lndX�t�Y�t�� = const + Y�t� . �23�

We point out that this relationship implies some degree of
predictability of the absolute changes in return through their
median if one knows the current value of the log-volatility
Y�t�. We test Eq. �23� for real data and with Y�t� replaced by

its estimate Ŷ�t�. As shown by the bottom curve of Fig. 7, the
slope of the linear regression between M�lndX�t�Y� and

Ŷ�t� is not equal to 1—as would have been implied by Eq.
�23�—but 0.9, which still suggests strong predictive power.

Recall that the minimum time step of the empirical data
used is 1 day. Hence, Eq. �23� implies the prediction of to-
morrow’s return based on today’s volatility and return. We
now want to extend the prediction horizon. To this end we
generalize Eq. �23� and propose the following ansatz:

M�lndX�t + h�Ŷ�t�� = const + �h�Ŷ�t� , �24�

where h=0,1 ,2 , . . .. In Fig. 7 we test this ansatz for several
values of the horizon: h=0, 5, 20, 100, and 1000 days. We
find that the slope �h� is a decreasing function from the
value �0�=0.9 to practically zero when h=1000 days
which means a complete loss of memory. Note that, when
h=100 trading days, we have =0.25, still implying a slight
degree of prediction after approximately 5 months, which is
of the same order of magnitude than the DJIA characteristic
time scale, 1 /��500 days, for the relaxation of the volatil-
ity �21�.

V. CONCLUSIONS

The volatility is a crucial quantity for financial markets
since it provides a measure of the amplitude of price fluctua-
tions. Traders try to follow carefully the level of volatility

FIG. 6. Logarithm of daily absolute return and estimated log-

volatility Ŷ as a function of the daily volume. Days with similar
volumes were binned for better visibility. The symbols represent the
medians and the error bars the 25%–75% quantiles in the bins.

FIG. 7. �Color online� The proportionality between the esti-
mated volatility and of the logarithm of absolute return variations.
In order to decrease noise, five-day moving averages have been
used. Numbers on the right indicate the slopes of the corresponding
regression lines. Time shifts from bottom to top: h=0 days ���, 5
days ���, 20 days ���, 100 days ���, and 1000 days ���. Days
with similar absolute returns were binned for better visibility. The
symbols represent the medians and the error bars the 25%–75%
quantiles in the bins.
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because it gives the perception of the risk associated with
any asset. Although volatility was originally conceived to be
the diffusion coefficient of the price return random walk,
there is compelling evidence not to consider it a constant, but
a subordinated random process. The framework is analogous
to that of random diffusion processes which have been ap-
plied to a large variety of phenomena in statistical mechanics
and condensed matter physics.

The main obstacle to get a better knowledge of the vola-
tility’s nature is that it is not directly observed. In fact, this is
precisely the motivation behind the present research. Our
main objective has been to develop a tool which visualizes
the sample path of volatility. The procedure derives a
maximum-likelihood estimate assuming that the volatility is
a hidden Markov process. To do so, one needs also to assume
a specific model for the volatility. We have chosen a class of
two-dimensional diffusions commonly known as stochastic
volatility models, where the volatility acts as a diffusion par-
ticle trapped in a potential well. We have focused on the
expOU model and obtained promising results, especially for
three reasons: �i� the model is computationally feasible, �ii�
its parameters can be easily obtained and fit the data reason-
ably well, and �iii� the distribution of the estimated volatility
is log-normal, which is consistent with the assumed expOU
model.

We have shown for the Dow Jones index daily data that
the sample path of our estimated volatility improves other
estimates. We have compared our estimation with a rather
typical one which identifies volatility with absolute return
changes. Our estimation is able to remove the existing bias in
the stationary distribution of volatility while still preserving
the clustering in volatility time series. We have also studied
the estimate of volatility that deconvolutes the return by the
simulation of a random Wiener path �21�. This last procedure
also provides a Gaussian distribution for the log-volatility,
albeit the distribution has too fat tails and pays the price of
losing clustering and memory in the volatility time series.
Our new procedure is in fact a more sophisticated variant of
this estimate since it filters out Wiener realizations via maxi-
mum likelihood. The estimate drastically reduces the noise in
the volatility path, thus preserving data clustering. In this
way we have thus proposed an alternative method to those
already provided by the mathematical finance literature �see,
e.g., �15,30–41��. An accurate comparison between our
method and others should, however, be left for future re-
search. We may even look for a way to implement parameter
estimation in our method.

The median of the estimated volatility has also been re-
lated to the trading volume by the power-law expression
M����V0.55. A link between volatility and trading volume
has been previously mentioned in different studies; however,
our estimate is again capable of providing a less noisy re-
gression. We must, indeed, stress the fact that this does not
imply that volatility is proportional to a power of the volume,
but only that its typical value is and that fluctuations around
the average might play an important role.

We have also seen that current returns are proportional to
the estimated volatility, as otherwise expected. However, the
main novelty is that we have observed how future returns are
proportional to current volatility and their predictability di-

minishes monotonically with the number of time steps ahead.
This last finding implies that our estimation method can be
applied to predict the size of future returns with knowledge
of current volatility.

As a final remark, we stress the fact that the technique
herein presented can be applied to a variety of physical phe-
nomena besides finance. One typical problem of this sort is
provided by the Brownian motion inside a field of force in
which inertial effects are not negligible �49�. In this situation
the dynamics of the particle is described by a two-
dimensional diffusion process (X�t� ,V�t�) representing the
position and the velocity of the Brownian particle. The
maximum-likelihood technique might provide a reliable es-
timate of the velocity in the case that, for instance, the only
accessible experimental measures are the positions of the
particle at wide time steps, so that a measure of the
velocity—which implies the knowledge of two very close
positions—is too noisy and unreliable.
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Universitat de Barcelona for its hospitality during his visit at
the Departament de Fisica Fonamental. Also support by
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acknowledge support from Dirección General de Investi-
gación under Contract No. FIS2006-05204.

APPENDIX A: DERIVATION OF THE LIKELIHOOD
FUNCTION

In order to make the notation more compact, in this ap-
pendix the time dependence of the stochastic processes is
mostly indicated as a lower index. A generic stochastic vola-
tility model is defined as

dXt = f�Yt�dW1�t� , �A1�

dYt = − g�Yt�dt + h�Yt�dW2�t� . �A2�

To explain the procedure it is more convenient to work with
the discrete time version of the model. To this end, suppose
that 	t is a small time step and that the driving noises in Eqs.
�A1� and �A2� can be approximated by �cf. Eq. �19��

dWi�t� � �i�t��	t �i = 1,2� , �A3�

where �i�t� are independent standard Gaussian processes
with zero mean and unit variance. We remark that the ap-
proximation �A3� has to be understood in a mean-square
sense �45�. The discrete time equations of the model thus
read

Xt − Xt−	t = f�Yt−	t��1�t − 	t��	t , �A4�

Yt − Yt−	t = − g�Yt−	t�	t + h�Yt−	t��2�t − 	t��	t , �A5�

from which we get

�1�t − 	t� =
Xt − Xt−	t

f�Yt−	t��	t
, �A6�
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�2�t − 	t� =
Yt − Yt−	t + g�Yt−	t�	t

h�Yt−	t��	t
. �A7�

For a given number of realizations, the probability of the set
�X� ,Y�� ��= t−	t , t−2	t , . . . , t−s� can be easily obtained, as
we will see next.

Let us denote the set of realizations as �X ,Y�. Then the
Markov property of the process ensures that one can decom-
pose the joint probability density function �PDF� of this set
as a chain of products between conditional probability den-
sities. In consequence, the PDF of the whole sample path can
be written as

P��X,Y�� = P�Xt−s,Yt−s� �
�=t−s

t−	t

P�X�,Y�X�−	t,Y�−	t� , �A8�

where the first term P�Xt−s ,Yt−s� corresponds to the initial
realizations of X and Y s /	t time steps far from the present
time t; all the remaining terms of the form
P�X� ,Y�X�−	t ,Y�−	t� are the conditional PDFs for transi-
tions between consecutive steps:

�X�−	t,Y�−	t� → �X�,Y�� .

The logarithm of Eq. �A8� is

ln P��X,Y�� = ln P�Xt−s,Yt−s� + �
�=t−s

t−	t

ln P�X�,Y�X�−	t,Y�−	t� .

�A9�

On the other hand, from Eqs. �A4� and �A5� we realize
that

P�X�,Y�X�−	t,Y�−	t� = JP„�1�� − 	t�,�2�� − 	t�… ,

where J is the Jacobian of the transformation �X� ,Y��
→ (�1��−	t� ,�2��−	t�) defined by Eqs. �A4� and �A5�—
that is,

J =
1

f�Y�−	t�h�Y�−	t�	t
.

But �1 and �2 are independent standard Gaussians, hence

P��1,�2� = �1/2��exp�− ��1
2 + �2

2�/2� ,

whence

P�X�,Y�X�−	t,Y�−	t� =
1/�2�	t�

f�Y�−	t�h�Y�−	t�


exp�−
�1

2�� − 	t� + �2
2�� − 	t�

2
� .

�A10�

Substituting Eqs. �A6� and �A7� into this equation and the
result into Eq. �A9� we finally get

ln P��X,Y�� = −
s ln�2�	t�

	t
− �

�=t−s

t−	t

�ln f�Y�−	t� + ln h�Y�−	t��

+ ln P�Xt−s,Yt−s� −
1

2 �
�=t−s

t−	t � X� − X�−	t

f�Y�−	t�	t
�2

	t

−
1

2 �
�=t−s

t−	t � Y� − Y�−	t

h�Y�−	t�	t
+

g�Y�−	t�
h�Y�−	t�

�2

	t . �A11�

Let us briefly explain the origin of some of these contribu-
tions. The first summand comes from the normalization con-
stant of the Gaussian distribution �A10�. It appears in every
conditional probability density, and this is the reason for the
factor s /	t, which is the number of time steps between t−s
and t. The resulting term does not depend on the realization,
so that we can neglect it for a maximization with respect to
Y. The term also goes to −� in the 	t→0 limit, which
means that any individual realization has a probability mea-
sure zero.

The second summand is mostly the sum of the Jacobian
transformations of each transition probability and depends on
Y. Stochastic volatility models typically assume that these f
and g �cf. Eqs. �A1� and �A2�� are continuous and monotoni-
cally increasing functions or even constants. For instance, in
the expOU model we have f�x�=m exp�x� and g�x�=k. Be-
cause of this, we will also neglect this term in the maximi-
zation procedure. The contribution shifts the maximum at the
excessive cost of adding more noise to the numerical com-
putations. We can, however, look at the situation from an-
other point of view. Ignoring this term is equivalent to omit-
ting the Jacobian transformation between the two probability
density measures �cf. Eq. �A10��. In this way, we are stating
that what we are really going to maximize is the probability
of the realization of �1�t� and �2�t�—instead of Y�t�—in
terms of the past history of the process expressed by �X ,Y�.

The term ln P�Xt−s ,Yt−s� is fixed by the initial conditions
of the process. If we assume a known initial return X—which
can be set to zero—and take a random Yt−s following the
stationary distribution Pst�Yt−s� given by Eq. �9�, then
P�Xt−s ,Yt−s�=��Xt−s−X�Pst�Yt−s� and hence

ln P�Xt−s,Yt−s� = ln Pst�Yt−s� + ln ��Xt−s − X� . �A12�

Had we taken another initial condition, the technique would
have given equivalent results �we have checked this by using
several initial distributions�. For this reason and in order to
improve the convergence of the maximum-likelihood esti-
mate we have neglected also this contribution.

We therefore write

ln P��X,Y�� 	 −
1

2 �
�=t−s

t−	t � X� − X�−	t

f�Y�−	t�	t
�2

	t

−
1

2 �
�=t−s

t−	t � Y� − Y�−	t

h�Y�−	t�	t
+

g�Y�−	t�
h�Y�−	t�

�2

	t + ¯ .

�A13�

We can represent this equation in the continuous-time frame-
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work if 	t is sufficiently small and if f�x�, h�x�, and g�x� are
continuous. In such a case, Eq. �A13� yields the result given
in Eq. �11�.

APPENDIX B: ROBUSTNESS OF THE PROCEDURE

In order to show that our volatility estimation procedure is
robust, we carry out four measurements along the lines of
Sec. III C. We generate artificial time series of the same
length as the DJIA data set, with the same parameters as
therein: m= �7.5±0.5�
10−3 days−1/2, �= �1.82±0.03�

10−3 days−1, and k= �4.7±0.3�
10−2 days−1/2.

Then we reproduce Fig. 1 in several variations:
�a� In a way identical to the paper as shown in Fig. 1.

�b� Data generated as in �a�, but for reconstructing Ŷ we
use the above parameters minus twice the error specified
above.

�c� Data generated as in �a�, but for reconstructing Ŷ we
use the above parameters plus twice the error specified
above.

�d� In a way identical to �a�, but the data is detrended by
the Monte Carlo sample mean �. We recall, however, that
the process is driftless as given by Eq. �3�. In this way we
want to check whether detrending causes a systematic bias in
the estimation.

The results are given in Fig. 8. The plot shows that either

option gives the same width of the Ŷ distribution and the bias
introduced by either specification error is small. We have
also run similar simulations, but with very different param-
eters values, and the procedure still provides consistent re-
sults similar to those given by Fig. 8.

Finally, a more detailed test along the lines of point �d�
above can be performed �that is, a test on whether the de-
trending causes a bias in our estimation procedure�. We thus
have repeated the test �d� also including errors 10� and
100�. The procedure tolerates up to 10 times more detrend-
ing error than expected in the real data set. Only, when we

have about 100 times the error does the reconstruction show
a strong upward bias for low-volatility periods as shown in
Fig. 9. All these results imply that possible errors in the
detrending procedure could affect our procedure only when
any wrong specification of the drift is far outside the error
domain involved in our DJIA data set.

APPENDIX C: DERIVATION OF Eq. (20)

We start from Eq. �7� which we write in the approximate
form

	X�t� 	 meY�t�	W�t�;

thus, ln	X�t�=m+Y�t�+ln	W1�t� and, taking into account
that �Y�t��=0, we have

�ln	X�t�� 	 ln m + �ln	W1�t�� . �C1�

On the other hand, we know that 	W1�t����	t, where � is
a standard Gaussian variable �cf. Eq. �19��. Hence

�ln	W1�t�� � �ln�� + �ln 	t�/2.

But

�ln�� =
1

�2�



−�

�

e−�2/2 ln�d� ,

which, after a simple change of variables inside the integral,
yields �50,51�

�ln�� =
1

2�2�



0

�

x−1/2e−x/2 ln xdx = − ��/2� + ln 2� ,

where =0.5772. . . is the Euler constant. Therefore,

�ln	W1�t�� � �ln 	t�/2 − � + ln 2�/2. �C2�

Substituting Eq. �C2� into Eq. �C1� proves Eq. �20�.

FIG. 8. Estimated log-volatility Ŷ as a function of the actual
log-volatility Y taken from 29 038 simulations of the expOU model
in four ways. Reconstruction uses the last s=10 values of returns
and I=105 iterations. The error bars represent the 25% and 75%
quantiles of the distribution estimated volatility.

FIG. 9. Estimated log-volatility Ŷ as a function of the actual
log-volatility Y taken from 29 038 simulations of the expOU model
in three different levels of “detrending error.” Reconstruction used
the last s=10 values of returns and I=105 iterations. The error bars
represent the 25% and 75% quantiles of the distribution estimated
volatility. Note that there only exists a clear deviation when the
error is 100 times the true bias.
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