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Abstract: For the first time, ROHP-PAZ mission is using polarimetric radio occultations mea-
surements to estimate precipitation. This paper evaluates the performance of the averaged vertical
profiles of the integrated differential phase shift ∆Φ in detecting precipitation above a certain thresh-
old. Using IMERG precipitation products as target, I developed an algorithm that computes the
F1 Score for several averages between different heights ho and hf . I found that the optimal range
for computing these averages starts at ho

<∼ 1 km and reaches hf between 5 km and 10 km. These
averaged profiles achieve F1 Scores ranging from 0.4 to 0.6 depending on the precipitation threshold.
Moreover, the results show that the optimal range of heights for computing the average shifts to
higher altitudes when studying tropical regions. This could be due to higher levels of noise registered
near the surface at low latitudes and to the vertical structure of convective precipitation which is
predominant in these regions.

I. INTRODUCTION

Evaluating the performance of any remote sensing
technique is of vital importance. A properly quantified
evaluation can serve as judgment to the success of an en-
tire mission and will give scientists the insights necessary
to allocate resources of time and money in order to im-
prove results, and that is precisely the objective of this
paper. A Global Navigation Satellite System (GNSS) ra-
dio occultation (RO) experiment is taking place in the
Spanish Low Earth Orbiter (LEO) satellite PAZ. The
Radio Occultation and Heavy Precipitation experiment
aboard PAZ (ROHP-PAZ mission) is the first to use the
GNSS Polarimetric RO (PRO) technique (see FIG. 1),
designed to test the capability of PRO to detect heavy
rain events and other atmospheric phenomena [1].

RO is a technique for obtaining the vertical gradi-
ent of the atmospheric refractive index, from which we
can derive thermodynamic properties such as tempera-
ture, pressure and water vapour. This is achieved by
using a LEO to collect the signals transmitted by the
GNSS systems once they have traveled through the at-
mosphere. The acquisition takes place when the LEO
sets behind the horizon (occultation). This technique
has been widely used and provides highly accurate at-
mospheric data [2]. The ROHP-PAZ mission not only
provides these vertical thermodynamic profiles but also,
for the first time, collects polarimetric information, which
is the point of interest of this study. GNSS systems trans-
mit circularly polarized light that is collected using two
orthogonal linearly polarized antennas (horizontal H and
vertical V). In the case of heavy rain events, large rain-
drops are flattened out along their horizontal dimension
due to air friction. These raindrops cause depolarization
between the H and V components which are affected dif-
ferently when propagating through a rainy atmosphere.
PROs allow us to measure the differential phase shift

FIG. 1: GNSS signals experience depolarization in the pres-
ence of large raindrops and the PAZ receiver measures it at
different heights. Image credit: Ramon Padullés.

∆ϕ between the H and V components. One of the ob-
jectives of this mission is to use the measured ∆ϕ as
a precipitation estimator and this paper evaluates the
performance of ∆ϕ on detecting precipitation above a
certain threshold. By averaging the ∆ϕ vertical profiles
I obtained a scalar from which to retrieve a True/False
class for precipitation. This True/False class extracted
form the average d will be compared to our ground truth
defined in section II. This study evaluates the perfor-
mance of different averaging limits and provides the op-
timal range of heights [ho, hf ] to compute the averaged
∆Φ that best detects precipitation. The optimal range
[ho, hf ] will depend on the intensity of the precipitation
we aim to detect and, as found in this study, on the re-
gion where the PRO took place. The performance of
each average [ho, hf ] is evaluated using Precision-Recall
curves which have been proven to be suitable for binary
classifiers on imbalanced datasets [3]. I expect the aver-
age [ho, hf ] that best predicts the True/False target to
be somewhere between 0.1 km and 10.0 km since that
is where the presence of large raindrops and other hy-
drometeors will cause the most depolarization between
the H and V components. Furthermore, I also performed
a region segmentation (section III C.) to the dataset ex-
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pecting to see a difference in performance between trop-
ical and extratropical regions due to major differences in
cloud formations and types of precipitation.

II. DATA

The main observable of the experiment is the differen-
tial phase shift ∆ϕ as a function of height:

∆ϕ(h) = ϕH(h)− ϕV (h). (1)

The dataset contains over 85.000 measurements dis-
tributed globally providing vertical profiles (heights from
0.1 km to 40 km) of ∆ϕ in 100 m intervals. To properly
understand our data two PROs are shown in FIG. 2.

FIG. 2: In gray PRO registered at -53° 52’ N -64° 32’ W with
start time on May 10th 2018 21:39:06 UCT and an average
surface precipitation of 0.0 mm/h. In black PRO registered
at 04° 21’ N 82° 03’ W with start time on May 17th 2018
at 01:38:31 UCT and an average surface precipitation of 9.5
mm/h

To properly evaluate the performance, a target must be
specified. The target (ground truth) used in this paper
was obtained from the NASA’s IMERG ”final” precip-
itation dataset. Surface rain in mm/h is obtained by
co-location of the PAZ radio occultation profiles with
IMERG rain products. It corresponds to the IMERG
average across the area of the rays below 6 km, projected
onto the Earth surface. The co-location approach is de-
tailed in [4, Fig. 3]. The goal is to evaluate and quantify
how well does the vertically averaged ∆ϕ perform in de-
tecting precipitation above a certain threshold regarded
as true precipitation. This way, our target is defined as
a binary True/False variable being True for precipitation
above the percentile of choice and False for precipitation
below it. This study covers targets built using the 90th

percentile (moderate precipitation) to the 99th percentile
(heavy precipitation) of our dataset.

For this work, I built a Python module with use-
ful functions and algorithm implementations. The
data processing tools I used are Python packages Pan-
das, Numpy, Matplotlib and Scikit-learn. These func-

tions allow the user to perform data-cleaning and data-
preprocessing, calculate averages of ∆ϕ between two al-
titudes, define ground truths based on the percentile
of interest, find the average with the optimal perfor-
mance and many other useful actions. Please refer to
the documentation and code which can be found at
https://github.com/ignaciocordova/final thesis.

III. METHODOLOGY

Each PRO provides a vertical profile. Given the array
∆Φ containing the depolarization ∆ϕ at each height (0.1
km - 40 km), the first step is to convert it into a scalar so
that it can be compared to the target true precipitation.
This is achieved by computing the average between two
heights [ho, hf ] as:

⟨∆Φ⟩(j)ho-hf
=

1

hf − ho

hf∑
i=ho

∆ϕ
(j)
i . (2)

If the average is computed for each one of the j=1,...,m
different PROs we obtain:(

⟨∆Φ⟩(1)ho-hf
, . . . , ⟨∆Φ⟩(m)

ho-hf

)
. (3)

Now it is time to evaluate the performance of the average
[ho, hf ] using the ground truth (4). This process will be
repeated for different combinations of ho and hf using
the algorithm explained in subsection III B.(

p1, . . . , pm
)

(4)

A. Precision Recall curves

When studying the performance of a binary classifier
on imbalanced classes, it is not enough to use Accuracy
because it does not prevent the ”all-false” cheating. This
could happen by imposing a very restrictive threshold
for the averages ⟨∆Φ⟩ho-hf

so that all result in False.

Our target (p1, ..., pm) will be mostly composed of no
precipitation (False) achieving this way a high accuracy
with zero predictive skill. That is why Precision (P) and
Recall (R) must be introduced as:

P =
TP

TP + FP
R =

TP

TP + FN
(5)

where TP is the n◦ of True Positives and FP and FN
are the n◦ of False Positives and False Negatives respec-
tively. We demand a high P and a high R for a model
to be skillful. Using the F1 Score (6) one can obtain the
binarization threshold that optimizes P and R, which are
equally weighted as:

F1 =
2PR

P +R
. (6)
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B. Algorithm to compute F1 Scores

The main objective of this study is to find the averag-
ing limits [h0, hf ] that result in the ⟨∆Φ⟩ho-hf

that best

detects surface precipitation. I developed an algorithm
(FIG. 3) for computing all F1 Scores iterating through
a large set of different pairs [h0, hf ]. I start by select-
ing a pair of heights, calculating the averages for all the
PROs and normalizing them. The next step is to obtain
the Precision and Recall curves using the normalized av-
erages against the True/False target. These curves are
obtained by calculating P and R using various thresholds
to binarize the averages. These values can be represented
in a PR curve (see FIG. 3) and the largest F1 Score is
saved into a matrix that will contain the largest F1 Score
for each one of the averages [h0, hf ] (see FIG. 4).

FIG. 3: Algorithm used to find the averaging range [ho, hf ]
with the best F1 Score for a given percentile k.

Once all the averages [ho, hf ] have been compared
against our target we can select the averaging range with
the highest F1 Score. Note that values where hf < ho

have no physical meaning thus represented in white (in
FIG. 4) as empty values.

FIG. 4 shows the performance of different averages
⟨∆Φ⟩ho-hf

as precipitation detectors. In this particular

case, I found that the optimal range for averaging the
vertical profiles of ∆Φ corresponds to ho = 0.6 km and
hf = 9.3 km with an optimal F1 Score of 0.534 (bright-
est point in FIG. 4). A close look to FIG. 4 also shows

FIG. 4: Highest F1 Score for each average [ho, hf ] using a
target of 95th percentile as True precipitation.

that the average should be computed starting from val-
ues ho

<∼ 2km, meaning that useful information to detect
precipitation is obtained from signals traveling below this
height. In other words, as an arbitrary example: if we
were to use ⟨∆Φ⟩3km-9.3km instead of ⟨∆Φ⟩0.6km-9.3km
as a precipitation estimator, the performance would be
worse.

C. Region segmentation

There are many factors playing an important role in
determining the performance of this remote sensing tech-
nique. This section aims to analyze the changes in perfor-
mance of PROs registered in tropical regions. The main
differences between tropical and extratropical regions are
cloud formations, vertical structure, rain intensity and
even the raindrops’ shape. I expect the combination of
these factors to result in a difference in performance de-
pending on where the PRO took place. The metadata
contains information of latitude and longitude which I
used to segment the dataset into two: one of PROs col-
lected in latitudes < 30o for the tropical PROs and one
in latitudes > 30o for the extratropical PROs. Following
the steps described in the previous section, I proceeded
to find the averaged depolarization ⟨∆Φ⟩ho-hf

that best

accounts for precipitation. The results showing different
performances and optimal averaging ranges are discussed
in the next section.

IV. RESULTS AND DISCUSSION

Applying the algorithm described in the previous sec-
tion I was able to obtain the optimal range of heights
for computing the average of the vertical profiles ∆Φ.
The results presented in TABLE 1 show the best per-
forming average for each percentile. Since the Target
changes from one percentile to another, these results are
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not meant to serve as comparison between them. In-
stead, they provide information about the expected per-
formance when trying to detect precipitation above a cer-
tain threshold.

As expected, the optimal averages contain depolariza-
tion measures on heights ranging between ho ∼ 0.1 km
and hf ∼ from 5.0 km to 10.0 km. This shows a high
correlation between surface precipitation (target) and not
only raindrops but also other hydrometeors present in
these altitudes, as shown in [5].

Precipitation
percentile

True Precipitation
threshold (mm/h)

Optimal range
[ho, hf ] (km)

True/False ⟨∆Φ⟩
threshold (mm)

F1 Score Precision Recall

99 4.53 0.1-8.2 7.56 0.396 0.327 0.504
98 3.11 0.6-7.8 6.69 0.449 0.434 0.466
97 2.64 0.1-5.6 6.12 0.494 0.452 0.544
96 2.03 0.7-9.3 3.84 0.510 0.448 0.593
95 1.78 0.6-9.3 3.82 0.534 0.519 0.550
94 1.54 0.1-10.2 3.10 0.544 0.515 0.577
93 1.37 0.4-8.2 3.22 0.556 0.518 0.600
92 1.27 0.1-6.7 3.33 0.569 0.525 0.620
91 1.20 0.2-9.0 2.44 0.578 0.526 0.642
90 1.00 0.2-8.6 2.40 0.591 0.544 0.646

TABLE I: Best performing average for detecting precipitation
above the True Precipitation threshold (mm/h).

The contingency table in FIG. 5 provides a detailed
analysis of the performance of the optimal average
⟨∆Φ⟩0.7km-9.3km on detecting surface precipitation above
2.03 mm/h. The table shows how the binarization per-
formed by my algorithm correctly classifies the majority
of the False class (no precipitation event). On the one
hand, False Positives (upper right box in FIG 5.) indi-
cate that some other phenomenon that is not represented
by the target used here (surface precipitation) is caus-
ing depolarization, thus showing a ”Yes” although sur-
face precipitation is not above 2.03 mm/h. On the other
hand, False Negatives (bottom left box in FIG. 5) show
that surface precipitation above 2.03 mm/h was detected
by IMERG, but the average depolarization registered by
the LEO PAZ was below 3.84 mm, thus not detecting the
above mentioned precipitation.

While the technique works well in the vast majority of
cases, I try to present an explanation for the missed clas-
sifications. Regarding the False Negatives, one important
aspect of the target used to evaluate the performance is
the temporal resolution. While the IMERG surface pre-
cipitation products have a 30-minute time resolution, our
PROs take less than two minutes to register a complete
vertical profile. This can result in the IMERG detect-
ing precipitation at some point in time when the GNSS
signal had already passed (or the PRO had not even be-
gun). As for the False Positives, they could be reduced
by using a different, more complex target, that includes
the vertical structure of precipitation and the presence of
other hydrometeors, for example, the use of spaceborne
radars, although then the difficulty arises from the low
number of coincident measurements between PAZ-LEO
and the radar observations. Another possible contribu-
tion to the number of missed classifications (both False
Negatives and False Positives) is the miss-co-location due
to uncertainties in the PRO location [4].

FIG. 5: Contingency table for detecting surface precipita-
tion above 2.03 mm/h using the best performing average
⟨∆Φ⟩0.7km-9.3km

A. Performance in tropical regions.

After performing region segmentation, the optimal
ranges for averaging the vertical profiles to detect sur-
face precipitation above different thresholds are shown
in TABLE II. It is very interesting to see how the opti-
mal range for computing the average in tropical regions
is completely different to the one obtained in TABLE I.
Whereas in the general performance I obtained optimal
ranges starting below ∼ 1 km, in the case of tropical
regions the optimal averages start at heights of around
ho ∼ 3.5 km. This result can be attributed to the fact
that the polarimetric measures near the surface present
higher levels of noise in the tropical regions [4]. The re-
jection of measures with high levels of noise (0 km - 3
km) results in an increase in the performance.

Precipitation
percentile

True Precipitation
threshold (mm/h)

Optimal range
[ho, hf ] (km)

True/False ⟨∆Φ⟩
threshold (mm)

F1 Score Precision Recall

99 4.63 6.6-13.1 9.44 0.500 0.630 0.415
98 3.30 4.5-9.0 9.30 0.518 0.528 0.509
97 2.60 1.1-10.0 6.22 0.534 0.498 0.575
96 2.19 0.3-12.9 4.78 0.545 0.541 0.549
95 1.91 3.4-14.3 3.85 0.579 0.582 0.577
94 1.73 3.6-18.2 2.80 0.598 0.650 0.554
93 1.52 3.3-18.4 2.47 0.593 0.638 0.554
92 1.34 4.5-13.9 2.50 0.605 0.562 0.654
91 1.21 4.5-14.2 2.42 0.607 0.596 0.619
90 1.10 3.1-13.2 2.45 0.619 0.589 0.651

TABLE II: Results for tropical regions.

Another important result is the fact that the optimal
averaging range extends to much higher altitudes hf .
TABLE II shows hf ∼ 13.7km which implies that de-
polarization at these altitudes appears to be useful to
detect surface precipitation. This can be due to the fact
that tropical regions present predominantly convective
rain with precipitation sometimes extending to very high
altitudes, as found in [6], where it is shown that regions
with precipitation above 15 km are found mostly over
tropical land and the West Pacific Warm Pool (tropical
oceanic region).
Finally, Figure 6 shows that the detection of precipita-

tion is achieved with higher performance in tropical re-
gions. This means that the F1 Score of the best tropical
average is, for any given percentile of interest, higher than
the F1 Score corresponding to the best extratropical aver-
age. This can be caused by the fact that the IMERG pre-
cipitation products are obtained using radiometers from
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geostationary satellites (IR) which perform better when
detecting convective precipitation, predominant on the
tropics.

FIG. 6: Precision-Recall curves of the optimal ⟨∆Φ⟩ho-hf
for

different percentiles of interest. Each curve shows the perfor-
mance of the best performing average.

V. CONCLUSIONS

This paper evaluates the performance of using verti-
cally averaged polarimetric radio occultation measure-
ments to detect surface precipitation. The performance
is evaluated using the F1 Score achieved by the aver-
ages when detecting precipitation above a certain thresh-
old. As ground truth I have used the IMERG rain prod-
ucts averaged across the area of rays below 6 km, pro-
jected onto the Earth surface. I found that the optimal
range for computing the average is between heights of
ho

<∼ 1 km and hf ranging from values of 5 km to 10
km. Moreover, when studying specifically tropical re-

gions, I show how the optimal range of heights shifts to
values of ho ∼ 3.5 km and hf ∼ 14 km due to higher
levels of noise at low altitudes and the presence of con-
vective precipitation at high altitudes. The performance
obtained (F1 Score) presents values ranging from 0.4 for
very imbalanced classes to 0.6 for less imbalanced. This
performance largely surpasses that of a random model
and shows very promising results for this new technique.
Some ways to improve the performance obtained include:

1. Trying to identify what is causing the False Posi-
tives. I suggest a search of False Positives to then
find coincident radar measurements to analyze if
the IMERG is failing to provide accurate precipi-
tation data on those measurements.

2. Incorporating the use of targets that include ver-
tical structure of precipitation and the presence of
other hydrometeors, for example, data from space
and ground based radars. The problem would be
the low number of coincident measures between
PAZ and the radar observations which won’t al-
low for statistical studies but only for analysis of
individual measurements.

3. Increasing the quality of the polarimetric mea-
surements at low altitudes (below 1-2 km) which
present a considerable amount of ”empty” values
near the surface.
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