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We apply the theory of continuous time random walkssCTRWsd to study some aspects involving extreme
events in financial time series. We focus our attention on the mean exit timesMETd. We derive a general
equation for this average and compare it with empirical results coming from high-frequency data of the U.S.
dollar and Deutsche mark futures market. The empirical MET follows a quadratic law in the return length
interval which is consistent with the CTRW formalism.
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I. INTRODUCTION

The study of financial market microstructure has been the
object of intense research since the beginning of mathemati-
cal financef1g. Thus, one of the first models of market mi-
crostructure was set by Bachelier, who proposed the mecha-
nism of the random walksRWd to represent the dynamics of
speculative pricesf2g. In fact, Bachelier’s RW, with slight
modifications and additions, has been applied to a variety of
problems in finance ranging from price dynamics to option
pricing f1,3g. Unfortunately, RW models, because of their
Gaussian nature, fail to account for the universal character-
istic of having fat tails in the empirical distributionsf4g. This
was the main reason for proposing the Lévy distribution as
an alternative description of the probability distribution of
pricesf5g. However, pure Lévy models have a serious draw-
back since any statistical moment beyond the first one does
not exist, which indicates that tails are “too fat.” This fact
has induced some authors to propose truncated Lévy walks
as an alternative modelf6g. Other models based on the
Gaussian process plus jumpsf7g or even continuous jumps
f8g have also been proposed to reproduce the desired fat tails
of the return distribution.

Continuous time random walkssCTRWsd are general
models which perhaps better capture market microstructure,
especially that of high-frequency data. CTRWs were intro-
duced by Montroll and Weiss in 1965f9g and have a long
history of successful applications to physics, chemistry, and
geophysics, to name a fewf10–13g. To our knowledge, the
application of the CTRW to finance is quite recent and its
potential has not been fully developedf14–17g. One of the
applications where CTRWs may represent a valuable
achievement is in the field of risk control, because the
CTRW formalism provides a natural way of treating any par-
ticular realization of the price or return processes.

The statistics of extremes is a difficult field in probability
theory and its thorough description for a given random pro-
cess can be quite involved, if not impossible, from an ana-
lytical point of view f18g. In this paper we will use the
CTRW formalism to study some aspects of the extreme value
problem applied to finance. We will focus our attention on
two of the simplest quantities related to extreme statistics:
the mean first-passage timesMFPTd and the mean exit time
sMETd. MFPT is the average time at which the random pro-
cess reaches, for the first time, some preassigned value, while

MET is the mean time when the random process leaves, for
the first time, a given interval.

The MET is an interesting quantity for the practitioner
since it gives an estimation of the time that one should wait
to observe a noticeable modification of the market scenario;
thus, a trader gets an approximate time horizon to enter, or
leave, the market before a perceptible price change takes
place. In this way, the MET provides a time scale to a period
of market calm.

The paper is organized as follows. In Sec. II, we briefly
describe the main definitions of the CTRW formalism. Sec-
tion III develops the theory of MET for financial time series,
and in Sec. IV we obtain some analytical results and detail
some relevant properties. In Sec. V we apply the formalism
to real data. Closing remarks are left to Sec. VI.

II. OUTLINE OF THE CTRW

In this section we summarize the main features of the
CTRW formalism applied to the analysis of financial time
series. We refer to the reader to Refs.f16,17g for a more
complete account on the subject.

Let Sstd be an asset price andS0 its initial value. The log
price or return is defined byZstd=ln Sstd /S0. We define the
zero-mean return by

Xstd = Zstd − kZstdl, s1d

wherekZstdl is the return mean valuef19g.
Suppose thatXstd is described by a CTRW. In this repre-

sentationXstd changes at random timest0,t1,t2, . . . ,tn, . . .,
and the resulting trajectory consists of a series of step func-
tions as shown in Fig. 1. We assume that these changes are
independent and identically distributedsi.i.d.d random vari-
ables. The sojourns or waiting times,tn= tn− tn−1 sn
=1,2, . . .d, are described by a given probability density func-
tion cstd. At the conclusion of a given sojourn the returnXstd
suffers a random increment described by the random variable
DXn=Xstnd−Xstn−1d, whose probability density function
sPDFd is denoted byhsxd. We combine these two causes of
randomness into one single densityrsx,td, which represents
the joint PDF of waiting times and random jumps, i.e.,
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rsx,tddx dt= probhx , DXn ø x + dx; t , tn ø t + dtj.

We will further assume thatrsx,td is an even function ofx so
that there is no net drift in the evolution ofXstd. Note that if
waiting times and jumps are independent random quantities,
then rsx,td=hsxdcstd. In any other situation one has to
specify a functional form ofrsx,td that is compatible with
the observed dataf16,17g. Moreover, since the jump PDF,
hsxd, and the waiting-time PDF,cstd, are the marginal den-
sities of the joint density, any proposed form ofrsx,td must
satisfy

cstd =E
−`

`

rsx,tddx; hsxd =E
0

`

rsx,tddt. s2d

The main objective of the CTRW is obtaining the so-
called propagator, that is, the probability density function of
the zero-mean returnXstd

psx,tddx= probhx , Xstd ø x + dxj.

In Refs.f16,17g we have obtained general expressions for the
propagator and other relevant quantities. We have also stud-
ied some general results that are independent of the model
chosen forrsx,td. We again refer the interested reader to
Refs.f16,17g for a complete development of the formalism.

III. EXTREME TIMES

Suppose that at certain timet0 the return has, after a jump,
a known valueXst0d=x0. For t. t0 we ask ourselves the fol-
lowing question: at which time doesXstd leave a given inter-
val fa,bg for the first time? In other words, at which time is
the return greater than certain valueb or smaller thana for
the first time? We call this quantity the exit time out of the
intervalfa,bg and denote it byta,bsx0d. Obviouslyta,bsx0d is a
random variable since it depends on the particular trajectory
of theXstd chosenssee Fig. 1d. Our main objective here is to
obtain, based on the CTRW formalism, the mean exit time
sMETd Ta,bsx0d=kta,bsx0dl f20g.

The standard approach to MET problems requires the
knowledge of the survival probability of the process in the

interval fa,bg f18g. Although the interest in knowing the sur-
vival probability is beyond any doubt, its attainment turns
out to be quite involved. In this paper we present a direct and
simple derivation of the MET with a similar structure to
those integral equations previously encountered in the litera-
ture on extreme timesse.g., Ref.f21gd. In contrast with pre-
vious approaches to the MET problem, we do not need to
know here the survival probability to get the MET and we
leave obtaining the survival probability for a later work.

We decomposeTsx0d in two summands

Tsx0d = T1sx0d + T2sx0d, s3d

whereT1sx0d is the MET to leave the intervalfa,bg in only
one jump andT2sx0d is the MET when more jumps have
occurred. Note that in terms of the joint densityrsx,td,
T1sx0d can be written as

T1sx0d =E
0

`

tdtE
b

`

rsx − x0,tddx+E
0

`

tdtE
−`

a

rsx − x0,tddx,

s4d

where the first summand is the mean time for the random
walker to escape through the upper boundaryx=b, and the
second summand is the mean time to escape through the
lower boundaryx=a. If the random walker has not exited the
interval in the first jump, the process will have attained at
time t some valuexP fa,bg inside the interval, and from that
point the mean exit time will be exactlyTsxd. That is

T2sx0d =E
0

`

dtE
a

b

rsx − x0,tdft + Tsxdgdx. s5d

Substituting Eqs.s4d and s5d into Eq. s3d, plus some simple
algebra involving the use of Eq.s2d finally yields the follow-
ing integral equation for the METTsx0d:

Tsx0d = ktl +E
a

b

hsx − x0dTsxddx, s6d

wherektl is the mean waiting time between jumps. From a
mathematical point of view, Eq.s6d is a Fredholm integral
equation of the second kind. Depending on the specific na-
ture of the kernelhsxd, there are some analytical approaches
which allow one to get an exact solution. In the most general
case, if the kernel norm defined by

ihi2 =E
a

bE
a

b

h2sx − yddx dy s7d

is finite, there is always a series solution that in many situa-
tions can be useful to obtain a good approximationf22g. In
the next section we will see examples of exact and approxi-
mate solutions.

An important point should be emphasized: as shown in
Eq. s6d, the MET does not depend on the possible coupling
between waiting times and jumps. In other words,Tsx0d is
independent of the particular form of the joint densityrsx,td.

Another extreme time closely related to the MET is the
mean first-passage time, MFPT, defined as the mean time at
which the process attains a given valuexc for the first time.

FIG. 1. A particular trajectory of theXstd process along with a
particular value of the random variableta,bsx0d.
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Let Ta,bsx0d be the MET out of the intervalfa,bg; then, if
x0,xc the MFPT to xc is defined as Tcsx0d
=lima→−`Ta,xc

sx0d, while if x0.xc we have Tcsx0d
=limb→`Txc,b

sx0d. Thus, we see from Eq.s6d that, if x0,xc,
the MFPT obeys the integral equation

Tcsx0d = ktl +E
−`

xc

hsx − x0dTcsxddx, s8d

with an analogous equation whenx0.xc. Unfortunately, Eq.
s8d is a singular integral equation for which the kernel norm
defined above is infinite. In such a case the solution of Eq.
s8d may not existf22g. Again, we will see an example of this
in the next section.

IV. SOME PROPERTIES AND RESULTS

Equations6d constitutes our most general result. In this
section we will summarize some general properties and de-
rive exact and approximate expressions for the MET.

Depending on the specific nature of the kernelhsxd, there
are some analytical approaches which allow one to get an
exact solution to Eq.s6d. One example is provided by the
Laplacessymmetric exponentiald PDF

hsxd =
g

2
e−guxu, s9d

whereg.0 andkDX2l=2/g2 is the variance of jumps. One
can show that in this case the integral equation ins6d is
equivalent to the following differential equation:

T9sx0d = − g2ktl, s10d

with boundary conditions

T8sad = gfTsad − ktlg, T8sbd = − gfTsbd − ktlg. s11d

The solution to this problem reads

Tsx0d =
ktl
2
F1 +S1 +

gL

2
D2

− g2Sx0 −
a + b

2
D2G , s12d

and the MET is a quadratic function of the interval length
L=b−a. This is even more clearly seen by assuming a sym-
metrical intervalb=−a=L /2, and that the initial return is
zero,x0=0

Ts0d =
ktl
2
F1 +S1 +

gL

2
D2G . s13d

Observe that in this case the MFPT is infinite sinceTsx0d
→`, both asa→−` andb→`. Consequently,Tcsx0d=`.

It is very illustrative to compare the above expressions for
the MET with those of the ordinary random walk. If the price
process follows a RW, then in the continuous limit the zero-
mean return is the Wiener process, i.e.,Xstd=sWstd, wheres
is the volatility. In this case the MET out offa,bg readsf18g

TRWsx0d =
1

s2sx0 − adsb − x0d, s14d

which is also a quadratic function of the interval length.
However, boundary conditions now areTRWsad=TRWsbd=0,

which are quite different from those given by Eq.s11d. In
order to compare this time with that of the CTRW just ob-
tained in Eq.s12d, we will scale both times. We thus define
the following dimensionless METs:

TRW
* sx0d = ss2/2L2dTRWsx0d,

and

TCTRW
* sx0d = s1/ktlg2L2dTCTRWsx0d.

Then, for a symmetrical interval,b=−a=L /2, we get from
Eqs.s12d and s14d

TCTRW
* sx0d = TRW

* sx0d +
1

g2L2 +
1

2gL
,

where

TRW
* sx0d =

1

8
−

x0
2

2L2 .

We see thatTCTRW
* sx0d→TRW

* sx0d when L@g−1, that is,
when the length of the interval is much larger than the jump
standard deviation which is proportional to 1/g. In this case
our CTRW approaches the Wiener process with a volatility
given bys=Î2/gktl.

Let us now return to Eq.s6d. We observe that, despite this
equation being written for an arbitrary intervalfa,bg, we can
always transform the problem in order to work on a sym-
metrical interval, something that lightens the problem. Thus,
the symmetrized MET defined by

Tsymsxd ; TSx +
a + b

2
D , s15d

satisfies the equation

Tsymsx0d = ktl +E
−L/2

L/2

hsx − x0dTsymsxddx. s16d

When the jump distribution is even,hsxd=hs−xd, we see
from Eq. s16d that Tsymsxd=Tsyms−xd. In other wordsTsymsxd
is also an even function, which in turn implies thatTsym8 s0d
=0.

Let us now obtain an approximate solution that will be
valid for any sufficiently smooth kernelhsxd. Suppose we
have an even and zero-mean jump density satisfying the fol-
lowing scaling condition:

hsxd =
1

k
HS x

k
D , s17d

wherek.0 is the standard deviation of the jump statistics of
hsxd. In this case Eq.s16d can be written as

T̄sud = ktl +E
−L/2k

L/2k

Hsv − udT̄svddv, s18d

where T̄sud;Tsymskud and −L /2køuøL /2k. Once we

have an expression forT̄sud, the mean exit time is given, via
Eq. s15d, by
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Tsx0d = T̄S2x0 − a − b

2k
D . s19d

Suppose now thate;L /2k is small, i.e.,e!1. In this
case an approximate solution to Eq.s18d can be easily ob-
tained through an iteration proceduref23g

T̄sud = ktlf1 + 2Hs0de + fH8s0+d + 4Hs0d2ge2

+ H8s0+du2 + Ose3dg.

Hence

Tsx0d < ktlF1 + Hs0dSL

k
D + FHs0d2 +

H8s0+d
4

GSL

k
D2

+
H8s0+d

4k2 s2x0 − a − bd2G . s20d

In the symmetrical case withx0=0 we have

Ts0d < ktlF1 + Hs0dSL

k
D + FH8s0+d

4
+ Hs0d2GSL

k
D2G .

s21d

We see from these expressions that, in general, the MET has
for sufficiently small intervals a quadratic growth behavior
as in the case of the exponential densityfsee Eq.s13dg. In
fact, the approximate expression given by Eq.s20d becomes
the exact solution for the Laplace jump PDFfcf. Eq. s12dg
with k=Î2/g, Hs0d=1/Î2, andH8s0+d=−1.

We finally remark that it is possible to recover from Eq.
s20d the diffusion case presented in Eq.s14d. The Wiener
process is the continuous-time limit of an ordinary RW when
the ratio k2/ ktl goes to a constant usually denoted bys2

f11g. Hence, whenktl→0 and k→0 but keeping constant
k2/ ktl;s2, Eq. s20d reads

Tsx0d < FH8s0+d
4

+ Hs0d2GSL

s
D2

+
H8s0+d

4s2 s2x0 − a − bd2.

When we seek boundary conditionsTRWsad=TRWsbd=0, we
get that Hs0d2=−H8s0+d /2. The resulting expression be-
comes exactly Eq.s14d if we again takeHs0d=1/Î2 and
H8s0+d=−1. For the sake of completeness, we can also de-
rive the symmetrical case withx0=0

TRWs0d =
L2

4s2 . s22d

V. EMPIRICAL OBSERVATIONS

We now apply the above results to actual data. The data
consist of tick-by-tick prices for the U.S. dollar and Deutsche
mark future exchange from January 1993 to December 1997
sa total of 1 048 590 data pointsd.

In Fig. 2 we compare the empirical MET from the USD
and DM data with the analytical approximation given by Eq.
s21d taking the values specified in Table I. We can easily
evaluate the values ofk, ktl, andHs0d of Eq. s21d directly

from the data without assuming any hypothesis on the form
of the jump distribution. This yieldsk=1.70310−4, ktl
=23.65 s, andHs0d=4.45310−3. We also need an estimation
for H8s0+d, although this parameter is quite difficult to evalu-
ate because data binning entails a certain degree of arbitrari-
ness. Moreover, the very existence of tick units questions the
concept of derivative. A first approach to solve this problem
would be to evaluateH8s0+d using finite differences, which
givesH8s0+d=0.55. However, this value does not provide the
optimal estimation which is obtained withH8s0+d=1.54 and
the empirical values ofk, ktl, andHs0d reported above. The
optimal adjustment of the MET is represented in Fig. 2 by a
solid line.

We observe in Fig. 2 that this optimal estimation almost
exactly reproduces the empirical behavior of the MET even
for large values ofL /k. Consequently, the MET presents a
quadratic nature regardless of the length of the interval. This

FIG. 2. Dots represent the empirical METsmeasured in hoursd
as a function of the normalized semi-intervalL /2k, from high-
frequency data of the U.S. dollar/Deutsche mark futures market.
There are also the fits explained in the text and in Table I with the
values ofk and ktl extracted from data.

TABLE I. Summary of the models shown in Fig. 2. For all cases
ktl=23.65 s and we add the value of the parameters involved in Eq.
s21d. For the Wiener processs2=k2ktl, wherek andktl are directly
extracted from the data. For the Laplace PDF we use the empirical
standard deviation and the rest of the parameters are derived auto-
matically. The power-law estimates the empirical values ofh andb
from the tails ofhsxd, bringing us the corresponding values fork,
Hs0d, andHs0+d. The last row gives the curve with empirical values
k andHs0d but choosesHs0+d to give the best adjustment.

hsxd
k sunits
of 10−4d Hs0d H8s0+d

Wiener — 1.70 1/Î2 −1

Laplace g exps−guxud /2
fg2=2/k2g

1.70 1/Î2 −1

Power-law b−1/2hs1+uxu /hdb

fh2= k2sb−2dsb−3d/2g
1.25 1.07 −2.81

Fit ¯ 1.70 0.00445 1.54
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seems to indicate that the approximations given by Eqs.s20d
and s21d have a more universal character than one might
expect in advance.

In Fig. 2 we also represent the MET for the Wiener pro-
cess, which is given by Eq.s22d with s2;k2ktl ssee Table
Id. This is the simplest model describing the observed qua-
dratic law for the MET. Unfortunately, we clearly see in Fig.
2 that the diffusion model underestimates the MET. Another
exact expression for the MET is provided by the Laplace
CTRW, Eq.s13d. Again, we observe in Fig. 2 that the qua-
dratic curve is below the empirical data points. We can also
observe in the inset of Fig. 2 that the MET given by Eq.s13d
results in a good approximation for small values of the inter-
val. In this regard the Laplace density can be considered as a
first approximation to any more realistic jump distribution.
We remark that in this case the MET has been represented
using the empirical standard deviation of the jumps,k, with-
out trying to adjust the empirical curve.

As we have shown elsewheref16,17g the empirical jump
PDF, for the USD/DM data, is very well fitted by a power
law of the form

hsxd =
sb − 1d

2hs1 + uxu/hdb , s23d

where b=5.52 andh=2.64310−4, which implies that the
rest of parameters arek=1.25310−4, Hs0d=1.07, and
H8s0+d=−2.81. In Fig. 2, we see that this model does not fit
the empirical data in a satisfactory manner. One reason for it
could be the fact that the approximation forTsx0d given by
Eq. s21d basically depends on the values ofhsxd aroundx
=0, while the power-law densitys23d has been obtained to fit
the tails of the jump distribution.

Another possible reason why the power-law model for
hsxd is inconsistent with the MET observations could be that
the i.i.d. hypothesis for jumps and waiting time is not accu-
rate. This possibility is supported by a recent publication
where we have considered clustering phenomena in financial
dataf24g. We found there that the large events are related to
the clustering in data. Our future research will go in this
direction, trying to understand why the market describes this
quadratic growth, which is typical of the Laplace CTRW or
the diffusion process, even though we know that the market
possesses a different statistics for the jump distributionhsxd.
Indeed, the stochastic volatility modeling with a subordi-
nated random walk might also be an interesting approach.

VI. CONCLUSIONS AND OPEN ISSUES

Using the CTRW framework for market microstructure,
we have developed a somewhat little-known aspect of the
problem: the study of extreme events, especially the mean
exit time out of an interval,Tsx0d, and the mean first-passage
time to some critical value,Tcsx0d, although the latter turns
out to be infinite in many situations. We have shown that
these extreme times obey an integral equation which depends
on the jump distributionhsxd and the mean waiting timektl.

We have exactly solved the integral equation for the MET
in the case where the jump distribution is governed by a
Laplace ssymmetric exponentiald probability density func-
tion. We have compared this MET with that of the ordinary
random walk model, and showed that the MET for the
Laplace density is bigger thanTRW fthe MET whenXstd is
assumed to be the Wiener processg. This seems to indicate
that models based on the Wiener process may underestimate
the MET. In other words, RW models imply that the return
process escapes faster from a given interval than models
based on the CTRW. We believe that this can have practical
consequences in risk control because in these fields Gaussian
market models are broadly usedf1,3g.

We have also solved the integral equation for the MET
using an approximate scheme which yields a solution valid
for a generalhsxd but when the lengthL of the interval is
small sin an appropriate dimensionless scaled. We have ap-
plied the approximate solution for the MET to high-
frequency data on U.S. dollar and Deutsche mark futures
market with a very good agreement. The empirical observa-
tions show a quadratic behavior of the MET. More complete
measures should be done to check the universal character of
this behavior and confirm this property as a new stylized
fact.

We finally mention that a more complete description of
extreme events, such as the survival probability, may also be
interesting due to its greater impact on risk control. All of
these questions are presently under investigation and we ex-
pect that some results will be published soon.
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