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We study biased, diffusive transport of Brownian particles through narrow, spatially periodic structures in
which the motion is constrained in lateral directions. The problem is analyzed under the perspective of the
Fick-Jacobs equation, which accounts for the effect of the lateral confinement by introducing an entropic
barrier in a one-dimensional diffusion. The validity of this approximation, based on the assumption of an
instantaneous equilibration of the particle distribution in the cross section of the structure, is analyzed by
comparing the different time scales that characterize the problem. A validity criterion is established in terms of
the shape of the structure and of the applied force. It is analytically corroborated and verified by numerical
simulations that the critical value of the force up to which this description holds true scales as the square of the
periodicity of the structure. The criterion can be visualized by means of a diagram representing the regions
where the Fick-Jacobs description becomes inaccurate in terms of the scaled force versus the periodicity of the
structure.
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I. INTRODUCTION

In many transport phenomena, such as those taking place
in biological cells, ion channels, nanoporous materials and
microfluidic devices etched with grooves and chambers,
Brownian particles, instead of diffusing freely in the host
liquid phase, undergo a constrained motion. The uneven
shape of these structures regulates the transport of particles
yielding important effects exhibiting peculiar properties. The
results have implications in processes such as catalysis, os-
mosis, and particle separation �1–9�, and for the noise-
induced transport in periodic potential landscapes that lack
reflection symmetry �ratchet systems� �10–12� or ratchet
transport mechanisms that are based on asymmetric geom-
etries, termed “entropic” ratchet devices �10–13�. For ex-
ample, it has been found that the separation of DNA frag-
ments in narrow channels �14–16� is largely influenced by
their shape. The translocation of structured polynucleotides
through nanopores also allows one to determine their se-
quence and structure �17–19�.

The motion of the particles through these quasi-one-
dimensional structures can in principle be analyzed by means
of the standard protocol of solving the Smoluchowski equa-
tion with the appropriate boundary conditions imposed.
Whereas this method has been very successful when the
boundaries of the system possess a regular shape, the chal-
lenge to solve the boundary value problem in the case of
uneven boundaries represents typically a very difficult task.
A way to circumvent this difficulty consists in coarsening the
description by reducing the dimensionality of the system,
keeping only the main direction of transport, but taking into
account the irregular nature of these boundaries by means of
an entropic potential. The resulting kinetic equation for the
probability distribution, the Fick-Jacobs �FJ� equation, is
similar in form to the Smoluchowski equation, but now con-
tains an entropic term. The entropic nature of this term leads
to a genuine dynamics which is very different from that

observed when the potential has an energetic origin �20�. It
has been shown that the FJ equation can provide a very ac-
curate description of entropic transport in two- �2D� and
three-dimensional �3D� channels of varying cross section
�20,21�.

However, the derivation of the FJ equation entails a tacit
approximation: The particle distribution in the transverse di-
rection is assumed to equilibrate much faster than that in the
main �unconstrained� direction of transport. This equilibra-
tion justifies the coarsening of the description, leading in turn
to a simplification of the dynamics, but raises a question
about its validity when an external force is applied. To es-
tablish the validity criterion of a FJ description for such bi-
ased diffusion in confined media is, due to the ubiquity of
this situation, a subject of primary importance.

Our objective with this work is to investigate in greater
detail the FJ approximation for biased diffusion and to set up
a corresponding criterion describing its regime of validity.
We will analyze the biased movement of Brownian particles
in 2D and 3D periodic channels of varying cross section and
formulate different criteria for the validity of such a FJ de-
scription.

The paper is organized in the following way. In Sec. II,
we describe the physical situation and introduce the model
defined through the corresponding Langevin and Fokker-
Planck equations. In Sec. III, we introduce the FJ approach
for the unbiased situation and extend it to the driven case.
Section IV is devoted to establishing a criterion for the va-
lidity of the FJ approximation derived by comparing the dif-
ferent characteristic time scales of the process. In Sec. V, the
accuracy of the FJ description is tested against numerical
simulations for a 2D periodic channel, and the conditions of
validity are summarized in a diagram in terms of the scaled
force versus the periodicity of the structure. In Sec. VI, we
provide further explanations on, when and why the equilibra-
tion assumption fails, and when the FJ approach leads to
usable results. Finally, in Sec. VII we present our main con-
clusions.

PHYSICAL REVIEW E 75, 051111 �2007�

1539-3755/2007/75�5�/051111�8� ©2007 The American Physical Society051111-1

http://dx.doi.org/10.1103/PhysRevE.75.051111


II. DIFFUSION IN CONFINED SYSTEMS

In typical transport processes through pores or channels
�like the one depicted in Fig. 1�, the motion of the suspended
particles is induced by application of an external potential

V�r�� resulting in a force F� . In general, the dynamics of the
suspended Brownian particles is governed by Langevin’s
equation

mr�̈�t� = − �r�̇�t� − �� V„r��t�… + ��kBT���t� , �1�

where r� is the two- or three-dimensional position vector of a
particle of mass m, � is its friction coefficient, kB is the
Boltzmann constant, T is the temperature, and a dot over the
quantity refers to a time derivative. The thermal fluctuations
due to the coupling of the particle with the environment are

modeled by a zero-mean Gaussian white noise ���t�, obeying
the fluctuation-dissipation relation ��i�t�� j�t���=2�ij��t− t��
for i , j=x ,y ,z. In the overdamped case, i.e., when

mr�̈�t���r�̇�t�, the inertia term in Eq. �1� can be safely ne-
glected and the Langevin equation describing the dynamics
of a Brownian particle within the channel reads

�
dr�

dt
= − �� V„r��t�… + ��kBT���t� . �2�

In addition to Eq. �2�, the full problem is set up by im-
posing reflecting boundary conditions at the channel walls.

The corresponding Fokker-Plank equation for the time
evolution of the probability distribution P�r� , t� takes the form
�22,23�

�P�r�,t�
�t

= − �� · J��r�,t� , �3�

where J��r� , t� is the probability current,

J��r�,t� = − ��� V�r��
�

+ D0��	P�r�,t� , �4�

and

D0 = kBT/� �5�

denotes the diffusion coefficient of the suspended particles.
Due to the impenetrability of the channel walls, the nor-

mal component of the probability current J��r� , t� vanishes at
the boundaries. If n� denotes the vector perpendicular to the
channel walls, the reflecting boundary conditions read

J��r�,t� · n� = 0. �6�

In this paper we focus on the case of a symmetric 2D
channel where the force F is constant and directed along the
axis �cf. Fig. 1�. The half-width of the 2D channel is given
by a periodic function ��x�, i.e., ��x+L�=��x� for all x. In
this case, the boundary condition reads

−
d��x�

dx
�F

�
P�x,y,t� − D0

�P�x,y,t�
�x

	 − D0
�P�x,y,t�

�y
= 0

�7�

at y= ±��x�. For an arbitrary form of ��x�, the boundary
value problem defined through Eqs. �3�, �4�, and �7� is very
difficult to solve. Despite the inherent complexity of this
problem an approximate solution can be found by introduc-
ing an effective one-dimensional description where geomet-
ric constraints and bottlenecks are considered as entropic
barriers �9,20,21,24–26�.

III. FICK-JACOBS APPROXIMATION

In the absence of an external force, i.e., when F=0, it was
shown �24,25� that the dynamics of particles in confined
structures �such as that of Fig. 1� can be described by the FJ
equation

�P�x,t�
�t

=
�

�x
�D0h�x�

�

�x

P

h�x�	 �8�

obtained from the 3D �or 2D� Smoluchowski equation after
elimination of the y and z coordinates. Here P�x , t� is the
probability distribution function along the axis of the 2D or
3D channel, h�x� is the dimensionless transverse cross sec-
tion h�x�ª����x� /L�2 in 3D, and the dimensionless width
h�x�ª2��x� /L in 2D, where ��x� is the radius of the chan-
nel in 3D �or the half-width of the channel in 2D�. This
description is valid for 
���x�
�1 �the prime refers to the
first derivative, i.e., ���x�=d��x� /dx�, and it has been shown
that the introduction of an effective x-dependent diffusion
coefficient can considerably improve the accuracy of the ki-
netic equation, thus extending its validity to more winding
structures �21,25,26�. The expression

D�x� =
D0

�1 + ���x�2�� , �9�

where �=1/3 ,1 /2 for two and three dimensions, respec-
tively, has been shown to accurately account for the curva-
ture effects �21�.

In the presence of a constant force F along the direction
of the channel the FJ equation can be recast into the expres-
sion �20,21�

�P

�t
=

�

�x
�D�x�

�P

�x
+

D�x�
kBT

�A�x�
�x

P	 , �10�

which defines the free energy A�x�ªE−TS
=−Fx−TkB ln h�x�, where E=V=−Fx denotes the energy
contribution and S=kB ln h�x� the entropy contribution. For a
symmetric channel with periodicity L, the free energy as-
sumes the form of a periodic tilted potential.

L

�F

y
,z

y
,z

xx

FIG. 1. Schematic diagram of the channel confining the motion
of the biased Brownian particles. The half-width � is a periodic
function of x with periodicity L.
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Note that Eq. �10� may typically describe the time evolu-
tion of a 1D particle distribution within an energy landscape.
In the present context, however, due to the reduction of the
geometric confinements in 2D or 3D space into one dimen-
sion, we end up with an entropic contribution to the free
energy. In absence of a fixed bias F=0, we deal with
a pure entropic situation with the free energy reading
A�x�=−TkB ln h�x�. Equation �10� then corresponds to a FJ
equation with a spatial dependent diffusion coefficient. Like-
wise, for a situation involving solely transport in a one-
dimensional energy landscape, the free energy reduces to
A�x�=V�x� with d��x� /dx=0, yielding to the well-known
Fokker-Planck equation in 1D, with a constant diffusion co-
efficient D0, reading

�P

�t
=

�

�x
�V�

�
P + D0

�P

�x
	 . �11�

Recently, we have shown that the dynamics of a confined
Brownian particle, in the presence of an applied bias, can

accurately be described by means of Eq. �10� �20�. In the
presence of very strong applied bias, and for more winding
structures, however, the FJ equation becomes inaccurate. In
the present work we present further numerical and analytical
results and will set up tailored criteria under which the FJ
approximation assumes good validity.

Particle current

One of the key quantities in transport through quasi-one-
dimensional structures is the study of the average particle
current �ẋ�, or equivalently the nonlinear mobility, which is
defined as the ratio of the average particle current and the
applied force F. For the average particle current we derive an
expression that is similar to the Stratonovich formula for the
current in titled periodic energy landscapes �27–30�, but with
a spatial diffusion coefficient. A detailed derivation of this
expression is given in the Appendix �see Eq. �A12��. Hence,
we obtain the nonlinear mobility for a 2D channel with a
shape defined by ��x�:

��F,L,	�� ª

�ẋ�
F

� =
1

	F

1 − exp�− 	FL�

�
0

L dx

L
e−	A�x��

x

x+L

dx��1 + �d��x��
dx�

	2�

e	A�x��

, �12�

where we have made use of Eq. �9� and the relations D0
=kBT /� and 	=1/kBT. Substituting z�=x� /L and z=x /L, the
nonlinear mobility scaled with the friction coefficient � can
be expressed, for the case of constant forcing, in terms of a
single, dimensionless scaling parameter �20�

f ª 	FL . �13�

Therefore, Eq. �12� for A�x�=−Fx−	−1 ln h�x� leads to

��f�� =
1

f

1 − exp�− f�

�
0

1

dz I�z, f�
, �14a�

where

I�z, f� = exp�fz�h�Lz��
z

z+1

dz� exp�− fz��h−1�Lz��


�1 + � 1

L

d��Lz��
dz�

	2�

. �14b�

Equation �14� can be transformed into Eq. �6� in Ref. �20� by
interchanging the order of integration.

The asymptotic values of the nonlinear mobility for the
cases f →0 and f →� can be evaluated to read

lim
f→0

��f�� =
1

�h�x��� D0

D�x�
h−1�x�� �15�

and

lim
f→�

��f�� =
1

� D0

D�x�� , �16�

where

�g�x�� =
1

L
�

0

L

g�x�dx �17�

is the average over a spatial period, given an arbitrary peri-
odic function g�x�.

IV. VALIDITY OF THE FICK-JACOBS DESCRIPTION IN
THE PRESENCE OF A CONSTANT BIAS

The reduction of dimensionality done implicitly in the
formulation of the FJ equation relies on the assumption of
equilibration in the transverse direction. An estimate of the
conditions under which equilibration occurs can be made by
analyzing the different time scales involved in the problem.
For the sake of simplicity, let us focus on the situation of a
2D channel, although the same discussion can readily be
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extended to 3D. In a 2D channel in the presence of an exter-
nal force, in the axial direction, one can identify three char-
acteristic processes, with the corresponding different time
scales. One is diffusion in the transverse direction over a
distance �y, whose time scale is

y =
�y2

2D0
. �18�

Similarly, the time scale associated with diffusion in the
axial direction is

x =
�x2

2D0
. �19�

The third time scale is defined through the characteristic
time associated with the drift �ballistic motion� over a dis-
tance �x given by

�x

drift
�

F

�
=

fD0

L
, �20�

where we have used the scaling factor f =FL /kBT. Rearrang-
ing the previous expression, we obtain

drift =
L�x

fD0
. �21�

In order to have a good equilibration in the transverse
direction, the characteristic time scale associated with diffu-
sion in this direction has to be much smaller than the other
two time scales. Therefore, in the absence of an external
force, equilibration in the transverse direction occurs if
y /x�1. This results in the condition

�y2

�x2 � ���x�2 � 1, �22�

which constitutes the validity criterion of the FJ approach as
put forward by Zwanzig �25�.

In the presence of a force along the axis, equilibration in
the transverse direction demands that the condition y /drift
�1 also holds. Consequently,

f�y2

2L�x
�

2f��x�2

L2 � 1, �23�

where in the second step we have replaced the characteristic
distances �y by the width 2��x� and �x by L.

A general estimate of the criterion that has to be satisfied
is that max�y /x ,y /drift��1. An even stronger criterion in
order for the FJ description to hold in the presence of a
constant force can be put forward by considering the sum of
the two ratios �see Eqs. �22� and �23��, i.e.,

���x�2 +
2f��x�2

L2 � 1. �24�

Equation �24� provides a quite stringent criterion that in-
dicates when the FJ description of a system is expected to be
valid. Note also that this is a local criterion, i.e., for a given
channel, there will be regions �associated with drastic
changes in the shape of the channel, i.e., ���x�2�1� where

equilibration in the transverse direction is not feasible,
whereas in others it is fulfilled. It is then more convenient to
work with a global criterion of validity rather than with a
local one. One way of getting that global condition is by
averaging the local criterion over the period L of the channel,
yielding one of our main results:

����x�2� +
2f

L2 ���x�2� � 1. �25�

In order to get an explicit estimate of the dependence of
the maximum force value on the periodicity L of the channel,
we define a critical force value fc for which the inequality
�25� becomes an equality, i.e., ����x�2�+ �2fc /L2����x�2�=1.
Then the critical force value reads

fc =
L2

2���x�2�
�1 − ����x�2�� , �26�

which indicates that the critical force scales asymptotically
as L2, if we fix the overall shape of the channel and change
only its periodicity.

Equation �26� provides an estimate of the minimum forc-
ing beyond which the FJ description is expected to fail in
providing an accurate description of the dynamics of the sys-
tem. The quantitative value of the critical force will obvi-
ously depend on the level of accuracy sought. What is really
important is how it depends �or scales� with the relevant
parameters of the problem.

V. NUMERICAL SIMULATIONS FOR A 2D CHANNEL

In order to check the consistency of the criterion proposed
and the validity of the FJ description in the presence of a
force, we will compare the analytical result for the scaled
nonlinear mobility obtained in Eq. �14� with the simulation
results of the overdamped Langevin dynamics in Eq. �2� for
the 2D periodic channel sketched in Fig. 1. We remark here
that the extension of our scheme to 3D with a rotational
symmetry along the transport axis is possible as well. This
will consume more computation time, but the overall find-
ings remain qualitatively robust. This feature has been veri-
fied with a few numerical tests.

The shape of the channel is described by

��x� = a sin�2�x/L� + b , �27�

where a controls the slope of the channel walls and 2�b−a�
gives the channel width at the bottlenecks. In order to use
dimensionless quantities we refer any physical length to a,
i.e., the scaled boundary condition then reads ��x�
=sin�2�x /L�+b, where b is now a dimensionless quantity. In
our case, we have used b=1.02. The behavior of the quanti-
ties of interest have been corroborated by Brownian dynamic
simulations performed by integration of the Langevin equa-
tion using the standard stochastic Euler algorithm. The aver-
age particle current in the x direction has been derived from
an ensemble average of about 3
104 trajectories according
to the following expression:

�ẋ� = lim
t→�
� x�t�

t
� . �28�
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In order to test the accuracy of the FJ description, we have
evaluated the behavior of the nonlinear mobility as a func-
tion of the scaled force f , for different values of the period-
icity L. In Fig. 2, the dependence of the scaled nonlinear
mobility on f is depicted for two different periodic structures
of spatial period L, and for b=1.02. In both cases, the non-
linear mobility depicts a monotonic increase with increasing
force. The value of the scaling parameter f =	FL up to
which the FJ approximation with space-dependent diffusion
coefficient D�x� provides an accurate description depends on
the spatial period L. Consistent with the FJ approximation
scheme, for rather smoothly varying cross section, or,
equivalently, large periods L, the agreement between our pre-
cise numerics and the analytic solution is attained for con-
siderably larger f values as compared to the case with
strongly winding structures or small periods. The analytic
solution does not capture the correct limiting value for large
f . Whereas the analytic result of the FJ equation tends to the
value given by Eq. �16�, the limiting value observed in the
simulations always tends to 1, which corroborates the deter-
ministic limit. This indicates that, in the case of very strong
forcing, the particles almost travel ballistically, and thus do
not experience the effects of the boundaries. This is all con-
sistent with the accompanying breakdown of the FJ approxi-
mation in this strong forcing limit for which the deterministic
dynamics dominates the transport.

By comparing the exact numerical results with the ana-
lytic solution of the FJ equation, Eq. �14�, we can identify a
critical value of the scaled force, fc, beyond which the rela-
tive error in the mobility exceeds a certain value. This criti-
cal force plays a similar role to that introduced in the previ-
ous section.

For our example of a 2D channel whose shape is defined
by Eq. �27�, the validity criterion given by Eq. �26� simplifies
to

fc =
L2

1 + 2b2�1 −
2�2

L2 	 �29�

thus predicting that the critical value of the force scales as
L2.

This prediction has been verified by the simulations. Fig-
ure 3 shows the value of the critical force for a tolerance of
1% as a function of the periodicity L. The critical value of
the force depends quadratically on the periodicity L2, as pre-
dicted.

In Fig. 4 we illustrate, for the considered two-dimensional
channel, the regions where the FJ approximation is accurate

0.25

0.5

0.75

1
µ
(f

)η
µ
(f

)η

1 10 100

ff

FIG. 2. �Color online� Numerically simulated �symbols� and
analytically calculated �see Eq. �14�� �lines� dependence of the
scaled nonlinear mobility ��f�� vs the scaling parameter
f =FL /kBT for two channels in 2D with different spatial periods.
For both channels the scaled half-width is given by ��x�
=sin�2�x /L�+1.02; L=1, diamonds and solid line �blue�; L=2�,
circles and dotted line �green�. The dashed line indicates the deter-
ministic limit ��f��= �ẋ� / �F /��=1.
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f cf c

2.5 5 7.5 10 12.5

LL

FIG. 3. Dependence of the critical value of the scaling param-
eter, i.e., fc, on the periodicity L of a 2D channel defined by the
dimensionless boundary function ��x�=sin�2�x /L�+1.02. For
f � fc the relative error of the Fick-Jacobs description is less than
1%. The solid line is an L2 fit of the critical values obtained by
comparison of the approximate analytic and the exact numerical
results.
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FIG. 4. Validity diagram of the Fick-Jacobs approximation for
biased diffusion obtained upon a comparison between the precise
numerics with the approximate analytic solution, �see Eq. �14�� for
a 2D channel with boundary function ��x�=sin�2�x /L�+1.02. The
dependence of the critical value of the scaling parameter on the
periodicity is depicted for three different relative errors; 1%, solid
line; 5%, dashed line; and 10%, dotted line. Below these limiting
lines the analytic treatment agrees within the corresponding pre-
scribed relative error.
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when compared with the simulations. We depict the depen-
dence on the periodicity L of the maximal critical scaled
force, obtained by comparing numerical results with the ana-
lytic solution for the particle current, for different required
relative errors. This diagram shows the regions in parameter
space in terms of f and L for which an accurate solution is
provided. Thus, it is possible to provide an accurate result by
using the analytic solution over a wide range of the scaled
parameter and the periodicity.

VI. HYPOTHESIS OF EQUILIBRATION IN THE
TRANSVERSE DIRECTION

From our simulations, we can actually analyze the valid-
ity of the hypotheses of equilibration in the transverse direc-
tion on which the FJ description relies. In Fig. 5, we show
the steady state distribution of a certain number of Brownian
particles for different values of the scaled force f . As the
force increases, we can clearly see that the particles are not

homogeneously distributed in the y direction, evidencing the
failure of the equilibration assumption. This effect is espe-
cially dramatic in Fig. 5 �lower right panel�, where the force
is so strong that the particles do not fully explore the avail-
able space in the y direction.

A more detailed analysis could be provided by checking
the normalized steady-state probability distribution in the
transverse direction at a given x position, i.e.,

Px
st�y� ª

Pst�x,y�

�
−��x�

��x�

dy Pst�x,y�
. �30�

In Fig. 6, we represent the steady-state probability density
at three different locations along the channel, corresponding
to x /L=0.2, 0.5, and 0.8. For small values of f , at x /L=0.5,
where ���x�=0, the Px

st�y� is flat, indicating a perfect equili-
bration in the transverse direction. However, at x /L=0.2, and
0.8, the system is not equilibrated and Px

st�y� is bell shaped.
Notice that, for x /L=0.2 and 0.8, the distributions are very
similar for small values of f , corroborating that the equilibra-
tion depends on ���x�2, which is the same in both cases.

FIG. 5. Steady-state particle distribution mapped into a single
period of the 2D channel defined by the boundary function ��x�
=sin�2�x /L�+1.02 with L=1 for four different values of the di-
mensionless scaling parameter f: upper left panel, f =0.2; upper
right panel, f =3.0; lower left panel, f =7.0; lower right panel,
f =50.

a)

0
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2

P
st x

(y
)

P
st x

(y
)

−2 −1 0 1 2
yy

b)

−2 −1 0 1 2
yy

c)

−2 −1 0 1 2
yy

FIG. 6. �Color online� Normalized steady-state probability distribution of particles in the y direction Px
st�y� �see Eq. �30�� for different

values of the scaling parameter f: solid line �black�, f =0.2; dashed line �blue�, f =3.0; dotted line �green�, f =7.0; dash-dotted line �red�,
f =50.0, at various positions along the length of the channel with the boundary function ��x�=sin�2�x /L�+1.02, L=1; x /L=0.2 �a�, 0.5 �b�,
and 0.8 �c�. The gray regions indicate the outside of the channel.
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FIG. 7. �Color online� Normalized steady-state probability dis-
tribution of particles along the length of the channel Pst�x� �see Eq.
�31��, for the corresponding set of scaling parameters f as those
chosen in Fig. 6.
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At large force strengths, particles concentrate along the
axis of the channel. In this situation, the assumption of
equilibration along the transverse direction fails. Particles
will experience the presence of the boundaries only when
they are close to the bottlenecks. Hence, in the limit of very
large force values, the influence of the entropic barriers prac-
tically disappears. In this limit, the correction in the diffusion
coefficient leading to a spatial dependency, i.e., D�x�, over-
estimates the influence of the entropic barriers.

Figure 7 depicts the normalized stationary distribution
function of particles in the x direction at various force
strengths, obtained from numerical simulations:

Pst�x� ª
�

−��x�

��x�

dy Pst�x,y�

�
0

L

dx�
−��x�

��x�

dy Pst�x,y�
. �31�

At very low force strengths the particles are evenly dis-
tributed, and the probability distribution Pst�x� scales with
the cross section of the channel. On increasing the force, the
maximum of Pst�x� is shifted toward the exit of the cell and
the particles accumulate in front of the bottleneck. This be-
havior can also be observed in Fig. 5. In the large-force
regime Pst�x� is almost constant over a wide range of x val-
ues, indicating a minor influence of the shape of the structure
on the dynamics of the particles. In the limit of large f values
the plateau extends and covers the whole period. In this situ-
ation, a deterministic treatment of the problem leads to ad-
equate results.

VII. CONCLUSIONS

With this work we have investigated the validity condi-
tions under which the Fick-Jacobs approximation provides
an accurate description of the biased diffusion of Brownian
particles in 2D and 3D confined systems. We have estab-
lished a validity criterion formulated in terms of the sinuosity
of the channel ��x�, as was done in the unbiased case
�21,24–26�, and of the scaling parameter that causes forced
diffusion. This scaling parameter compares the work done on
a particle traveling a distance equal to the spatial period L of
the channel with the available thermal energy. Interestingly,
the critical value of this scaling parameter up to which the
Fick-Jacobs equation holds depends on the square of the pe-
riod. This dependence follows from the analysis of the dif-
ferent time scales that rule the biased, diffusive dynamics.
We have constructed a validity diagram showing the region
of parameters �spanned by f and L� in which the Fick-Jacobs
approximation describes the overdamped diffusive transport
accurately �Fig. 4�. We have also investigated numerically
the conditions for fast equilibration in the transverse direc-
tion, which is vital for the accuracy of the Fick-Jacobs ap-
proximation. The results presented evidence the usefulness
of the Fick-Jacobs description with a spatial dependent dif-
fusion coefficient at small applied bias. Obtaining a simpli-
fied Fick-Jacobs-type description that covers also intermedi-
ate to strong values of the scaled force still presents an open

challenge. The availability of such a description would be
beneficial for the detailed understanding of diffusive trans-
port processes occurring in confined media, the latter dictat-
ing the nonequilibrium transport behavior in a great variety
of systems far from thermal equilibrium �1–19,29,30�.
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APPENDIX: PARTICLE CURRENT

The evolution equation of the probability distribution of
overdamped Brownian particles in 1D can also be expressed
as

�P�x,t�
�t

=
�

�x
�D�x�e−	A�x� �

�x
e	A�x�	P�x,t� , �A1�

where D�x� is a position-dependent diffusion coefficient, and
A�x� is the free energy landscape for the reaction coordinate
x.

Equation �A1� results from the continuity equation

�

�t
P�x,t� = −

�

�x
J�x,t� �A2�

with the probability current

J�x,t� = − D�x�e−	A�x� �

�x
e	A�x�P�x,t� . �A3�

In the case of a periodic diffusion coefficient D�x+L�
=D�x� and a tilted periodic free energy A�x+L�=A�x�−FL it
is convenient to define the reduced probability density and
the corresponding current,

P̂�x,t� = �
n

P�nL + x,t� , �A4�

Ĵ�x,t� = �
n

J�nL + x,t�, n � Z . �A5�

By definition, these functions are periodic with periodicity

L, P̂�x+L , t�= P̂�x , t� and Ĵ�x+L , t�= Ĵ�x , t�. Moreover,

P̂�x , t� and Ĵ�x , t� enter the continuity equation �A2� and

P̂�x , t� is normalized on any interval �x ,x+L�, provided that
P�x , t� is normalized, e.g., �−�

+�dx P�x , t�=1. In the steady-

state limit the probability current is a constant, Ĵ�x , t�→ Ĵ;
thus Eq. �A3� becomes

Ĵ = − D�x�e−	A�x� �

�x
e	A�x�P̂st�x� . �A6�
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Multiplying both sides of Eq. �A6� by 1/D�x�e	A�x� and
integrating over a period, we obtain

Ĵ�
x

x+L 1

D�x��
e	A�x��dx� = �

x

x+L �

�x�
e	A�x��P̂st�x��dx�.

�A7�

Using now the conditions P̂st�x+L�= P̂st�x� and A�x+L�
=A�x�−	FL, Eq. �A7� reduces to

Ĵ�
x

x+L 1

D�x��
e	A�x��dx� = P̂st�x��1 − e−	FL�e	A�x�. �A8�

Rearranging the terms and integrating over 0 to L, Eq. �A8�
leads to

Ĵ�
0

L

e−	A�x�dx�
x

x+L 1

D�x��
e	A�x��dx� = �1 − e−	FL��

0

L

P̂st�x�dx ,

�A9�

which due to the normalization yields

Ĵ =
�1 − e−	FL�

�
0

L

dxe−	A�x��
x

x+L

dx�
1

D�x��
e	A�x��

. �A10�

The general relation between the stationary probability
current and the steady-state particle current ��ẋ�� is

�ẋ� = �
0

L

Ĵdx , �A11�

which implies �ẋ�= ĴL. Then the particle current reads

�ẋ� =
�1 − e−	FL�

�
0

L dx

L
e−	A�x��

x

x+L

dx�
1

D�x��
e	A�x��

. �A12�

Remarkably, this expression for the particle current is
equivalent to the expression obtained via the mean-first-
passage-time approach presented in Ref. �20�.
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