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ABSTRACT

Fragment-based drug discovery (FBDD) has been popular in the last decade, but some 
drawbacks, such as protein denaturation or ligand aggregation, have not yet clearly 
overcome in the framework of biomolecular simulations. In this work a systematic and 
semi-automatic method is presented as a novel proposal, named fragment dissolved 
Molecular Dynamics (fdMD), to improve research in future FBDD projects. Our method 
employs simulation boxes of solvated small fragments, adding a repulsive Lennard-Jones 
potential term to avoid aggregation, which can be easily used to solvate the object of 
interest. This method has the advantage of solvating the target with a low number of 
ligands, thus preventing this way denaturation of the target, while simultaneously 
generating a database of ligand-solvated boxes that can be used with other targets. A 
number of scripts are made available to analyze the results and obtain the descriptors 
proposed as a means of trustfully discard spurious binding sites. To test our method, four 
sets of different complexity have been solvated with ligand boxes and four molecular 
dynamics runs of 200 ns length have been run for each system, which have been extended 
up to 1 μs when needed. The reported results point that the selected number of replicas 
are enough to identify the correct binding sites irrespective of the initial structure, even 
in the case of proteins having several close binding sites for the same ligand. Among the 
proposed descriptors, average MMGBSA and average KDEEP energies emerge as the most 
robust ones. 
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1. INTRODUCTION

High-throughput screening (HTS) has been a very important approach for drug discovery 
since 1990s, thanks to which drugs to treat cancer (Sorafenib), HIV (Tripanavir) or 
diabetes (Sitagliptin), among many others, have been developed1. However, even using 
multimillion compound libraries the awareness of the huge chemical space to be explored, 
estimated at 1063 possible small drug-like molecules,2 allowed fragment-based drug 
discovery (FBDD) to emerge as a new strategy to overcome some of the HTS drawbacks. 
Thus, with a fragment library consisting of 1000 to 5000 compounds adhered to the “rule 
of three”,3 a reasonable number of hits can be obtained without overwhelming screening 
methods. FBDD has nowadays become an established technique which has allowed the 
development of more than 30 drug candidates.4

FBDD has also been approached from a theoretical perspective. Many of these 
approaches are inspired by Dagmar Ringe´s multiple solvent crystal structures (MSCS) 
method,5 which involves solving the crystal structure of the protein in the presence of 
different organic cosolvents, so that locations of the protein in which these cosolvents 
repeatedly appear are correlated with binding sites, hotspots and even allosteric sites. 
These methods have evolved from using static structures to represent the protein, like 
GRID,6 MPS,7 or FTMap,8 to molecular dynamics (MD) based approaches that allow the 
conformational adaptation of the protein to the presence of the probes simulating the 
protein in a solution of water and cosolvent molecules. Among the latter, Barril´s 
MDmix9 was the first to adopt the MD approach, followed by others like SILCS10 and 
MixMD.11 One of the important parameters which these methods deal with different 
approximations is the cosolvent concentration, because on the one hand a high cosolvent 
concentration can lead to protein denaturation,12 and on the other it would need the use 
of artificial repulsion terms in order to prevent aggregation of hydrophobic cosolvents.10 
Different strategies have been presented to overcome these limitations. For example, 
MixMD avoids these problems with the use of miscible cosolvents at very low 
concentrations.

Another theoretical approach in the FBDD framework is that followed by Fabritiis and 
coworkers, in which a fragment is randomly placed in a solvated box and multiple short 
MD runs are performed to obtain ensembles up to 100 μs,13, 14 with the final goal of 
predicting the binding site and binding mode of a set of fragments. The use of very long 
MD simulations has also been proven useful to predict the binding sites and binding 
modes of ligands. Thus, 10 μs or longer MD simulations with a box containing 6 dasatinib 
molecules,15 or 1 μs or longer simulations with a box containing 10 GPCR ligands16 
resulted in spontaneous binding events. Another approach aimed at finding the binding 
site and binding pose of full-sized ligands using a high number of copies of the ligand in 
the box (64-96), which required the use of a repulsive term in the form of a Lennard-
Jones potential, has recently been published.17 

In this study we propose a MD based systematic and semi-automatic procedure aimed at 
finding the binding site of a small ligand without any previous knowledge of which is the 
real/experimental binding site of that ligand with its target protein, thus allowing its 
conformational adaptation. We think that our method could be of use in the initial stages 
of a FBDD project, in which the affinities and the binding sites of a database of fragments 
to a target protein are obtained to, later on, grow the most promising fragments to finally 
obtain a drug, for which having information of the binding site is essential. The method, 
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which we call fdMD (fragment dissolved Molecular Dynamics), uses a previously 
equilibrated box containing one copy of the ligand solvated with TIP3P water 
molecules.18 Thus, solvation of different proteins with this pre-equilibrated box renders 
simulation systems containing from 6 to 26 ligand molecules, which prevents the problem 
of protein denaturation. Besides, the use of a selected set of descriptors allows to rank the 
located binding sites, select the correct binding site as the best positioned, and discard 
spurious binding sites using four MD simulation of 200 ns length.19

2. METHODS

2.1. fdMD Flowchart. The fdMD procedure is summarized in Figure 1. In step 1, the 
ligand is meticulously prepared for the following calculations with Amber18.20 Next, the 
ligand is solvated with TIP3P18 water molecules using the LEaP module of Amber18,20 
generating a solvated ligand box. Then, the solvated ligand box is subjected to 
minimization followed by a MD run, and the final snapshot of that MD run is exported to 
build the solvation box (a more detailed explanation is described in the SI). Then, each 
protein, prepared in step 2, is solvated with LEaP in step 3 using the equilibrated ligand 
box obtained in step 1 (a more detailed explanation is available in the SI) and after a 
minimization and equilibration protocol, four independent MD runs of 200 ns length 
minimum (step 4) are computed. Each trajectory is analyzed using four scripts. The first 
script (fdMD_OneTraj.cmd), which corresponds to step 5 in Figure 1, strips water 
molecules and counterions from the trajectory, divides the global trajectory into N 
protein-ligand trajectories (each one containing the protein and only one ligand), being N 
the number of ligands in the simulation box, and writes the last snapshot of each of the N 
trajectories in PDB format. The remaining scripts, devoted to the analysis, correspond to 
step 6 in Figure 1. Thus, the second script (fdMD_ReactiveTraj.py) decides which of the 
N trajectories are reactive, analyzing if the ligand is interacting with a possible binding 
site during a pre-established simulation time at the end of the trajectory (an extended 
discussion about our concepts of reactive trajectory and binding site is described in the 
SI). Scripts 3 and 4 (fdMD_MMGBSA_Send.cmd and fdMD_MMGBSA_Analize.py) 
generate the inputs needed to run a MMGBSA21 calculation and to extract and graph data 
from those calculations. The user then visualizes the possible binding sites occupied and 
can tabulate, for each trajectory, how much time the ligand remains in each possible 
binding site (the residence time, RT) and the MMGBSA binding energy for the last 20 ns 
of trajectory. Using the last snapshot of each trajectory one can also tabulate the binding 
energy calculated with KDEEP,22

 a fast machine-learning approach for predicting binding 
affinities using 3D-convolutional neural networks. 

We propose to rank the possible binding sites using a consensus of six descriptors. Two 
of these descriptors (average MMGBSA binding energy and average KDEEP binding 
energy) consider the number of trajectories in which a ligand interacts with a particular 
binding pocket (number of reactive trajectories, nr): the average MMGBSA binding 
energy and average KDEEP binding energy are obtained from the average value of the total 
number of trajectories (nt). If there is no interaction of the ligands with that binding site 
in a trajectory, the value of the magnitude to be averaged in the calculation of the 
descriptor (  or , see equation 1, which shows how to obtain ) ∆GMMGBSA

i ∆GKDEEP
i ∆GMMGBSA

average
would be zero. Thus, the proposed descriptors are average MMGBSA binding energy, 
average KDEEP binding energy, best MMGBSA binding energy, best KDEEP binding 
energy, number of reactive trajectories (i.e. how many of the four trajectories end up with 
one ligand interacting with the analyzed binding pocket), and longest RT. After analyzing 
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all found binding sites, the one with the best descriptors is chosen as a reference. Then, 
the descriptors for the remaining binding sites are compared to those of the best one. We 
propose as a consensus criterium to consider a binding site as false if more than three 
descriptors are worse than those of the chosen as best binding site. However, a binding 
site can be considered as probable if two or more descriptors are better than those of the 
best binding site. When more than one probable binding sites are encountered, the MD 
simulation time should be increased, the descriptors re-calculated, and the analysis 
repeated (a detailed description of the application of this protocol to solve any possible 
situation is described in the SI). It is important to note that there may be more than one 
experimental binding site. The scripts used, together with a toy example, can be 
downloaded at https://github.com/DrugDesignUBUJA/fdMD.

   (1)∆𝐺𝑀𝑀𝐺𝐵𝑆𝐴
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =

∑𝑛𝑟
𝑖 = 1∆𝐺𝑀𝑀𝐺𝐵𝑆𝐴

𝑖

𝑛𝑡   𝑤𝑖𝑡ℎ 𝑛𝑡 = 4
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Figure 1. The fdMD flowchart. Each step is labelled in red.
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2.2. Test Systems. Four different protein-ligand sets were selected for this study (see 
Table 1), which are intended to show examples of increasing difficulty. Set I is designed 
to check if the fdMD methodology is robust enough to find the correct binding site 
irrespective of the initial protein structure (therefore, we compare the protein 
experimental structure bound to that ligand or another structure of the same protein bound 
to another ligand). Thus, we selected four ligands of the 38 for which G. Klebe and 
collaborators23 obtained an experimental X-ray structure bound to endothiapepsin. This 
protein exhibits a large, solvent exposed, pocket that the authors divided into nine sub 
pockets and labeled according to the Schechter and Berger nomenclature.24 We have 
chosen four ligands, namely f031, f035, f207 and f240 (their structures are shown in Table 
1), so that they span the protein pocket. For each ligand, the fdMD methodology has been 
essayed using, as stated before, two different initial protein structures. In the first one the 
experimental structure of the ligand bound to that protein (labelled with the name of the 
ligand) was used, while in the second one the protein structure was the holo form bound 
to the randomly selected f278 ligand, with PDB code 5DR123 (labelled as 
NameLigand_5DR1).
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Table 1. Protein-ligand systems and number of ligands of each fdMD simulation.

Liganda Protein Label PDB ID Ligandsb

f031 5DPZ23

f031_5DR1 5DR123
9

f035 4Y3W23

f035_5DR1 5DR123

12

f207 4Y3T23

f207_5DR1 5DR123

12

f240 4YD623 8

SET 
I

Endothiapepsin

f240_5DR1 5DR123 12

Urokinase 1fv9 1FV925 26

Hsp90 2jjc 2JJC26 25SET 
II

BACE-1 2ohk 2OHK27 25

class1 20

SET 
III

MCL-1

class2

4OQ528

26

dmso 8

FKBP

dss

1D6O29

6
SET 
IV

HPK4 aca 1PMK30 8

a The dashed line circle indicates the C99/S99 atom (see below)
b Number of ligands in the simulation box.
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Set II evaluates the efficiency of the fdMD methodology in three different proteins (see 
Table 1), each one using the corresponding ligand of the X-ray structure and thus showing 
each protein in its holo form. The experimental binding sites of set II are much less solvent 
exposed than those of endothiapepsin, supposing a greater challenge for our fdMD 
method. The systems were selected from a set of 12 protein-fragment complexes reported 
by M. Congreve et al.,26 set also used in a theoretical article that essayed a combined 
Multiple Copy Simultaneous Search (MCSS) and MMGBSA approach,31 avoiding the 
existence of cofactors in the structures. 

Set III deals with the usual situation in a FBDD project, in which the available protein 
structure is that in its apo form. Besides, set III also tests the performance of our 
methodology to detect the correct binding site for a system composed of bigger ligands. 
Actually, one of the drawbacks of the fdMD methodology comes from the fact that the 
repulsion term used to prevent aggregation of ligands (see the Simulation Details section) 
limits the size of the ligand to be studied, because the cut-off distance for the van der 
Waals interactions is not big enough. While this limitation is intended to be fixed, in this 
work we overcome this restriction by splitting the ligand into two parts.  Thus, set III is 
composed of two ligands, 3-chlorobenzo[b]thiophene-2-carboxylate (class1) and 3-(4-
chloro-3,5-dimethylphenoxy)propanoate (class2), which individually bind myeloid cell 
leukemia 1 (MCL-1) with Ki of 131 μM and 60 μM, respectively. No experimental 
structure is available for these two fragments in complex with MCL-1. However, when 
linked together these two fragments render a compound with Ki = 0.32 μM,32 for which 
an X-Ray structure is available (PDB code 4HW3),32 although the target essayed in this 
study will use the apo form of the MCL-1 protein with PDB code 4OQ5.28

Finally, set IV is aimed at comparing and discussing the performance of fdMD in three 
systems studied by ColDock,17 a recently published method that determines protein-
ligand complexes and also uses a repulsive term in the form of a Lennard-Jones potential. 
All the selected complexes start with the apo structure of the protein (see Table 1) even 
though their corresponding holo structures are available. One of these three ligands is 
dimethylsulphoxide (dmso), highly miscible in water and with a Ki = 20 mM with the 
FK506 binding protein (FKBP).33 The other two fragments, methyl sulphinyl-methyl 
sulphoxide (dss) and -aminocapric acid (aca), present Ki = 250 μM with the FKBP 𝜀
protein33 and IC50 = 40-105 μM with the human plasminogen kringle 434 (HPK4), 
respectively.

2.3. Protein Preparation. Each protein structure was downloaded from the Protein Data 
Bank35 (PDB codes are shown in Table 1). Water molecules and crystallized ligands were 
removed, disulfide bonds were created when needed, and residues were protonated with 
the Protein Preparation Wizard36 of Maestro 2016-237 at the experimental pH, when 
available. Missing residues in the 2OHK PDB were included through homology 
modelling with the X-ray structure of memapsin 238 (PDB code 1FKN) using the Prime39, 

40 module of Maestro 2016-2.37 Each protein structure was then loaded into the LEaP 
module of the Amber1820 suite, where counterions, if needed, were added, and each 
protein was solvated using TIP3P water molecules18 with a minimum distance from the 
edge of the box of 15 Å, and removing those water molecules closer than 2.0 Å from any 
protein atom. The ff14SB41 force field was used and the solvated protein was minimized 
with pmemd19 for 10000 steepest descent (SD) steps with a cut-off of 10 Å for non-
bonded interactions, being electrostatic interactions modelled with the particle-mesh 
Ewald method42. The apo structure of MCL-1 used for set III was obtained with a specific 
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procedure. Starting from the X-ray structure with PDB code 4OQ5, which was prepared 
in the same way, the minimized, ligand free, 4OQ5 structure, was subjected to a heating 
and equilibration protocol with the CUDA version of pmemd43-45. All bonds involving 
hydrogen atoms were constrained to their equilibrium value using the SHAKE 
algorithm.46 A two steps preparation protocol with an integration time step of 2 fs was 
used which included increasing the temperature of the system to 300 K at a constant rate 
of 1.5 K ps-1 during 200 ps in the NVT ensemble and 500 ps at 300 K in the NPT ensemble 
to adjust density. After 200 ns of MD 300 K in the NVT ensemble, a clustering analysis 
with cpptraj20 allowed to extract the representative of the most populated cluster as an 
apo structure for MCL-1.

2.4. fdMD Simulations. Each ligand was prepared with Maestro 2016-237 and optimized 
with semiempirical Austin Model 1 (AM1).47 Parameters and charges for the ligands were 
then obtained using Antechamber20 with generalized Amber force field (GAFF2) 
parameters,48 whilst partial charges were derived through the AM1-BCC method.49, 50 
One of the central carbon (sulphur in the dmso system) atoms names (indicated in each 
ligand structure shown in Table 1 with a dashed circle) was changed to C99/S99 to later 
apply a repulsion term needed to avoid ligand aggregation. These parameters were loaded 
into LEaP, where counterions, if needed, were added, and each ligand was solvated using 
TIP3P18 water molecules, as done during the protein preparation step. Each box was then 
subjected to 10000 SD minimization steps and the same heating and equilibration 
protocol used for MCL-1. The production run consisted of 10 ns of MD, and the last 
snapshot of the production run was used as a solvation box for the preparation of each of 
the systems studied (a more detailed explanation of the procedure used, together with 
information about the final boxes, is described in the SI). 

The minimized structure of each of the proteins studied was used, without water and 
counterions, as a starting point for fdMD simulations (see Protein preparation). Thus, 
each protein was solvated with the corresponding equilibrated ligand solvation box. In 
this process, any molecule in the ligand solvation box closer than 1.0 Å from any protein 
atom was removed, and the minimum distance from the edge of the box was chosen, 
depending on the size of the ligand and the shape of the protein, so that a reasonable 
number of ligands were placed in the simulation box, thus using values from 11 to 20 Å 
(a more detailed explanation is described in the SI). Finally, counterions were added when 
needed. The ff14SB41 force field was used for subsequent calculations. Besides, 
ParmEd20 was used to modify the topology in order to use hydrogen mass repartitioning51 
(HMR) and to add a Lennard-Jones repulsion potential, setting to zero the attractive part 
(BC99/S99-C99/S99 = 0), between C99/S99 atoms of the ligands, with =-0.01 kcal·mol-1 and 𝜀
Rmin=23.0 Å.

Each system was minimized and equilibrated using the previously described protocol and 
parameters, with the exception of the cut-off for non-bonded interactions which was 
increased to 14 Å. Four independent production runs of 200 ns length with an integration 
time of 4 fs were then used to select the reactive trajectories and score them according to 
the proposed descriptors.

2.5. fdMD Analysis: Selection and Scoring of Reactive Trajectories. Each of the 
stripped trajectories, which contain the protein and one of the ligands from a ligand 
solvation box used to solvate the protein, were obtained with the fdMD_OneTraj.cmd 
script. The fdMD_ReactiveTraj.py script analyzed these trajectories by means of the 
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Euclidean distance for atom C99/S99, measured between the last snapshot and all 
previous ones (dis(C99last-C99t)/dis(S99last-S99t), being C99last/S99last the position of the 
C99/S99 atom in the last snapshot of the trajectory and C99t/S99t the position of the 
C99/S99 atom at each time t of the trajectory. Thus, a trajectory is considered reactive if 
(i) the C99/S99 atom has at least one protein atom at a distance below a predefined cut-
off (5 Å in this work) in the last snapshot and (ii) this distance remains below the cut-off 
at least during the 90% of snapshots during the last 20 ns of the simulation time. A picture 
of the evolution of the (dis(C99last-C99t)/dis(S99last-S99t) along the simulation time is 
plotted (see the second picture of step 6 in Figure 1) by the script.

Furthermore, another script is outputted to delete the files related to non-reactive 
trajectories, together with a PDB file of each last snapshot to be used to obtain KDEEP

22
 

binding energies. The MMGBSA calculations which are automatically sent for each of 
the reactive trajectories (script fdMD_MMGBSA_Send.cmd) used no entropic 
contributions, with the modified GB model by Onufriev et al.52 (igb=2) and all remaining 
parameters set at their default values. Finally, fdMD_MMGBSA_Analize.py was 
instructed to calculate the average binding energy in intervals of 20 ns for all the reactive 
trajectories. Also, a picture of the evolution of the Gbinding obtained by the MMGBSA 
method along the simulation time is generated by this script (see the first picture of step 
6 in Figure 1).

3. RESULTS AND DISCUSSION

3.1. Set I: Proving the Robustness of fdMD with the Endothiapepsin Protein. Results 
for set I are summarized in Tables 2 and S3. In general terms, no more than 2 pockets are 
found in each of the systems studied despite using 8 to 12 ligands in 4 different MD runs. 
Besides, results are equally good irrespective of the initial protein structure, indicating 
that the method can avoid any possible bias due to the conformation of the receptor at the 
beginning of the simulation. 

For the f031 (and f031_5DR1) system, two possible binding sites (pockets S1´and S6) 
are found, being S1´ the best one according to the descriptors. Both of them, interestingly, 
exhibit a hydrophobic character. Among these two binding sites, Pocket S6 would be 
easily discarded as false positive using the proposed descriptors, which always point that 
S1´ is better with the exception of the best KDEEP binding energy (that is, just one 
descriptor is better for S6 than for S1´). The f035 and f035_5DR1 systems have 2 
experimental binding sites, pockets S3 and S6, whose proximity prevent fdMD from 
obtaining reactive trajectories in both pockets for the same MD run (see Table S3). 
Precisely, the low time the ligand is interacting with pocket S6 in MD run 4 of the f035 
system (just 20 ns), is due to the fact that the ligand is oscillating between both pockets 
(see video as Web Enhanced Object). F207 experimentally binds to three pockets: the 
catalytic dyad, pocket S6 and pocket S2. Two of these three pockets (the catalytic dyad 
and pocket S6) are predicted by fdMD. This fact can easily be explained looking the 
spatial distribution of these three pockets; pocket S2 is located between the catalytic dyad 
and pocket S6. Thus, the two extremes are far enough to appear interacting with their 
ligand even in the same trajectory (Table S3), ), but pocket S2 is too close to the other 
two pockets to appear in the same trajectory interacting with the ligand when pocket S6 
or the catalytic dyad have already a ligand nearby. In addition, the small binding affinity 
of this ligand for pocket S2 probably prevents it to arise alone. No false positives are 
predicted and the descriptors, with the exception of best KDEEP binding energy for 
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f207_5DR1, suggest that the catalytic dyad is the preferred binding site. F240 exhibits a 
false positive (pocket S6) in one of the MD runs, while no false positives appear for the 
f240_5DR1 system. This false positive can be easily discarded after analyzing the 
proposed descriptors, as all its descriptors are worse than those of the best binding pocket 
(pocket S1). Figures 2 and S1 illustrate experimental and predicted poses using the natural 
or 5DR1 receptor, respectively. These figures allow concluding that, although the binding 
sites are correctly located, the experimental binding mode is not always found. 

It should be noted that for these particular systems, averaged MMGBSA, best MMGBSA 
and average KDEEP values appear as good global descriptors for this set. They clearly 
indicate that the best binding site and the energetic order for the different ligands is 
maintained irrespective of the receptor. The only case where the value of these descriptors 
is very different for the two receptors is pocket S3 of the f035 system, because different 
binding poses are found for each receptor structure, corresponding the best MMGBSA 
value to the binding site closer to the experimental structure (compare Figure 2b and 
Figure S1b).

Finally, in order to test the stability of our method with respect to the simulation length, 
we extended the four MD runs of two of the converged systems, f031_5DR1 and 
f035_5DR1, up to 300 ns length. In both calculations the worst binding site disappears 
and the one closer to the experimental structure remains (see Table S4, S5 and Figure 
S2).
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Table 2. Descriptors calculated for reactive trajectories of set I. Pockets are defined in 
reference 23. MMGBSA and KDEEP energies in kcal mol-1.

 Systema Binding 
site

Ave. 
MMGBSAb

Ave. 
KDEEP

c
Best 

MMGBSA
Best 

KDEEP

N. 
react.d

Best 
RTe

Pocket S1´ -12.2 -6.0 -15.1 -6.4 4 180
f031

Pocket S6 -5.2 -3.5 -10.6 -7.2 2 75
Pocket S3 -6.1 -1.4 -24.4 -5.5 1 120

f035
Pocket S6 -2.9 -1.1 -11.5 -4.2 1 20

Dyadf -10.3 -4.3 -18.9 -6.1 3 180
f207

Pocket S6 -5.5 -2.5 -12.2 -5.2 2 80

Pocket S1 -16.9 -2.9 -18.3 -5.9 2 140N
at

ur
al

 R
ec

ep
to

r

f240 Pocket S6 -2.2 -1.1 -8.7 -4.4 1 40
Pocket S1´ -11.9 -5.2 -12.4 -6.2 4 180f031_5DR1
Pocket S6 -2.7 -1.6 -10.7 -6.4 1 20
Pocket S3 -22.0 -4.3 -31.6 -6.3 3 170f035_5DR1
Pocket S6 -3.9 -1.3 -15.7 -5.2 1 180

Dyadf -15.3 -5.3 -18.5 -5.9 4 170f207_5DR1
Pocket S6 -2.9 -1.4 -11.4 -6.2 1 405D

R
1 

R
ec

ep
to

r

f240_5DR1 Pocket S1 -15.9 -6.2 -17.3 -6.4 4 150

a See definition in Table 1.b Average MMGBSA binding energy (see Equation 1). c 
Average KDEEP binding energy. d Number of reactive trajectories interacting with that 
binding pocket. e In ns. f Catalytic dyad. In bold the best value for each descriptor.

Figure 2. Comparison of experimental (carbon atoms magenta) and predicted (carbon 
atoms cyan) binding poses for the different systems studied in set I with their 
experimental receptor. a) f031, pocket S1´, b) f035, pocket S3, c) f035, pocket S6, d) 
f207, catalytic dyad, e) f207, pocket S6, f) f240, pocket S1. Hydrogen atoms are omitted 
for clarity.

3.2. Set II: Search for Low Solvent-Exposed Pockets. As can be seen in Tables 3 and 
S7, the results of the fdMD method are system dependent. In the case of the 2jjc system, 
it is easy to decide which binding site is the false positive among the two found. Hence, 
BS 1, for which the only descriptor favoring this false positive is the best MMGBSA 
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binding energy, can be discarded. On the other hand, the 1fv9 system presents nine 
possible binding sites, but in this case BS 1 is the binding site with best descriptors. The 
experimental pocket should be considered as doubtful, taking into account that two 
descriptors (average KDEEP binding energy and number of reactive trajectories) are better 
for it than for BS 1. We increased the simulation time to 300 ns to shed some light on this 
system. All previous reactive ligands, except for those in BS 1, BS 3 and the experimental 
one, left their respective binding sites and, at the same time, allowed to easily identify BS 
1 and BS 3 as spurious binding sites after comparing the descriptors. Now the 
experimental binding site is the best one, and best KDEEP binding energy, with a small 
difference of 0.1 kcal mol-1 is the only descriptor better for BS 1 and BS 3 than for the 
experimental one.
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Table 3. Descriptors calculated for reactive trajectories of set II. Pockets are defined in 
Table S6 and reference 53. MMGBSA and KDEEP energies in kcal mol-1.

Simulation 
time Systema Binding site Ave. 

MMGBSAb
Ave. 

KDEEP
c

Best 
MMGBSA

Best 
KDEEP

N. 
react.d

Best 
RTe

Experimental -11.6 -3.7 -17.8 -5.2 3 190
BS 1 -12.0 -2.7 -25.4 -5.7 2 190
BS 2 -3.1 -1.4 -12.3 -5.6 1 40
BS 3 -8.5 -2.4 -17.0 -4.9 2 138
BS 4 -3.0 -1.3 -12.1 -5.0 1 30
BS 5 -3.3 -1.3 -13.1 -5.0 1 152
BS 6 -4.0 -0.8 -16.0 -3.2 1 49
BS 7 -2.7 -1.4 -10.9 -5.7 1 54

200 ns

BS 8 -2.8 -1.5 -11.2 -5.8 1 38
Experimental -15.6 -3.9 -25.4 -5.5 3 290

BS 1 -5.7 -1.4 -22.7 -5.6 1 290300 ns

1fv9

BS 3 -8.4 -2.8 -16.6 -5.6 2 238
Experimental -6.9 -3.6 -11.0 -4.9 3 190200 ns 2jjc

BS 1 -4.6 -1.0 -18.2 -4.0 1 170
S1 -5.85 -2.6 -11.8 -5.2 2 161

BS 1 -2.48 -1.1 -9.9 -4.4 1 39
BS 2 -2.00 -0.9 -8.0 -3.6 1 20
BS 3 -3.60 -0.9 -14.4 -3.6 1 180
BS 4 -9.28 -3.6 -13.8 -5.6 3 141
BS 5 -1.68 -1.4 -6.7 -5.6 1 62

200 ns

BS 6 -4.35 -2.3 -8.8 -5.5 2 47
S1 -5.3 -2.8 -11.0 -5.7 2 261

BS 3 -4.1 -1.1 -16.4 -4.5 1 280300 ns
BS 4 -9.6 -3.7 -12.8 -5.6 3 241

Experimental -2.5 -1.5 -9.9 -5.9 1 28
1 μs

2ohk

BS 4 -3.3 -1.1 -13.2 -4.2 1 829

a See definition in Table 1.b Average MMGBSA binding energy (see Equation 1). c 
Average KDEEP binding energy. d Number of reactive trajectories interacting with that 
binding pocket. e In ns. In bold the best value for each descriptor.

Probably, the 2ohk system (BACE-1 protein) is the most complicated to interpret because 
of the binding mode of the ligand. Seven possible binding sites are found, none of them 
corresponding to the experimental one, although two reactive trajectories show the ligand 
interacting with an already reported hydrophobic pocket named S1.53 It is very interesting 
to realize that, newly synthesized, bigger BACE-1 inhibitors actually interact both with 
S1 and the catalytic aspartate dyad,54-60 with which 3-chlorobenzo[b]thiophene-2-
carboxylate interacts. A simulation time of 200 ns would allow to conclude that the best 
binding site is BS 4, and only BS 3, for which the best MMPBSA binding energy and the 
residence time are better, could be considered doubtful. Then, an increase in 100 ns of 
each of the MD runs implies that the ligands in all binding sites apart from S1, BS 3 and 
BS 4 move away from their corresponding binding sites, and the experimental binding 
site would not still been found. Another increase in the simulation time from 300 ns to 1 
μs allows 3-chlorobenzo[b]thiophene-2-carboxylate in MD run 4 to move out of the S1 
pocket (see Table S3), while that in MD run 2 finds the experimental binding site. 
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A change in the conformation of the side chain of TYR71 plays a key role in the binding 
mechanism of the ligand (see Figure 3d). The conformation adopted by this TYR71, 
which is not seen in any holo nor apo BACE-1 experimental structure, blocks the path to 
find the experimental binding site and can explain the need for a higher simulation time 
or enhanced sampling techniques when dealing with cryptic pockets. It is worth to 
mention that for the 1fv9 and 2jjc systems the correct orientation for the ligands in their 
corresponding pocket is found (see Figures 3a and 3b), and negligible differences in the 
binding pose are seen in 1fv9 when going from 200 ns to 300 ns in the simulation time. 
Contrarily, the right orientation is not achieved for the 2ohk system even with 1 𝛍s of 
MD (see Figure 3d).

Figure 3. a-c) Comparison of experimental (carbon atoms magenta) and predicted 
(carbon atoms cyan) binding poses for the different systems studied in set II. a) 1fv9 after 
200 ns, b) 2jjc after 200 ns, c) 2ohk after 1 μs. d) Comparison of the conformation adopted 
by TYR71 and position of 1-amino-isoquinoline between the experimental structure 
(carbon atoms magenta), MD run of 200 ns (carbon atoms yellow) and MD run of 1 μs 
(carbon atoms cyan). Hydrogen atoms are omitted for clarity.

3.3. Set III: Apo Form of MCL-1 and Large Size Ligand. This could be considered the 
most challenging set since the target is used in its apo form.  As can be seen in Tables 4 
and S8, eight possible binding sites are found after 4 MD runs of 200 ns for the class1 
system, with the experimental pocket being the best one. In the case of class2, twelve 
possible binding sites are found, being also the experimental pocket the one with best 
descriptors (see below). Among these binding pockets, BS 1361 and BS 1462 have already 
been reported for other MCL-1 inhibitors. Focusing on the class1 system, it can be easily 
concluded that all the binding sites apart from the experimental one can be discarded 
according to our criteria. However, although the binding pocket is found, the predicted 
binding pose needs improvement (see Figure 4), so further 100 ns were calculated. As 
happened before, an increase in the simulation time implied that some ligands moved 
away from their binding site, while also the binding pose improved in the experimental 
binding site. It is important to note that in this set we are using fragments of the real 
compound, while the complete experimental structure is taken as a reference. Therefore, 
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some differences are expected in their binding mode as a consequence of differences in 
size and binding interactions with the protein.

In the case of the class2 system, fdMD finds the experimental binding pocket with only 
200 ns of molecular dynamics, although the binding pose adopted by this part of the 
original ligand is similar to the pose found by the fragment of the class1 system (see 
Figure 4). An increase of 100 ns induces six ligands to move out of their corresponding 
binding site, and the remaining ones can also be marked as spurious using the proposed 
descriptors and consensus criterium, since all descriptors are worse for them (BS 4, BS 
6, BS 10, BS 11 and BS 14). In order to check if more simulation time would allow the 
class2 system to find the correct binding pose, a further increase in the simulation time to 
1 μs was performed. This increase in the simulation time implied that ligands in all 
binding sites but the experimental one leave their binding sites while 3 reactive 
trajectories interacting with the experimental class1 binding site remain. As described 
previously for the 2ohk system, an increase in the simulation time, even to 1 μs, is not 
enough to find the correct binding pose. However, for this particular case we can point 
towards two different hypotheses. The first one suggests the convenience of using 
enhancing sampling techniques when the final goal is not only to find the binding site but 
also the right binding pose. A second hypothesis suggests concluding that this fragment 
exhibits a binding mode different to that of the full ligand. We are currently studying the 
first hypothesis in order to check whether the fdMD method is capable of providing more 
accurate results applying enhanced sampling techniques.

3.4. Set IV: Comparison with ColDock. The dmso system was selected to clearly 
remark the different approach used by our method with respect to ColDock. As can be 
seen in Tables 5 and S9, none of the four MD trajectories of 200 ns length was reactive 
with our proposed criteria. This is because the binding energy of dmso to the FKBP 
protein is very small and has a clear dynamic binding. The ligand interacts with a 
particular binding site of the receptor, remains in this site for a short period of time and 
goes out to another protein region, and so on continuously. Thus, a statistical approach 
which counts the number of times that a dmso molecule interacts with a specific point 
can be used to detect druggable pockets. This is the philosophy of the cosolvent approach 
and also the one used by ColDock. Our method does not use a statistical approach, but it 
requests that the ligand has a reasonable binding energy and thus keeps bonded in a 
specific binding site for a long period of time. It is important to note that all our four MD 
runs detect the binding of some dmso molecules to the experimental binding site, but 
always leave it (see Figure S3). The results for the other two systems are described in 
Table 6 (see also Table S9). As it can be seen, for both ligands the method detects only 
the experimental binding site with good agreement with the corresponding binding pose 
(Figure 5).
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Table 4. Descriptors calculated for reactive trajectories of set III. Pockets are defined in 
Table S2. MMGBSA and KDEEP energies in kcal mol-1.

Simulation 
time Systema Binding site Ave. 

MMGBSAb
Ave. 

KDEEP
c

Best 
MMGBSA

Best 
KDEEP

N. 
react.d

Best 
RTe

Experimental -21.1 -5.8 -22.3 -6.2 4 195
BS 1 -2.4 -1.1 -9.7 -4.5 1 25
BS 2 -7.8 -2.5 -18.7 -5.2 2 60
BS 3 -6.9 -2.1 -14.1 -4.2 2 50
BS 4 -16.4 -3.6 -17.4 -3.8 4 140
BS 5 -7.7 -1.9 -17.6 -4.1 2 60
BS 6 -6.0 -1.2 -24.0 -4.9 1 100

200 ns

BS 7 -3.4 -1.4 -13.4 -5.5 1 50
Experimental -23.1 -5.6 -24.3 -6.4 4 295

BS 2 -3.1 -1.3 -12.4 -5.0 1 160
BS 4 -17.7 -3.6 -21.3 -4.0 4 260

300 ns

class1

BS 6 -7.0 -1.0 -28.1 -3.8 1 200
Experimental -19.5 -4.6 -28.8 -6.3 3 175

BS 4 -11.9 -1.8 -24.9 -3.8 2 33
BS 5 -8.2 -1.6 -19.9 -3.2 2 135
BS 6 -11.6 -2.1 -31.7 -4.8 2 192
BS 8 -3.7 -1.1 -14.6 -4.3 1 60
BS 9 -3.7 -1.0 -14.6 -4.1 1 25
BS 10 -9.0 -2.3 -20.2 -4.7 2 110
BS 11 -5.2 -0.7 -20.6 -2.9 1 70
BS 12 -7.1 -1.3 -28.3 -5.0 1 110
BS 13 -4.2 -1.2 -16.6 -4.6 1 20
BS 14 -3.8 -0.9 -15.3 -3.7 1 122

200 ns

BS 15 -3.1 -1.0 -12.4 -3.8 1 30
Experimental -18.5 -3.9 -29.8 -6.0 3 275

BS 4 -6.0 -1.0 -24.0 -3.9 1 133
BS 6 -7.3 -1.0 -29.0 -3.9 1 292
BS 10 -4.2 -1.0 -16.6 -4.1 1 178
BS 11 -5.1 -0.8 -20.2 -3.2 1 170

300 ns

BS 14 -4.2 -0.9 -16.9 -3.6 1 222
1 μs

class2

Experimental -15.9 -4.6 -23.2 -6.5 3 975
a See definition in Table 1. b Average MMGBSA binding energy (see Equation 1). c 
Average KDEEP binding energy. d Number of reactive trajectories interacting with that 
binding pocket. e In ns. In bold the best value for each descriptor.
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Figure 4. Comparison of experimental (carbon atoms magenta) and predicted (carbon 
atoms cyan) binding poses for the different systems and MD simulation times studied in 
set III. a) class1 after 200 ns, b) class1 after 300 ns, c) class2 after 200 ns, d) class2 after 
300 ns, e) class2 after 1 μs. Hydrogen atoms are omitted for clarity. 

Table 5. Descriptors calculated for reactive trajectories of set IV. MMGBSA and KDEEP 
energies in kcal mol-1.

Systema Binding site
Ave. 

MMGBSA
b

Ave. 
KDEEP

c
Best 

MMGBSA
Best 

KDEEP

N. 
react.d

Best 
RTe

dmso
dss Experimental -7.2 -6.0 -14.4 -6.0 2 155
aca Experimental -9.2 -5.3 -13.2 -5.9 4 23

a See definition in Table 1.b Average MMGBSA binding energy (see Equation 1). c 
Average KDEEP binding energy. d Number of reactive trajectories interacting with that 
binding pocket. e In ns. In bold the best value for each descriptor.
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Figure 5. Comparison of experimental (carbon atoms magenta) and predicted (carbon 
atoms cyan) binding poses for the different reactive systems studied in set IV with their 
apo receptor. a) dss, b) aca. Hydrogen atoms are omitted for clarity.
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4. CONCLUSIONS

This work presents a semi-automated method applicable to any system in the framework 
of fragment-based drug discovery. Our method, named fragment dissolved Molecular 
Dynamics (fdMD), is based on the generation of simulation boxes of solvated small 
fragments that can be easily used to solvate around a target. It is worth to stress that the 
procedure of obtaining a solvated ligand box is done once and that box can be used later, 
in an easy way, to solvate any system and to prepare a database of ligand boxes to be used 
in a fragment-based drug discovery project. fdMD requires a low number of ligands, 
avoiding this way the risk of denaturation, and modifies the van der Waals interaction of 
a selected atom within the ligand using a pure repulsion potential to prevent ligand 
aggregation. Besides, we propose the use of six descriptors as a robust way to discard 
false binding sites. This work essays the performance of this methodology using four MD 
runs of 200 ns, which are extended up to 1 μs when needed.

After studying three sets, which contain a total of five protein systems with different types 
of binding sites, we conclude that our proposed method finds at least one experimental 
binding site, which usually corresponds to the most energetically favorable one according 
to MMGBSA and KDEEP results. Even in the case of ligands with several close binding 
sites, fdMD is able to recognize them despite the use of a repulsion potential for the 
ligands as several MD trajectories are used. Also, our results suggest that the effectiveness 
of the method is not dependent of the initial structure selected for the receptor, which is 
the usual case in a FBDD project. On the other hand, the number of replicas becomes 
crucial to discern between correct and false ligand-protein binding sites because it has a 
direct effect on the statistical average of the descriptors, being 4 MD runs reasonable. The 
average binding free energies estimated with MMGBSA or KDEEP approaches stand out 
as reliable descriptors to discard false binding sites, although we must stress that the 
computational cost of KDEEP is much smaller. Finally, our results suggest that MD runs 
of 200 ns length are a trustworthy starting point to deal with both exposed and unexposed 
binding sites remerging as a new alternative for the identification and optimization of 
potential fragments for the discovery of novel drugs.

Some aspects mentioned in the discussion are on the table to improve the fdMD method. 
Future research will focus on the sampling of cryptic pockets or the identification of the 
correct binding modes by using enhanced-sampling techniques. 
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