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Abstract 

A first step towards the multidetection, identification and quantification of anabolic 

androgenic steroids by Enzyme-linked immunosorbent assays (ELISA) has been 

performed in this study. This proposal combines multiple competitive ELISA assays 

with different cross-reactivities profiles and multivariate data analysis techniques. Data 

has been analyzed by principal component analysis in conjunction with a novel k-

nearest line classifier. This proposal allows to detect simultaneously up to four different 

steroids in the range of concentration from 0.1 to 316.2 nM with a total rate of 90.6% of 

correct detection, even in the presence of cross-reactivities. A methodology for 

concentration prediction is also presented with satisfactory results.  

Keywords:  ELISA, anabolic androgenic steroid, multidetection, quantification, pattern 

recognition, k-nearlest line 



Introduction 

Anabolic androgenic steroids (AAS)  are illegally used as growth promoters in cattle, to 

increase the performance in athletes and in horse racing1. The use of substances having 

a hormonal action for growth promotion in farm animals was prohibited in 1981 by the 

European Union (Directive 81/602/EEC). With regard to human sports, every year, the 

World Antidoping Agency (WADA) publishes a list of prohibited drugs2, where 

anabolic steroids are included in the S1 group. 

As consequence of the illegal use of the AAS the development of new methodologies 

for detecting these compounds becomes indispensable in our society. The 

immunochemical methods provide an accurate measurement with fast results and they 

can measure simultaneously a large number of samples3, 4, in consequence, there is a 

decrease in the price per analysis. One of the most widely used immunochemical 

techniques is the enzyme-linked immunosorbent assay (ELISA). ELISAs are based on 

the specific recognition of antigens by specific antibodies; when the antigen is a small 

molecular weight molecule, like AAS, a competitive format is used. Work with 

immunoassays helps to reduce the sample preparation time, because matrix effects 

which usually appear with other type of sensors can be avoided by high dilutions of the 

sample5. In contrast, the classical techniques based on chromatography coupled to mass 

spectrometry, GC-MS or LC-MS6-10, used as confirmatory methods for the detection 

and identification of this compounds, are more time consuming, because a more 

complex sample treatment is needed, and are more expensive. 

However, the ELISA technique has few disadvantages. Its main problem is the cross-

reactivity that appears in the determination of compounds with a very similar structure, 

like AAS. The fact that one assay can detect several compounds makes difficult to 

discriminate which is the analyte present in the sample. However, since different assays 



may show different sensitivities to different compounds the use of an array of assays in 

conjunction with multivariate data analysis open new doors for the determination and 

identification of compounds of the same family. In this point, multivariate data analysis 

can help us to improve the system selectivity and also to perform the multidetection 

approach. A multianalyte assay brings us advantages such as simplicity, faster 

measurements, and lower costs compared to perform each assay individually. There are 

some classical approximations to perform the multidetection using immunoassays 

techniques11, but in general these methods avoid the cross-reactivity recognition with a 

previous optimization of the immunoreagents concentrations. Other types of 

multidetection strategies are forced to use very specific immunosensors to perform the 

multidetection with a sequential analysis, a spatially separation of immunosensors12 or 

using multiple labels. But in any case, these classical methods of multidetection use a 

single calibration curve for each analyte. 

The multivariate data analysis techniques are usually used for solving problems in the 

selectivity (due to cross-recognition effects)13, as well as, to perform multidetection 

using high dimensionality data14, 15 (for instance multiple ELISAs). This strategy, that is 

well-known in artificial olfaction16 and electronic tongues17, uses an unique 

mathematical model to detect and/or quantify various analytes simultaneously.  This 

approach usually improves the possibilities of single calibrations13, because the effect of 

the cross-reactivity recognition is counteracted in the final mathematical model. In fact, 

it has been already reported for analysing mixtures of two pesticides using 

immunosensors18, 19. 

The development and cross-reactivity characterization of different ELISAs for 24 

different AAS has been performed to achieve the final aim of this work, which is to 



combine some ELISA assays and multivariate data analysis techniques to perform AAS 

multidetection and quantification. 

Regarding data evaluation, here we use a novel pattern classifier. Most of the classical 

pattern recognition methods assume Gaussian clusters, where sample scatter is due to 

perturbances and experimental errors. In the current scenario, every class correspond to 

an analyte, and the data processing intends to recognise the correct class for a large 

range of concentrations; in these cases, and in particular for non-linear sensors, the 

pattern dispersion due to potential variations in concentration of the analyte in the 

sample under analysis dominates other sources of dispersion and the clusters become 

elongated and in many occasions curvilinear. If the clusters remain linear, every class 

can be represented by a different subspace. This is the strategy behind SIMCA 

classifiers20. However, for curvilinear clusters this strategy fails. This problem has been 

already considered by A. Ortega et al.21. The authors proposed here the use of Self-

Organizing Maps followed by a pruning sterp to build a Minimum Spaning Tree. Here 

in this work, and following the same ideas, a simplified version is presented. It is an 

extension of the well-known K-Nearest Neighbour where the prototypes are now lines. 

This method can be called as K-Nearest Line (K-NL) classifier in analogy. 

 

Experimental  

Materials 

(a) ELISA: Polystyrene microtiter plates were purchased from Nunc (Maxisorp, 

Roskilde, Denmark). Washing steps were carried out using a SLY96 PW microplate 

washer (SLT Labinstruments GmbH, Salzburg, Austria). Absorbances were read using a 

SpectramaxPlus (Molecular Devices, Sunnyvale, CA) at a single wavelength mode of 

450 nm. The competitive curves were analyzed with a four-parameter equation using 



the software SoftmaxPro v2.7 (Molecular Devices) and GraphPad Prism v4 (GraphPad 

Software Inc., San Diego, CA). Unless otherwise indicated, data presented correspond 

to the average of at least two well replicates. Immunochemicals were obtained from 

Sigma Chemical Co. (St. Louis, MO). Other chemical reagents were purchased from 

Aldrich Chemical Co. (Milwaukee, WI). The immunoreagents for AAS were produced 

in the laboratory, and were described before. For the detection of St (8BSA, 5BSA and 

As147)22, 23, for THG (hG-BSA and As170)24 and the immunoreagents employed in this 

work for the detection of B (13BSA and As138) and MB (15BSA, 12BSA, 14BSA and 

As140, As142, 143) will be described elsewhere. 

(b) Buffers: PBS is 10 mM phosphate buffer 0.8% saline solution, and unless otherwise 

indicated the pH is 7.5. Coating buffer is 50 mM carbonate-bicarbonate buffer pH 9.6. 

PBST is PBS with 0.05% Tween 20. Citrate buffer is a 40 mM solution of sodium 

citrate pH 5.5. The substrate solution contains 0.01% TMB (tetramethylbenzidine) and 

0.004% H2O2 in citrate buffer. 

 

Analytes 

Stanozolol (St), Boldenone (B), a-Boldenone (a-B), Methylboldenone (MB), 

Androstandiendione (ADD), Methyltestosterone (MT), 19-nortestosterone (NT), 

Progesterone (P), Testosterone (T), Androstandione (A1), Pregnenolone (Preg), 

Cholesterol (Ch), Dihydrotestosterone (DHT), Estrone (E1), Dexamethasone (D21P), 

Norstanozolol (Norst), 16b-hydroxystanozolol (16OH), 3’hydroxystanozolol (3OH), 

Trenbolone (Tr), Estradiol (E2), Ethynylestradiol (EES), Tetrahydrogestrinone (THG), 

Gestrinone (G) and Norethandrolone (NEth). 

Stanozolol, Boldenone, Methylboldenone, Testosterone and Gestrinone were purchased 

from Sequoia Research Products, Ltd. (Oxford, UK). Other chemical reagents were 



purchased from Aldrich Chemical Co. (Milwaukee, WI). Tetrahydrogestrinone was 

synthesized in the laboratory24. 

 

ELISA assay 

The ELISAs employed in this work have been optimized, demonstrated and published 

its applicability before, for St22, 23 and THG24. In the case of the assays for the 

determination of B and MB will be published elsewhere. 

(a) General procedure: Microtiter plates were coated with the coating antigens, BSA 

conjugates, (in coating buffer; 100 μL/well in all cases) overnight at 4 °C. The 

following day, the plates were washed four times with PBST, and the standard curves 

prepared (0.064 nM-1000 nM different AAS) were added to the microtiter plates (in 

PBST; 50 μL/well) followed by the corresponding dilution of antiserum, previously 

optimized in the laboratory (in PBST; 50 μL/well) and incubated for 30 min at RT 22-24. 

The plates were washed again as before, and a solution of anti-IgG-HRP (1/6000 in 

PBST) was added (100 μL/well) and incubated for 30 min more at RT. After a new 

washing step, the substrate solution was added (100 μL/well) and the enzymatic 

reaction was stopped after 30 min at RT with 4N H2SO4 (50 μL/well). The absorbances 

were read at 450 nm. The standard curves were fitted to a four parameter equation 

according to the following formula:  
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where A is the maximal absorbance, B is the minimum absorbance, C is the 

concentration producing 50% of the maximum absorbance (or IC50), and D is the slope 

at the inflection point of the sigmoid curve. The limit of detection (LOD) for a single 



ELISA is defined as the concentration that produces 90% of the maximum absorbance 

(IC90).  

(b) Cross-reactivity characterization: Stock solutions of different steroidal compounds 

were prepared (10 mM in dimethyl sulfoxide) and stored at 4ºC. Standard calibration 

curves for each one were prepared by serial dilutions in PBST and measured with the 

different ELISAs (same procedure as above). The IC50 were determined in the 

competitive experiments as described above and the cross-reactivity values were 

calculated according to the following equation: 
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Dataset description and statistical methods 

The pattern recognition proposed in this work has basically three steps: (i) 

preprocessing, (ii) dimensionality reduction, (iii) classifier. This section gives a short 

introduction to the techniques used. In this work, a modified version of k-NN25 is 

presented, specially designed to operate with cluster elongation due to concentration 

scatter. A description of the procedure is given in this section. 

(a) Description of data set: Two cases with different number of ELISAs and analytes 

were selected in order to study the possibilities of multidetection. The first case consists 

on use all eight previously characterized ELISA assays. Four analytes (DHT, MB, P and 

St) at 8 concentrations from 0.03 to 1000nM were measured twice with these 

immunoassays. Thus, there were 64 assays in the first case (4 analytes x 8 ELISAs x 2 

replicates). In the second case, only 4 ELISAs (As138/13BSA, As140/15BSA, 

As142/15BSA and As147/8BSA) were used for measuring up to 7 AAS, also twice at 8 



concentrations from 0.03 to 1000nM. In this case there were 56 assays (7 analytes x 4 

ELISAs x 2 replicates).  

(b) Data preprocessing: First, the mean of each pair of replicates in the training set was 

performed. In order to build lines that follow the expected evolution of the patterns due 

to concentration changes, synthetic samples were obtained by linear interpolation within 

the available training data. The interpolated patterns correspond to concentrations from 

0.03 to 1000 nM with increments of 0.1 (in logarithm units of nM). Thus, there were 46 

synthetic samples per each ELISA assay (that included the original concentrations).  

Next, the Logit transformation was applied to linearize the response26: 
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After that, the data was autoscaled before Principal Component Analysis is carried out. 

Finally, principal components analysis was used to reduce the dimensionality and to 

visualize data. Thanks to PCA, original data set is transformed from a high number of 

variables (up to eight ELISAs) to few numbers of new variables (three principal 

components). The final number of principal components was selected according to the 

minimal number of principal components that achieve to 95% of the total variance. 

(c) Classification and quantification: Next, the k-nearest line classifier is applied in the 

principal components space. The novel k-nearest line is a supervised method to classify 

unknown samples and it can also be used for concentration estimation. There is one line 

per class/analyte that is made up for a dense sequence of samples with increasing 

concentrations. In fact, no actual line is built, however due to the density of the 

interpolated data, one assume that looking for the nearest neighbour is the same than 

looking for the nearest line. 

The main principle of k-NL is to assign the class of one sample by the majority vote of 

its k nearest lines. Using k=1, the classifier k-NN was considered as a nearest line 



approach. The distance used for evaluating the nearest neighbours was the Euclidean 

distance in the principal component space. 

Once the detection of the compound is done, the concentration of the nearest neighbour 

(it can be a synthetic or real sample) was used to assign the concentration of the test 

sample. In the interpolation scheme every synthetic sample has an associated 

concentration value. 

(d) Validation and interpretation of results: In order to evaluate the predictive ability of 

the classifier, a leave-one-pair-out validation was used. This scheme is due to the use of 

replicates. If a measurement replicate is let in the training set, the results are always 

almost perfect for very simple classifiers. Leaving both replicates out of the training set, 

means that the measurement conditions in the validation set are not present in the 

training set. 

This methodology uses all real sample pairs, excluding one pair, as a training set and the 

excluded sample pair is used as a test set. After that, the model is constructed again 

using all samples without the next test sample. This process is repeated N times, where 

N is the number of test pair samples. In this work, the original samples were used as test 

samples.  

The classification results are presented in the confusion matrix that contains the 

classification rate per analyte, and the confusions between analytes. If the model 

predicts perfectly, the confusion matrix will show a diagonal matrix with 100% in its 

diagonal. To facilitate the interpretation of the results, the rate of the correct 

classification for each concentration was also calculated.  

As mentioned before, this scheme also permits to estimate concentrations. The 

evaluation of the quantification was performed by plotting the obtained concentrations 

versus the expected concentrations. When the quantification is done correctly, the linear 



regression of this comparison has values of slope, intercept and correlation near to 1, 0 

and 1 respectively.  

Data organization, mathematical transformations and graphics were performed using 

Matlab® R2007a from The MathworksTM. PCA was carried out using the special 

functions provided by PLS_Toolbox 5.0 from Eigenvector Research Inc. for Matlab 

use. 

 

Results and Discussion 

ELISA assay 

Different ELISA assays have been developed22-24 for the determination of AAS. The 

assays employed in this study are summarized in the table 1. The concentrations of the 

immunoreagents were previously optimized in the laboratory. The assay As138/13BSA 

achieved a detectability value (IC50) of 23.77 nM for the determination of Boldenone. 

Regarding the determination of Methylboldenone, there are different assays with 

different behaviour: As140/15BSA, As142/15BSA, As143/12BSA and As143/14BSA, 

with a detectability of 4.33, 0.79, 10.51 and 3.98 nM, respectively. In the case of the 

analysis of Stanozolol, we characterized that the assays As147/5BSA and As147/8BSA 

had an IC50 value of 2.60 and 0.38 nM, respectively. Finally, the assay employed for the 

determination of Tetrahydrogestrinone was As170/hG-BSA with an IC50 of 1.39 nM. 

 

Cross-reactivity study 

Regarding the cross-reactivity studies, as it can be observed in the table 2, each assay 

has a different profile of recognition of the different analytes of interest. Remarkable is, 

for instance, that the assay As138/13BSA can recognize equally B and ADD. For the 

assays developed for MB, it can be observed that the recognition of MT is very similar 



than MB. Within these assays, the recognition of St is also important, as in the assay of 

As143/12BSA. In the case of the St ELISAs, a different profile was obtained only 

changing the coating antigen. For As147/5BSA were obtained cross-reactivity values of 

100, 21, 45, 18 and 51% for St, MB, NorSt, 16OH and 3OH respectively. And, on the 

other hand, for As147/8BSA were obtained 100, 21, 2.5, 1.5 and 2% for the same 

analytes. In the case of THG detection, a specific assay was obtained which can only 

partially recognize G and NEth with a 20 and 62%, respectively. 

With a general perspective, one can observe that all assays have cross-reactivity for at 

least 5 different compounds, which makes difficult the individual detection and 

quantification of AAS using the classical approach of the single ELISA. 

 

Multianalyte ELISA assay 

All ELISAs were performed independently ones from others. However, the pattern of 

response is built by grouping the responses of the different ELISAs for the same analyte 

concentration.  

 

Case 1: Four analytes and eight ELISAs procedure 

In this case, four analytes (DHT, MB, P and St) and the data from the 8 ELISAs were 

selected. After data pre-processing, PCA captured 80.04% of the total variance in the 

first principal component, the second one captured 11.95% and the third captured 

5.27%. These three PCs with an accumulated variance of 97.26% were used to perform 

the k-nearest line classifier. The Figure 1 shows the first principal component (PC1) vs 

the second principal component (PC2) (also called scores plot) for all synthetic and real 

samples. It can be clearly observed that PC1 evolution basically reflects the common 

mode response the assay to the increase of concentration of the different analytes. In the 



scores plot, there are two main tendencies: the first with values PC1<1.5, where 

different analytes are overlapped (at low concentrations all assays converge to the same 

point on the principal component space since assays do not show response) and the 

second with higher values of PC1, where we can distinguish visually the analytes. One 

can see in the scores plot that the samples were distributed as a line per analytes, as 

expected. 

After applying the 1-NL classifier, the total rate of correct classification using leave-

one-pair-out validation was 90.6%. As shown in the confusion matrix (table 3), the 

samples that had MB and P were correctly classified. The St had a rate of 87.5%, and its 

confusions are with DHT. The worst classified analyte was DHT that had a 75% of 

correct classification. DHT is sometimes confused with MB or P. 

The combined rate of correct classification for each concentration shows that the 

classifier fails only at lowest and highest concentrations, with 62% and 75% at values of 

0.03 and 1000 nM respectively. The fault at lowest concentrations can be caused by the 

overlapping in the scores plot, and at highest concentrations the fail is produced because 

an extrapolation is done using the leave-one-pair-out strategy (sample falls out of the 

domain covered by the calibration points). In conjunction, all analytes were well 

recognised between 0.1 to 316.2 nM with more than 85% of correct answers at each 

concentration. According to this concentration range, 0.1 nM can be assigned as the 

limit of identification using this methodology. 

The comparison plots of quantification are presented in the figure 2, where the 

concentrations obtained versus expected values and its linear regression are presented 

for all analytes. One can observe that all regressions have good behaviour, near to the 

ideal. The correlations are higher than 0.97 and the slopes and intercepts are near to 1 



and 0, respectively. That confirms that our 1-NL model to perform the quantification 

works correctly.  

An important fact is that, the best cross-reactivities values achieved for P and DHT 

using the immunoassays are 8 and 26%, respectively (see Table 2). Although, using this 

methodology, P and DHT can be detected correctly even without a specific ELISA for 

them. 

 

Case 2: Seven analytes and four ELISAs procedure 

The second selection of data included seven analytes (A1, B, DHT, MB, P, St and T) 

and four assays (As138/13BSA, As140/15BSA, As142/15BSA and As147/8BSA). The 

scores plot, where first principal component vs second principal component are plotted 

for all samples, is shown in the figure 3. The 99.21% of the variance of the data set is 

captured in the three first components, with the 82.62, 9.72 and 6.87% in the PC1, PC2 

and PC3, respectively. We can observe a similar behaviour as in the previous case. At 

low values of PC1, which corresponds to low concentrations of compounds, an 

overlapping effect exists for all analytes. However, now there are some overlapped lines 

at higher concentrations. DHT, MB, P and T lines are quite close to each other in the 

PC1 vs PC2 projection 

Once a 1-NL classifier is applied, some of these overlapping lines cause multiple 

confusions in the detection. The confusion matrix is shown in the table 4, where one can 

observe that only 4 analytes are well detected (with more than 75% of correct answers): 

A1, MB, P and St. These compounds are sometimes confused: A1 with DHT; MB with 

T; P with DHT and St; St with P. The analyte B has obtained 68.8% of correct answers 

and presents confusions with St and T. The detection of T was performed with 50% of 

correct answers, and it has quite confusions with B, DHT and MB.  Finally, the DHT 



has a rate of 31.3% of correct detections and presents high confusions with A1, B, P and 

T. 

When the rate of correct classification in function of the concentration was studied, it is 

showed that the A1, MB, P and St have more than 90% of correct detection from 3.16 

nM to the highest concentration, at each value of concentration. Although the results are 

a bit worse than in the previous case, it is important to note that in this case there are 

more analytes than sensors. 

The results of quantification only for the analytes with more than 75% of correct 

classification were presented, because when a sample is misclassified, this sample is not 

taken into account for the quantification evaluation. Analytes with the best classification 

rate have been selected, in order to have enough samples to build relevant statistical 

comparison regressions. The comparison results are presented in the figure 4. The worst 

behaviour corresponds to the regression of A1 that has a correlation of 0.92 but the 

parameters for the three other analytes are really near to the ideal.  

As well as the previous case, this methodology is able to detect and quantify two AAS 

that have no specific ELISA assay. These compounds are A1 and P, and their maximum 

values of cross-reactivity are only 8 and 10% for the ELISAs used (see Table 2). 

 

Conclusions 

ELISA technique had been used in this work to detect and quantify various anabolic 

androgenic steroids simultaneously. The different recognition profile of eight ELISAs 

has been evaluated for a variety of steroids. After data preprocessing using statistical 

tools, the PCA showed the data structure. The structure visualization gave us an idea 

about if multidetection of AAS was possible and how we could perform it.  



The k-Nearest Line procedure was implemented. Line formation was accomplished by 

producing a dense line representation by adding synthetic samples between consecutive 

training samples (once ordered in analyte concentration).  

Finally, the multianalyte ELISA approach was performed using 1-NL classifier and 

using the leave-one-pair-out validation. Our proposal carried out multidetection and 

quantification of four different compounds using eight assays in the range from 0.1 to 

316.2 nM. The proposed methodology also can be used with few assays, obtaining 

correct multidetection and quantification of four different compounds in the range from 

3.16 to 1000 nM using only three assays. 

We can conclude that multidetection and quantification of anabolic androgenic steroids 

using ELISA data is possible in buffer, even when no specific ELISA is available. Just, 

ELISAs with a wide cross-reactivity profile and multivariate data analysis is needed to 

be able to perform an identification and quantification of AAS. In a future this method 

could be used to analyze these substances in real samples, like human sera, because it 

has been already demonstrated in a previous work22 that with a simple pre-treatment 

consisted on precipitate the proteins presents in the serum and then dilute the sample in 

the assay buffer, the matrix effect disappear. 
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Figure 1. 2D data set representation consisting of eight different ELISAs and four 

analytes (case 1). In this graph, the two first principal components are plotted, that 

explain a total variance of 91.99%. 

 

Figure 2. Quantification results for case 1 (eight different ELISAs and four analytes). 

Correlations between the obtained and the expected concentrations of DHT (a), MB (b), 

P (c) and St (d). The dashed line represents the ideal values, the solid one the regression 

of the obtained vs expected values. 

 

Figure 3. 2D data set representation consisting of four different ELISAs and seven 

analytes (case 2). In this graph, the two first principal components are plotted, that 

explain a total variance of 92.34%. 

 

Figure 4. Quantification results for case 2 (four different ELISAs and seven analytes). 

Correlations between the obtained and the expected concentrations of A1 (a), MB (b), P 

(c) and St (d). The dashed line represents the ideal values, the solid one the regression of 

the obtained vs expected values. 

 



Table 1. Details of the ELISA assays employed and their value of IC50 for its target 

analyte 

Assay Target 
analyte As dilution Coating Antigen 

(µg/mL) 
IC50 
(nM) 

As138/13BSA B 1/64000 0.0625 23.77 
As140/15BSA MB 1/16000 0.0625 4.33 
As142/15BSA MB 1/32000 0.125 0.79 
As143/12BSA MB 1/16000 0.125 10.51 
As143/14BSA MB 1/16000 0.5 3.98 
As147/5BSA St 1/2000 0.625 2.60 
As147/8BSA St 1/32000 0.039 0.38 
As170/hG-BSA  THG 1/16000 0.125 1.39 

 
 



Table 2. Recognition of anabolic androgenic steroids, expressed by their percentage of cross-reactivity of each ELISA assay 
 

Cross-reactivity (%) 

Compound As138/ 
13BSA 

As140/ 
15BSA 

As142/ 
15BSA 

As143/ 
12BSA 

As143/ 
14BSA 

As147/ 
5BSA 

As147/ 
8BSA 

As170/ 
hG-BSA 

St <2 33 11 104 57 100 100 4 
B 100 8 15 <1 <0.4 0.5 0.3 0.5 

MB 14 100 100 100 100 21 21 2 
a-B 12 <0.4 <0.1 <1 <0.4 - - - 

ADD 96 2 <0.1 - - - - <0.1 
MT 6 93 75 372 123 55 - 0.5 
NT 3 -  3 <0.4 <0.2 - 0.7 
P 10 <0.4 <0.1 8 <0.4 4 1 3 
T 5 3 4 - 19 2 <0.1 <0.1 

A1 8 <0.4 <0.1 - - - <0.1 <0.1 
Preg <2 <0.4 4 - <0.4 - - <0.1 
Ch <2 <0.4 <0.1 <1 2 1 - <0.1 

DHT 4 9 2 26 12 4 <0.1 <0.1 
E1 <2 15 9 2 <0.4 1 <0.1 <0.1 

D21P - - - <1 <0.4 - - - 
NorSt - - - - - 45 2.5 - 
16OH - - - - - 18 1.5 - 
3OH - - - - - 51 2 - 
Tr - - - - - 1 - 0.5 
E2 - - - - - 1 - <0.1 

EES - - - - - 4 - 0.3 
THG - - - - - - - 100 

G - - - - - - - 20 
NEth  - - - - - - 62 
- Not tested



Table 3. Classification results for case 1 (eight different ELISAs and four analytes). 

A confusion matrix is presented, where the rates of correct answers for each analyte 

are plotted and one can see how the misclassification happens. 

 

 
Obtained 

DHT 

Obtained 

MB 

Obtained 

P 

Obtained 

St 

Expected DHT 75.0% 12.5% 12.5% 0.0% 

Expected MB 0.0% 100.0% 0.0% 0.0% 

Expected P 0.0% 0.0% 100.0% 0.0% 

Expected St 12.5% 0.0% 0.0% 87.5% 

 

 

 

 

 



Table 4. Classification results for case 2 (four different ELISAs and seven analytes). 

A confusion matrix is presented, where the rates of correct answers for each analyte 

are plotted and one can see how the misclassification happens. 

 

 
Obtained 

A1 

Obtained 

B 

Obtained 

DHT 

Obtained 

MB 

Obtained 

P 

Obtained 

St 

Obtained 

T 

Expected A1 87.5% 0.0% 12.5% 0.0% 0.0% 0.0% 0.0% 

Expected B 0.0% 68.7% 0.0% 0.0% 0.0% 6.3% 25.0% 

Expected DHT 18.7% 6.3% 31.2% 0.0% 6.25% 0.0% 37.5% 

Expected MB 0.0% 0.0% 0.0% 87.5% 0.0% 0.0% 12.5% 

Expected P 0.0% 0.0% 12.5% 0.0% 81.2% 6.3% 0.0% 

Expected St 0.0% 6.3% 0.0% 0.0% 12.5% 81.2% 0.0% 

Expected T 0.0% 18.7% 18.8% 12.5% 0.0% 0.0% 50.0% 
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Figure 4 
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