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1. Introduction

Consider a set of agents with jobs that have to be executed by a number of machines in
such a way that the aim is to minimize the total cost based on some criterion. We observe
such problems in many real-life applications such as manufacturing, health care, logistics,
etc. In this paper, we consider queueing problems from two different perspectives; (i)
queueing problems that consider the problem of optimally queueing the agents before they
arrive, (ii) queueing problems that consider the problem of reorganizing (rescheduling)
an existing queue optimally. In both problems, a set of agents wait for their jobs to be
processed on machines. Each agent has a job that needs the same amount of processing
time with a different unit waiting cost. We refer to Chun (2016) for a comprehensive survey
on queueing theory.

This paper is the first one that allows for an endogeneous number of machines. Mani-
quet (2003) studied one machine queueing problem from a cooperative game theoretical
perspective and showed that the rule assigning positions in the queue and compensations
is the Shapley (1953) value of the associated TU-game. Chun (2006) introduced a pes-
simistic definition of the worth that can be generated by a subset of agents. It is proved
that different definitions lead to very different rules. Towards a generalization to multiple
machines, Chun and Heo (2008) consider queueing problems with two parallel machines.
Curiel et al. (1989) are the first to study one-machine sequencing problems from a coopera-
tive game theoretical point of view. That is, queueing problems with an initial queue where
rescheduling is allowed to improve upon the initial situation. The rescheduling of jobs is
allowed to reduce weighted completion time and the total savings by rescheduling can be
shared by agents who own the jobs. Hamers et al. (1999) (see also Slikker, 2006a) consider
multiple parallel sequencing situations where the number of machines is fixed. They guar-
antee the non-emptiness of the core for one and two machine situations, and moreover for
two subclasses when there are at least three machines.

In this paper, we consider that the number of machines is endogenous. Each machine has
a cost to activate. Hence, in both types of problems, a subset of agents can “buy” as many
machines as they want to in exchange of its cost, and under some constraints in problems
with an existing initial order, might be able to “sell” some of the existing machines. More-
over, each agent incurs some waiting cost until her job is processed and she can leave the
system. Then, we take a game theoretical approach to address the question on how to dis-
tribute among the players the proceeds of their cooperation, whenever they (re)schedule
their jobs to be processed in an optimal way, minimizing total costs. Following the vast
literature on different problems on rescheduling an initial queue (see for instance Calleja
et al., 2002; Musegaas et al., 2015; Bahel and Trudeau, 2019; Atay et al., 2021), we examine
conditions guaranteeing the existence of stable allocations.



QUEUEING GAMES WITH AN ENDOGENOUS NUMBER OF MACHINES 3

First, we examine queueing problems that consider the problem of optimally queueing
the agents before they arrive. Traditionally, queueing problems have a fixed number of
machines, and their cost is sunk and thus ignored. The resulting cost game is then super-
additive, as congestion implies that the total waiting cost for two agents is larger than the
sum of their waiting costs if they are alone. With an endogeneous number of machines,
the cost function is always subadditive, as two agents can always each buy a machine,
generating costs equal to the sum of their individual stand-alone costs. This allows a tra-
ditional definition of the core. We provide a lower bound and an upper bound on the cost
of a machine for the non-emptiness of the core of a queueing problem with an endogenous
number of machines (Theorems 1, 2). In the second case, we provide a full description of
the core (Theorem 2).

Next, we consider the problem of rescheduling an existing queue optimally with an
endogenous number of machines which we call the requeueing problem. While the se-
quencing literature has crucially depended on the assumptions regarding the admissible
rearrangements of the initial queue by a coalition on a given machine, our results depend
mostly on the assumptions made on the adjustment of the queue when new machines are
added.

If we suppose that a coalition will be the sole users of a new machine it adds, we see that
the core of a requeueing game with an endogenous number of machines may be empty
(Example 2), and that under any assumptions on how a coalition can reorganize its mem-
bers on the existing machines. Nevertheless, we provide sufficient conditions to guarantee
the non-emptiness of the core (Theorems 3, 4). We also obtain positive results if we sup-
pose that machines are public goods. That is, when we add machines, the whole queue
moves up, and not only the members of the coalition that paid for the extra machines. The
distinction is akin to establishing VIP machines and general-use machine. We show that
under the assumption of public machines, whenever the initial schedule efficiently orders
agents from high to low waiting costs but might not have the optimal number of machines,
the public requeueing games always have a non-empty core (Theorem 5).

The paper is organized as follows. In Section 2 we present queueing problems with an
endogenous number of machines. In Section 3 we introduce the associated TU-game for
queueing problems with an endogenous number of machines. We derive upper and lower
bounds on the cost of a machine to guarantee the existence of stable allocations as well as
a full characterization of the set of stable allocations. In Section 4 we introduce two types
of problems and their associated TU-games, the so-called private and public requeueing
problems (and games). For private requeuing games, although stable allocations need not
exist, we provide an upper-bound and a lower-bound to guarantee their existence. For
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public requeuing games, we show that stable allocations always exist if the initial schedule
serves agents with larger waiting costs first. Finally, we draw conclusions in Section 5.

2. Queueing problems with an endogenous number of machines

We examine first the queueing problem. We have a set of agents N = {1, 2, . . . , n}. When
no confusion arises we denote by |N| = n the cardinality of the set of agents. Each agent
has one job to be processed on a machine. The agents have access to an unlimited number
of machines, but they must pay b ∈ R+ for each machine that they use. All jobs and all
machines are identical, and each machine can process one job per period. We assume that
each machine starts processing at time 0.

Every agent i ∈ N has a waiting cost that is linear with respect to the time it spends
in the system. The waiting cost function of an agent i ∈ N is wit where wi > 0 is the
waiting (weight) cost per unit time of player i and t is the period at which the job has been
processed. We refer to the vector of weights by w := (wi)i∈N. Let wS

k be the waiting cost of

the kth agent (according to the order N) in S and w−S
k ≡ wN\S

k be the waiting cost of the kth

agent outside the coalition S.
A queueing problem with an endogenous number of machines can be described as (N, w, b)

where N is the set of agents, w is the vector of unit waiting costs and b ∈ R+ is the cost of
a machine. We suppose that w1 ≥ w2 ≥ ... ≥ wn.

In a queueing problem, we examine the problem before agents arrive to queue: we are
looking for the optimal number of machines and the optimal queueing of agents on those
machines, the objective being the minimization of the total cost, consisting of the agents’
waiting costs and the machine costs.

The solution consists in choosing a number of machines m ∈ {1, ..., n} and a schedule
σ = (ϕ, s), where ϕ : N → {1, ..., m} assigns agents to machines and s : N → N ∪ {0}
assigns to each agent a starting time. A schedule σ = (ϕ, s) is admissible if for all i, j ∈ N,
ϕ(i) = ϕ(j) ⇒ s(i) 6= s(j). In words, if two agents are assigned to the same machine, they
must have different starting times. The set of all possible schedules with m machines is
denoted by Σ(m). A scheduling plan is (m, σ), with σ ∈ Σ(m).

Let Nk = {i ∈ N : ϕ(i) = k} be the set of agents assigned to machine k. A schedule is
a semi-active schedule if there is no job which could be started earlier without altering the
processing schedule. This has two implications for σ. First, we must have that if ϕ(i) = k
and s(i) = l > 0, there must be j ∈ Nk such that s(j) = l′ for all l′ ∈ {0, ..., l − 1}. Sec-
ond, we must have |Nk| − |Nk′ | < 2 for all k, k′ ∈ {1, ..., m}. In words, the first condition
imposes that a schedule on a given machine has no downtime, and processes a job at all
periods until all agents assigned to that machine have their job processed. The second con-
dition imposes a difference in the number of agents assigned to pairs of machines to be at
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most one; otherwise, we could move the last agent on the first machine to the last position
on the second machine, reducing the processing time of that agent without affecting the
processing time of other agents.

Since no preemption is allowed, the completion time of the job of agent i according to
σ = (ϕ, s) is s(i) + 1. Hence, the waiting cost of an agent i ∈ N can be written as cσ(i) =
wi(s(i) + 1).

We thus need to find (m, σ) that optimizes the following objective function:

min
m∈{1,...,n}

(
bm + min

σ∈Σm ∑
i∈N

cσ(i)

)
.

It is well-established in the literature that, for the one-machine case (with equal process-
ing times), the total cost is minimal if the players are arranged according to their waiting
costs in a decreasing order (see Smith, 1956; Curiel et al., 1989). With multiple machines, it
remains optimal to not process jobs of agents with larger waiting costs after those of agents
with smaller waiting costs, i.e. wi < wj ⇒ s(i) ≤ s(j).

Given this result, if we install m machines, it is optimal to schedule the m agents with the
highest waiting costs (agents {1, . . . , m}) at time 0, and it is irrelevant to which machine
each agent is assigned to. The next m agents are then scheduled in the next period, and so
on. Thus, the queueing problem reduces to finding the number of machines that solves

min
m∈{1,...,n}

(
bm + ∑

i∈N

(⌈
i
m

⌉)
wi

)
.1

We provide some initial results on the structure of the game. Let m(S) be the optimal
number of machines for coalition S ⊆ N.2

Lemma 1. Fix the set of agents N. For any weight vector w there exists a non-increasing function
rw : {2, ..., n} → R+ such that:

(i) if b ≥ rw(2), then m(N) = 1;
(ii) if rw(k) > b ≥ rw(k + 1) for some 1 < k < n, then m(N) = k;

(iii) if rw(n) > b then m(N) = n.

Proof. Fix N and w. The total cost when k machines are used would be cheaper than when
k− 1 machines are used if

bk + ∑
i∈N

(⌈
i
k

⌉)
wi ≤ b(k− 1) + ∑

i∈N

(⌈
i

k− 1

⌉)
wi

1For all x ∈ R, dxe := min{k ∈ Z|x ≤ k}.
2There might be a tie, in which case pick the lowest number of machines among optimal ones.
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which simplifies to

b ≤ ∑
i∈N

(⌈
i

k− 1

⌉
−
⌈

i
k

⌉)
wi

= wk +
n

∑
i=k+1

(⌈
i

k− 1

⌉
−
⌈

i
k

⌉)
wi.(a)

The inequality (a) provides an upper-bound on the cost of a machine such that we prefer
to use k machines to k− 1 machines. Let us denote this number obtained in (a) by rw(k).
This defines a function rw : {2, ..., n} → R+.

We next show that this function is non-increasing. We show that rw(k) ≤ rw(k− 1), that
is,

(b) wk +
n

∑
i=k+1

(⌈
i

k− 1

⌉
−
⌈

i
k

⌉)
wi ≤ wk−1 +

n

∑
i=k

(⌈
i

k− 2

⌉
−
⌈

i
k− 1

⌉)
wi.

By assumption, wk ≤ wk−1. We will show that
n

∑
i=k+1

(⌈
i

k− 1

⌉
−
⌈

i
k

⌉)
wi ≤

n

∑
i=k

(⌈
i

k− 2

⌉
−
⌈

i
k− 1

⌉)
wi,

which together with wk ≤ wk−1 show that the inequality holds. To do so, we compare the
right-hand side and the left-hand side summands of the same order in the inequality (b).
We see that (⌈

k + 1
k− 1

⌉
−
⌈

k + 1
k

⌉)
wk+1 ≤

(⌈
k

k− 2

⌉
−
⌈

k
k− 1

⌉)
wk(⌈

k + 2
k− 1

⌉
−
⌈

k + 2
k

⌉)
wk+2 ≤

(⌈
k + 1
k− 2

⌉
−
⌈

k + 1
k− 1

⌉)
wk+1

...(⌈
n− 1
k− 1

⌉
−
⌈

n− 1
k

⌉)
wn−1 ≤

(⌈
n− 2
k− 2

⌉
−
⌈

n− 2
k− 1

⌉)
wn−2(⌈

n
k− 1

⌉
−
⌈n

k

⌉)
wn ≤

(⌈
n− 1
k− 2

⌉
−
⌈

n− 1
k− 1

⌉)
wn−1

0 ≤
(⌈

k
k− 2

⌉
−
⌈

k
k− 1

⌉)
wn,

and we see that removing a machine is costlier in terms of waiting costs if there are less
machines in the initial problem. Applying the result recursively, starting with rw(n), we
obtain that rw is non-increasing.

It remains to show that we can define m using rw. Let C(N, k) be the cost for coalition N
if it uses k machines. Suppose that b ≥ rw(2). Then, since rw is non-increasing b ≥ rw(k)
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for all k ∈ {2, ..., n}. This implies that C(N, k) ≤ C(N, k + 1) for all k = 1, ..., n − 1. By
transitivity, C(N, 1) ≤ C(N, k) for all k ∈ {2, ..., n} and thus m(N) = 1.

Suppose next that rw(k) > b ≥ rw(k + 1) for some 1 < k < n. By the same argument
as above, b ≥ rw(k + 1) implies that C(N, k) ≤ C(N, l) for all l ∈ {k + 1, ..., n}. Since
rw is non-increasing, rw(k) > b implies that rw(l) > b for all l = 2, ..., k. This implies
that C(N, l) < C(N, l − 1) for all l = 2, ..., k. By transitivity, C(N, k) < C(N, l) for all
l ∈ {1, ..., k− 1}. Combining with the previous result, we obtain m(N) = k.

Finally, suppose that rw(n) > b. By the same argument as above, we have that C(N, n) <
C(N, l) for all l ∈ {1, ..., n− 1} and we obtain m(N) = n. �

We can similarly define a non-increasing function rw
S : {2, ..., |S|} → R+ for all S ⊂ N

such that |S| > 1 to determine m(S). For singletons, it is always optimal to use a single
machine, and thus m({i}) = 1 for all i ∈ N. Observing the structure of these functions rw

S ,
the following result follows:

Lemma 2. For all values of w and b, we have:

(i) m(S) ≤ m(T) for all S ⊂ T ⊆ N;
(ii) m(S ∪ {i}) ≤ m(S ∪ {j}) for all S ⊆ N \ {i, j}, and i > j.

Proof. Let rw
S (k) be the equivalent of rw(k) for coalition S.

(i) If m(T) ≥ |S| , the result is immediate. Thus, suppose that m(T) < |S| .
We show that for any S ⊂ T ⊆ N and k = 2, ..., |S| , we have that rw

S (k) ≤ rw
T (k). That is,

rw
S (k) = wS

k +
|S|

∑
l=k+1

(⌈
l

k− 1

⌉
−
⌈

l
k

⌉)
wS

l

≤ wT
k +

|S|

∑
l=k+1

(⌈
l

k− 1

⌉
−
⌈

l
k

⌉)
wT

l

≤ wT
k +

|T|

∑
l=k+1

(⌈
l

k− 1

⌉
−
⌈

l
k

⌉)
wT

l

= rw
T (k),

where the first inequality comes from the fact that wS
k ≤ wT

k for all k.
Then, if b ≥ rw

T (2), b ≥ rw
S (2) and m(S) = m(T) = 1. Otherwise, m(S) is the highest

integer such that b < rw
S (m(S)). But since rw

S (m(S)) ≤ rw
T (m(S)), we have b < rw

S (m(T)),
and thus m(S) ≤ m(T), as desired.

ii) The proof is identical to part i), replacing S by S ∪ {i} and T by S ∪ {j}. �

In words, if we add agents to a coalition, it cannot be optimal to use less machines. The
strategy to add an additional machine can only become more profitable (or less unprof-
itable) as the new agents might have higher waiting costs, and the additional agents might
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lead to more saved waiting costs. The same is true if we replace an agent by one with a
larger waiting cost.

3. Queueing games with an endogenous number of machines

A cooperative transferable utility (TU) game is defined by the pair (N, C) where N is the
set of the players and the coalitional function C assigns to each coalition T ⊆ N its cost
C(T) ∈ R, with C(∅) = 0.

Cooperative game theory aims to allocate the value of the grand coalition in such a way
that the cooperation is preserved among the agents. Given a cooperative game (N, C), a
cost allocation is y ∈ RN, where yi stands for the cost paid by player i ∈ N. The total
payment by a coalition S ⊆ N is denoted by y(S) = ∑

i∈S
yi with y(∅) = 0.

In this section, we study the set of stable allocations of the total cost, where no coalition
of agents pays more than its stand-alone cost. To do so, for any queueing problem with an
endogenous number of machines, we will introduce a TU-game and study the core of the
associated TU-game (Gillies, 1959).

Formally, let (N, w, b) be a queueing problem with an endogenous number of machines.
Then, the corresponding queueing game with an endogenous number of machines is the pair
(N, C) where N is the set of players, and C is the characteristic function that assigns the
minimal cost C(T) to each coalition T ⊆ N to queue its members, with C(∅) = 0. C(T)
includes both the waiting costs and the cost of machines. The core of a cooperative cost
game (N, C) is:

Core(C) = {y ∈ RN | y(N) = C(N), y(S) ≤ C(S) for all S ⊂ N}.

A game is called balanced if its core is non-empty.
Concave cost functions always have a non-empty core (Shapley, 1971). Formally, a game

(N, C) is said to be concave if for all i ∈ N and all S ⊆ T ⊆ N \ {i}, it holds C(T ∪ {i})−
C(T) ≤ C(S ∪ {i})− C(S).

3.1. On the non-emptiness of queueing games with an endogenous number of ma-
chines. First, for queueing games with an endogenous number of machines, we provide
an upper bound on the cost of a machine to guarantee the non-emptiness of the core.

For the sake of comprehensiveness, let us introduce some notation: Let µ ≡
⌈n

2

⌉
. If n is

even, then {1, ..., µ} and {µ+ 1, ..., n} both contain µ agents, while if n is odd, then {1, ..., µ}
contains µ agents and {µ + 1, ..., n} contains µ-1 agents.

Theorem 1. Let (N, w, b) be a queueing problem with an endogenous number of machines, and
(N, C) be the associated TU-game.

(i) If b ≤ wµ then y = (min (b + wi, 2wi))i∈N ∈ Core(C);
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(ii) If b ≤ wd 2n+1
4 e then Core(C) = (min (b + wi, 2wi))i∈N.

Proof. (i) We first show that the allocation y = (min (b + wi, 2wi))i∈N is budget balanced.
First, notice that if we use k ≥ µ machines, than agents wait at most 2 periods. Adding

an additional machine allows to reduce the waiting cost of agent k + 1 from 2 to 1 period,
with all other waiting costs remaining the same. Thus, rw(k) = wk for all k > µ.

Notice also that when moving from µ− 1 to µ machines the cost savings are larger: in
addition to agent µ waiting for 1 period instead of 2, some other agents will wait 2 periods
instead of 3. Thus, rw(µ) ≥ wµ. Thus, given that b ≤ wµ ≤ rw(µ) and by Lemma 1,
m(N) ≥ µ.

Let C(·, k) be the cost function that assigns to each coalition the total cost if it uses k
machines to process their jobs. For k ≥ µ,

C(N, k) = kb +
k

∑
i=1

wi +
n

∑
i=k+1

2wi.

Thus,

C(N) = min
k∈{µ,...,n}

{
kb +

k

∑
i=1

wi +
n

∑
i=k+1

2wi

}

= b(µ− 1) +
µ−1

∑
i=1

wi + min
k∈{µ,...,n}

{
b(k− µ + 1) +

k

∑
i=µ

wi +
n

∑
i=k+1

2wi

}

=
µ−1

∑
i=1

(b + wi) +
n

∑
i=µ

min (b + wi, 2wi)

= ∑
i∈N

min (b + wi, 2wi)

= ∑
i∈N

yi

The third equality comes from the fact that for all k > µ, rw(k) = wk, implying that we use
at least k machines if and only b + wk ≤ 2wk. While rw(µ) ≥ wµ, by assumption b ≤ wµ.
The fourth equality also comes from the fact that by assumption, b ≤ wµ.

It remains to prove that core constraints are satisfied, i.e., y(T) ≤ C(T) for all T ⊂ N. Fix
T ⊂ N and suppose that κ is the optimal number of machines for T.

We have that

∑
i∈T

yi ≤ κb +
κ

∑
i=1

wT
i +

|T|

∑
i=κ+1

2wT
i

≤ C(T),
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where the first inequality is obtained by assigning b + wi to the first κ agents in T and 2wi

to others, regardless of which of these two values is minimal, and the second inequality
comes from the fact that the expression is exactly the cost of coalition T if κ ≥ |T|

2 , with
the cost no smaller otherwise. Thus the core constraint is satisfied. Since T is arbitrarily
chosen, the proof is complete.

(ii) Notice first that if n is odd,
⌈

2n+1
4

⌉
= µ, while if n is even,

⌈
2n+1

4

⌉
= µ + 1. In

particular, for any n, we have that
⌈

2n+1
4

⌉
− 1 ≥ n−1

2 .
If b < wn, then C(S) = |S|b + ∑i∈S wi for all S ⊆ N and the result is immediate. Thus,

suppose that b ≥ wn.
Suppose that wk+1 ≤ b < wk for k ∈

{⌈
2n+1

4

⌉
, ..., n− 1

}
. Then, by Lemma 1, C(N) =

kb + ∑k
i=1 wi + ∑n

i=k+1 2wi.
Consider coalition N \ {i} for i ∈ {1, ..., k}. If they use k machines, the cost is

kb + ∑k
j=1 wi + ∑n

j=k+1 2wi − wi − wk+1. If they use k − 1 machines, the cost is (k − 1)b +

∑k
j=1 wi + ∑n

j=k+1 2wi − wi, as k − 1 ≥
⌈

2n+1
4

⌉
− 1 ≥ n−1

2 . Thus, it prefers to use k − 1
machines if b ≥ wk+1, which is satisfied. If they use k − 2 machines, the cost is at least
(k− 2)b + ∑k

j=1 wi + ∑n
j=k+1 2wi − wi + wk (as some agents might have to wait more than

2 periods now), and as b ≤ wk it prefers to use k − 1 machines. Thus, C(N \ {i}) =

(k− 1)b + ∑k
j=1 wi + ∑n

j=k+1 2wi − wi.
Notice that C(N \ {i}) + C({i}) = C(N), and thus in any core allocation, we must have

yi = C({i}) = b + wi for all i ∈ {1, ..., k}.
Next, consider coalition {i, j}, with i ∈ {1, ..., k} and j ∈ {k + 1, ..., n}. If it uses a single

machine, the cost is b + wi + 2wj. If it uses 2 machines, the cost is 2b + wi + wj. It prefers to
use a single machine as b ≥ wk+1 ≥ wj. Thus, C({i, j}) = b + wi + 2wj. Since yi = b + wi,
we obtain a core constraint of yj ≤ 2wj for all j ∈ {k + 1, ..., n}. Given the value of C(N), our
only core candidate is yi = b + wi for all i ∈ {1, ..., k} and yj = 2wj for all j ∈ {k + 1, ..., n}.
Given that we have shown in part i) that it is a core allocation, our proof is complete. �

Following an upper-bound on the cost of a machine for the non-emptiness of the core,
we provide a full characterization of the core making use of a lower-bound for the non-
emptiness of the core.

Theorem 2. Let (N, w, b) be a queueing problem with an endogenous number of machines, and
(N, C) be the associated TU-game. Then,

(i) if b ≥ ∑n
i=1(i− 1)wi, Core(C) = Core(Ĉ) 6= ∅ with Ĉ(T) := C(T)−

n−|T|−1
∑

i=1
iw−T

i+1 for all

∅ 6= T ⊆ N. Moreover, Ĉ is concave.

(ii) if b ∈
[

w2 +
n
∑

i=3

(
i−
⌈

i
2

⌉)
wi, ∑n

i=1(i− 1)wi

)
, then Core(C) = ∅.
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Proof. Notice that w2 +
n
∑

i=3

(
i−
⌈

i
2

⌉)
wi = rw(2), and thus by Lemma 1, m(N) = 1. By

Lemma 2, m(S) = 1 for all S ⊆ N, and thus all coalitions use a single machine.
i) Notice first that Ĉ(T) = C(T) if |T| ≥ n − 1. Let j, k ∈ N and consider N\ {j, k} .

By the grand coalition efficiency and individual rationality, if y is a core allocation, then
y(N \ {j, k}) ≤ C(N \ {j}) + C(N \ {k})− C(N).

Suppose that we have shown that y(T) ≤ Ĉ(T) in any core allocation if |T| > m. We
need to show that it implies that y(T) ≤ Ĉ(T) in any core allocation if |T| = m.

Fix T such that |T| = m. Following the grand coalition efficiency and individual ratio-
nality, if y is a core allocation, then y(T) ≤ Ĉ(T ∪ {k}) + Ĉ(N\ {k})− Ĉ(N).

Now, consider the cost function Ĉ(T) = C(T) − ∑
n−|T|−1
i=1 iw−T

i+1, for all ∅ 6= T ⊆ N.
By definition, Ĉ ≤ C and Ĉ(N) = C(N). We will show that Ĉ is concave whenever the
lower-bound on the cost of a machine in (i) is satisfied.

First, notice that for all k ∈ N, Ĉ({k}) = b + wk − ∑n−2
i=1 iw−{k}i+1 = b + wk − ∑i<k(i −

1)wi −∑i>k(i− 2)wi.
Recall that wT

k denotes the waiting cost of the kth agent in T, according to the order in N

and w−T
k ≡ wN\T

k . Next, fix ∅ 6= T ⊆ N\ {k} . Then, we have that

Ĉ(T ∪ {k})− Ĉ(T) =
|T|+1

∑
i=1

iwT∪{k}
i −

|T|

∑
i=1

iwT
i −

n−|T|−2

∑
i=1

iw−(T∪{k})i+1 +
n−|T|−1

∑
i=1

iw−T
i+1

= ∑
i>k

wi + kwk

The equality is based on the following observations: if i < k and i ∈ T, then its rank in
T ∪ {k} is the same as in T, and the terms cancel out. The same is true if i ∈ N \ T. If i > k
and i ∈ T, the rank of i is one higher in T ∪ {k} than in T. If i > k and i ∈ N\T, the rank of
i is one smaller in N \ (T ∪ {k}) than in N \ T. In all cases, the difference is wi. As for k, it
appears in the first and fourth terms. The weight on its waiting cost is its rank in T ∪ {k}
plus its rank in N \ T minus 1. For all agents, that equals k.

This result is independent of T, as long as T 6= ∅. Making use of this result, we
proceed to show y(T) ≤ Ĉ(T). We have seen that Ĉ(T ∪ {k}) = b + ∑|

T|+1
i=1 iwT∪{k}

i −
∑

n−|T|−2
i=1 iw−(T∪{k})i+1 and Ĉ(N\ {k}) = b + ∑n−1

i=1 iwN\{k}
i and Ĉ(N) = b + ∑n

i=1 iwi. Thus,

Ĉ(T∪{k})+ Ĉ(N \ {k})− Ĉ(N) = b+
|T|+1

∑
i=1

iwT∪{k}
i −

n−|T|−2

∑
i=1

iw−(T∪{k})i+1 +
n−1

∑
i=1

iwN\{k}
i −

n

∑
i=1

iwi.

Next, let us distinguish several cases.
Case 1: i ∈ T such that i < k. Then, i is the ith agent in N\ {k} and in N. The agent i has the
same rank in T and in T ∪ {k} .
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Case 2: i ∈ T such that i > k. Then, i is the (i− 1)th agent in N\ {k} and ith in N. The agent i
has the same rank in T is one lower than in T ∪ {k} .
Case 3: j /∈ T such that j < k. Then, j is the jth agent in N\ {k} and in N. The agent j has the
same rank in N\T and in N\(T ∪ {k}).
Case 4: j /∈ T such that j > k. Then, j is the (j− 1)th agent in N\ {k} and jth in N. The rank
of j in N \ T is one higher than in N\(T ∪ {k}).

Note that in the second term agent k his waiting cost gets assigned a weight equal to his
rank in T ∪ {k}. In the fifth term, his waiting cost gets assigned a weight equal to k, his
rank in N. These cases imply that

Ĉ(T ∪ {k}) + Ĉ(N\ {k})− Ĉ(N) = b +
|T|

∑
i=1

iwT
i −

n−|T|−1

∑
i=1

iw−T
i+1

= Ĉ (T) .

Thus, we have the core constraint y(T) ≤ Ĉ(T). In order to finish the proof of (i), we
will show that Ĉ is concave.

To verify concavity, it remains to check that Ĉ(T ∪ {k}) − Ĉ(T) ≤ Ĉ ({k}) − Ĉ (∅) =

Ĉ ({k}) or equivalently,

∑
i>k

wi + kwk ≤ b + wk −∑
i<k

(i− 1)wi −∑
i>k

(i− 2)wi

which simplifies to

b ≥
n

∑
i=1

(i− 1)wi

which is satisfied by assumption. Thus, Ĉ is concave and hence Core(Ĉ) is non-empty
which finishes the proof of (i).

To prove the statement (ii), recall that we have shown that C(N\ {l}) = b+∑n−1
i=1 iwN\{l}

i
for l ∈ N and C(N) = b + ∑n

i=1 iwi. Thus,

∑
l∈N

C (N\ {l}) = ∑
l∈N

(
b +

n−1

∑
i=1

iwN\{l}
i

)

= nb + ∑
l∈N

n−1

∑
i=1

iwN\{l}
i

= nb + ∑
i∈N

(i (n− 2) + 1)wi.

The last equality is obtained as follows: agent i does not appear in N\ {i} , appears
at rank i in N\ {l} if l > i, and appears at rank i − 1 if l < i. We have n − i coalitions
where l > i and i − 1 coalitions where l < i. Thus, the coefficient associated to wi is
(n− i)i + (i− 1)(i− 1) = i(n− 2) + 1.



QUEUEING GAMES WITH AN ENDOGENOUS NUMBER OF MACHINES 13

Then, we have that

∑
l∈N

C (N\ {l})− (n− 1)C(N) = nb + ∑
i∈N

(i (n− 2) + 1)wi −
(
(n− 1) b + ∑

i∈N
(n− 1) iwi

)
= b− ∑

i∈N
(i− 1)wi

< 0,

and thus ∑l∈N C (N\ {l}) < (n− 1)C(N), by our assumption on b. Thus, Core(C) is empty.
�

We provide an example that shows that the conditions in Theorems 1 and 2i) are not
necessary for the core to be non-empty.

Example 1. Suppose that N = {1, 2, 3, 4} and that wi = 25− 5i for all i ∈ N. Then, Theorem
1 tells us that the core is non-empty if b ≤ 15 while Theorem 2 (i) guarantees non-emptiness
of the core for b ≥ 50. For b ∈ [35, 50), by Theorem 2 (ii) the core is empty. We verify what
happens when b ∈ (15, 35).

For b ∈ [20, 35), coalitions {1, 2, 3} and {1, 2, 3, 4} use 2 machines, all others use a single
one. Using the fact that we must have y ({i, j}) = b+wi + 2wj for all i ∈ {1, 2}, j ∈ {3, 4} in
any core allocation, we obtain maximal allocations of (40, 35, 25, 15). Using C(N)− C(N \
{i}), we obtain minimal allocations of (b + 15, b + 10, b, b − 10). Immediately, the core is
empty for b ∈ (25, 35). For b ∈ [20, 25], we can verify that the allocation (b + 15, b +

10, 25, 15) is in the core.
For b ∈ (15, 20), coalition {1, 2, 4} also uses 2 machines. Using the same technique as

above to obtain minimal and maximal allocations, our only candidate for a core allocation
is (b + 15, b + 10, 25, 15). But then, coalition {3, 4} pays 40, while its stand-alone cost is
b + 20, and thus there are no core allocations.

For b ∈ (10, 15], all coalitions of 3 or more agents use 2 machines, as well as coalition
{1, 2}. In addition to (b + 20, b + 15, 20, 10), the allocation

(
b
2 + 25, b

2 + 20, b
2 + 15, b

2 + 5
)

is
also in the core.

The example is summarized in Figure 1, with the results on the core and the description
of m, the optimal number of machines, depending on machine cost b. In order to provide a
clear illustration, Figure 1 does not respect the appropriate proportions.

When b ≤ wµ, the game we obtain is reminiscent of assignments games: we need to
match agents with a machine (those with b ≤ wi) to those without (with b > wi), matching
at most one agent from the second group to each agent in the first group. An agent from
the second group generates value of b − wi when he matches with any agent from the
second group. Notice that the first group contains at least half of the agents. If it is strictly
more, the only core allocation allocates all gains to the short side of the market, the agents
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m(S) = 1 else

m(S) = 1 for all S

0 10 15 20 25 35 50

FIGURE 1. Summary of Example 1.

with b > wi. If it is exactly half, as in our example above with b ∈ (10, 15], the core
contains multiple allocations. This is where the similarities with the assignment game
ends, as members of the second group do create value when matched together (they share
a machine), which constrains the allocation that is optimal for the first side (those with
b ≤ wi).

4. Requeueing games with an endogenous number of machines

For the rest of the paper, we consider queueing problems with an existing queue, which
study the problem from a different perspective: while queueing problems consider the
minimal cost of organizing the queue for a set of players, starting from scratch, in the
following, we consider requeueing problems where possible cost savings can be obtained
when we reschedule a given queue. In our study of the problem with an endogeneous
number of machines, this implies that we start with a given number of machines, and that
the reorganization can include adding or removing machines.3

Then, a requeueing problem with an endogenous number of machines can be described by
(N, m0, σ0, w, b) where m0 is the initial number of machines and σ0 is the initial (existing)
queue. Our first aim is to find an optimal schedule that minimizes the total costs, as in
Section 2. As for queueing games, we build a coalitional function from the requeueing
games, now associating to each coalition T ⊆ N the maximum cost savings V(T) it can
generate from the initially existing queue. We will distinguish between two cases based on
whether new machines are exclusive for a set of agents (private) or available for all agents
(public).

4.1. Private requeueing games. We consider requeueing problems in which if a coalition
buys a new machine, it gains exclusive use of that machine and if a coalition sells a machine
it recovers the full value of that machine. These two assumptions can be seen as “exclusive”
use of machines for a coalition and hence they are “private” machines for a coalition.

3We use queueing problems with an existing queue and requeuing problems interchangeably.
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In order to determine the maximal cost savings of a coalition T ⊆ N, we have to define
which rearrangements are admissible. Various assumptions have been made on admissible
rearrangements of the initial schedule, see Curiel et al. (1993), Slikker (2006b), Musegaas
et al. (2015), and Atay et al. (2021), among others. Following the literature, we consider two
approaches to define admissible rearrangements to study the non-emptiness of the core for
requeuing games with an endogenous number of machines.

First, we do not allow agents in a coalition to jump over agents outside the coalition.
Then, we say that a scheduling plan (m, σ) is admissible for a coalition T with respect to
(m0, σ0) if for any agent outside coalition T there are no new agents in her set of predeces-
sors. That is, for all i ∈ N \ T it holds that ϕ(i) = ϕ0(i) and

(1) {l ∈ Nϕ(i) : s(l) < s(i)} ⊆ {l ∈ Nϕ0(i) : s0(l) < s0(i)}.

Notice that we do not require equality, as a predecessor of i might move to a new machine.
For short, we call this assumption the ”no swaps” assumption, and the set of admissible
schedules for coalition T that satisfy (1) is denoted by Σns

T .
Second, we relax the condition by allowing agents in a coalition to jump over agents

outside the coalition. We say that a scheduling plan (m, σ) is admissible for a coalition T
with respect to (m0, σ0) if the starting time for all agents outside the coalition does not
increase. That is, for all i ∈ N \ T it holds that ϕ(i) = ϕ0(i) and

(2) s(i) ≤ s0(i).

Once again, we do not have equality, as predecessors are allowed to move to a new ma-
chine. By opposition, this is the ”swaps” assumption, and the set of admissible schedules
for coalition T that satisfy (2) is denoted by Σs

T.
In our setting, we also must consider the possibility for a coalition to sell a machine. We

suppose that a coalition T can sell a machine only if all users of that machine are members
of T. We then suppose that the agents that were on the removed machine move at the end
of the queue on the remaining machines, a condition that is already covered by both (1)
and (2).

For a set of admissible schedules, we can associate the corresponding cooperative TU-
game called a private requeueing game with an endogenous number of machines. A private
requeuing problem with an endogenous number of machines is a 5–tuple (N, m0, σ0, w, b).4 The
corresponding private requeueing game with an endogenous number of machines (N, V) is de-
fined by

V(T) = cσ0(T)− cσ(T)− (m−m0)b,

4Since population and costs are fixed, with an abuse of notation, we denote a private requeuing problem
also by the initial number of machines and the initial queue, (m0, σ0).
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where (m, σ) is an optimal admissible scheduling plan for coalition T. Furthermore, ad-
missible schedules with and without swaps lead to different games. We denote private
requeueing games with swaps by Vs and private requeueing games without swaps by Vns.

While concavity of a cost game is a sufficient condition for its core to be non-empty, for
value games the corresponding concept is that of convexity. The condition has been widely
studied to prove balancedness of sequencing games associated with different problems (see
for instance Curiel et al., 1994; Hamers et al., 2005; Musegaas et al., 2018). A game (N, v)
is said to be convex if for all i ∈ N and all S ⊆ T ⊆ N \ {i}, it holds v(T ∪ {i})− v(T) ≥
v(S ∪ {i})− v(S).

Unfortunately, Example 2 shows that the associated game need not be balanced, regard-
less if admissible schedules allow or not to jump over players outside the coalition.

Example 2. Consider (N, m0, σ0, w, b) with N = {1, 2, 3, 4, 5}. The waiting costs per unit
for agents are given by the weight vector w = (wi)i∈N = (20, 15, 13, 13, 5), and the cost of a
machine is b = 18.

First, we suppose that (m0, σ0) is such that we order agents in the queue on one machine
according to their weights, in decreasing order:

m1 1 2 3 4 5 .

Notice that agent 1 is a dummy player since he is served first, moving to another ma-
chine is strictly worse for her. Thus, we can focus on the game (N, Vs) for the remaining
agents. One can calculate that Vs({2, 3, 4}) = 36, Vs({2, 3, 5}) = 25, Vs({3, 4, 5}) = 44, and
Vs({2, 3, 4, 5}) = 46. Next, let us consider the coalition T = {2, 4, 5}.

First, suppose that we allow players in the coalition to jump over players outside the
coalition when we define admissible rearrangements. Take the coalition T = {2, 4, 5}.
Then, an optimal scheduling plan for coalition T, (mT, σT), is

m1 1 4 3
m2 2 5

,

and then the total waiting cost savings are 15+26+15=56, but the coalition buys a ma-
chine at a cost 18, and hence the maximal total cost savings is 38 = Vs({2, 4, 5}). Then,
Vs({2, 3, 4}) + Vs({2, 3, 5}) + Vs({3, 4, 5} + Vs({2, 4, 5}) = 143 > 138 = 3Vs({2, 3, 4, 5}),
and hence the core is empty.

Second, suppose that we do not allow players in the coalition to jump over play-
ers outside the coalition when we define admissible rearrangements. Take the coalition
T = {2, 4, 5}. Then, an optimal scheduling plan for coalition T, (m′T, σ′T), is

m1 1 2 3
m2 4 5

,

and then the total waiting cost savings are 39+15=54, but the coalition buys a machine at
a cost 18, and hence the maximal total cost savings is 36 = Vns({2, 4, 5}). For all other
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coalitions S, we have Vns(S) = Vs(S). Then, Vns({2, 3, 4}) + Vns({2, 3, 5}) + Vns({3, 4, 5}+
Vns({2, 4, 5}) = 141 > 138 = 3Vns({2, 3, 4, 5}), and hence the core is empty.

Although we have seen that the associated private requeueing game can have an empty
core, there are sufficient conditions to guarantee the non-vacuity of the core. First, we
provide a lower bound on the cost of a machine for the non-emptiness of the core.

Theorem 3. Let (N, m0, σ0, w, b) be a private requeuing problem and let (N, Vns) be the associated
private requeuing game without swaps, and (N, Vs) be the associated private requeueing game with
swaps. If b ≤ wn, then Core(Vns) 6= ∅ and Core(Vs) 6= ∅.

Proof. Since the cost a machine is at most equal to the smallest unit waiting cost, b ≤ wn,
for any coalition S ⊆ N, it is optimal to have |S| machines. Let s0(i) be the starting time of
the job i under the schedule σ0. The first agents at each machine in the initial schedule, that
is i ∈ N such that s0(i) = 0, need not change their position. For all S ⊆ N, let S0 be the set
of such agents. For all other agents i ∈ N \ N0 such that s0(i) ≥ 1, buying a new machine
is the option that maximizes the cost savings at any given coalition since b ≤ wn. Thus
there exists a unique core allocation where yi = s0(i)wi − b for all i ∈ N \ N0 and yi = 0
for i ∈ N0. Then, ∑

i∈N
yi = ∑

i∈N0

0 + ∑
i∈N\N0

(s0(i)wi − b) = ∑
i∈N\N0

s0(i)wi − (n − m0)b =

Vs(N) = Vns(N), and efficiency holds. For any coalition S ⊂ N, y(S) = ∑
i∈S\S0

(s0(i)wi − b).

Since using a machine for each agent in the coalition is the optimal schedule in both cases
y(S) = Vs(S) = Vns(S). Thus, y also satisfies coalitional rationality and hence it is a core
allocation. �

Following a lower-bound on the cost of a machine to guarantee the non-emptiness of the
core, we provide an upper-bound on the cost of a machine for the non-emptiness of the
core when the initial number of machines is 1, m0 = 1. Intuitively, it consists in setting
the machine cost so high that no coalition wants to buy a second machine. The problem
then becomes one or reorganizing the queue on the existing machine, making the problem
equivalent to one with a single machine and no possibility to add more.

Theorem 4. Let (N, m0, σ0, w, b) be a private requeuing problem. If m0 = 1 and b ≥ maxµ
k=1(n−

k)wi, then Core(Vs) 6= ∅ and Core(Vns) 6= ∅.

Proof. We will show that for the private sequencing game without swaps where the agents
are ordered in an increasing way with respect to their waiting costs at the initial order,
making use of the only machine is better than buying a new machine for any coalition.
Given that this is the worst case scenario in terms of ordering, and we still do not want to
buy more than one machine, the result holds for all other orderings. Formally, we consider
an initial schedule σ0 such that s0(i) = n− i for all i ∈ N.
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First, consider the last agent in the order, agent 1, which by definition is such that w1 ≥
(wi)i∈N\{1}. If she buys a machine, the total cost savings are (n − 1)w1 − b. Since b ≥
maxµ

k=1(n− k)wi ≥ (n− 1)w1, the total cost savings (n− 1)w1 − b ≤ 0. Hence, agent 1 is
worse off by buying a new machine. Note that for any other individual coalition {i} such
that i ∈ N \ {1}, since the gain by buying a new machine is (n− i)wi < (n− 1)w1, the total
cost savings (n− i)wi − b < (n− 1)w1− b ≤ 0. Thus, no individual coalition {i} such that
i ∈ N has incentives to buy a new machine.

We next show that it is true for a coalition containing k ≤ µ agents. Consider the coalition
of the last k agents in the order, agents 1 through k. Recall that w1 ≥ . . . ≥ wk ≥ wi for all
other i ∈ N such that s(i) < n− k. Then, the gain for coalition {1, . . . , k} is (n− 1)w1 +

. . . + (n− k)wk. Since b ≥ maxµ
k=1(n− k)wi ≥ (n− 1)w1 + . . . + (n− k)wk, the total cost

savings {k− 1, . . . , 1} is (n− 1)w1 + . . . + (n− k)wk− b ≤ 0, and hence coalition {1, . . . , k}
prefers to use one machine. Notice that no other coalition S with |S| = k can achieve higher
total cost savings than coalition {1, . . . , k}, hence no k-agent coalition has incentives to buy
a new machine.

Notice that for any coalition that consists of last k agents where k > µ, only agents with
a position in the initial order of more than µ get to use the new machine. Hence, their
gains are less than the last µ agents, and they also prefer to use the only machine provided
to them. Moreover, since we compare all possible coalitions with the same size coalition
that consists of the last agents in the initial queue, our result under not allowing swaps
subsumes if we allow swaps. Then, we deal with a 1-machine problem with an initial
queue. Together with the result of Curiel et al. (1989) and Hamers et al. (1999) stating that
the core is always non-empty for 1-machine problem, we guarantee the non-emptiness of
the core whenever b ≥ maxµ

k=1(n− k)wi with m0 = 1. �

Given that the previous result is obtained using the worst case scenario of a completely
inefficient initial ordering, for a random initial ordering a lower bound guaranteeing a non-
empty core could be found. However, a general expression for such a bound is difficult to
obtain.

4.2. Public requeueing games. Implicit in the previous subsection was the assumption
that if a coalition buys a new machine it would gain exclusive use of that machine. That
does not have to be the case. We consider here the opposite assumption, in which new
machines are available for all agents. To illustrate the differences between the two assump-
tions, suppose that we have a long queue of agents waiting to go through security/ticket
control at a sporting event. If somehow agents waiting got hold of an additional employee
who could, given appropriate compensation, open a new lane to speed up the process, who
would have access to that lane? Up to now, we had supposed that this new lane would be
a VIP lane, accessible only to agents who helped compensate this additional worker. But



QUEUEING GAMES WITH AN ENDOGENOUS NUMBER OF MACHINES 19

another reasonable interpretation is that this new lane would be available to all, making
this new machine a public good.

More precisely, if a new line opens up, the initial schedule σ0 is split up in two: 1 and 2
are served first, 3 and 4 second, and 5 third and the new scheduling plan (m′, σ′) is

m1 1 3 5
m2 2 4

.

Then, we can calculate the worth of the coalition T = {2, 4, 5}, as the waiting costs saved
by its members only, net of the new machine cost. In other words, when we add machines
a coalition receives the gains its members make in waiting costs, as the queue moves up,
but must fully pay for the new machines.

To properly express how this requeueing occurs, we build from the initial schedule σ0 =

(ϕ0, s0) a priority order π, which will allow us to determine, which agent moves up when
new machines becomes available. Formally, for any i, j ∈ N

π(i) < π(j)⇔
{

s0(i) < s0(j) or {s0(i) = s0(j) and ϕ0(i) < ϕ0(j)}
}

.

In words, to rank agents we first look at the period in which they are served, and break
ties by giving priority to agents served on machines identified with lower numbers.

Notice that in a public requeueing game a coalition T has much less ability to choose
an alternative schedule. Once it has chosen a new number of machines, agents requeue
automatically using the ordering π. Coalition T however can still reorder its members, un-
der constraint. We assume that they can do so at two occasions, before and after adjusting
the number of machines. We define as Σ̂s and Σ̂ns the admissible schedules under these
constraints.

In a public requeuing game (public game for short), we suppose that a coalition T still
can only sell a machine if only its members are using it, but we now further suppose that
the revenues from the sale must be split equally among all agents in N, as the machines are
public. Coalition T thus receives a fraction |T|n of the proceeds.

Let V̂s(T, k) and V̂ns(T, k) be the functions giving the value (possibly negative) that we
obtain if we force coalition T to use k machines, in the public game with and without swaps,
respectively. We then have that:

V̂s(T, k) =

 maxσ∈Σ̂s
T(k)

(∑i∈T (s0(i))− s(i))wi − (k−m0)b) if k ≥ m0

maxσ∈Σ̂s
T(k)

(
∑i∈T (s0(i))− s(i))wi − |T|n (k−m0)b

)
if k < m0

It is possible for Σ̂s
T(k) to be empty if k < m0, if T does not have exclusive use of m0 −

k machines, in which case we simply let V̂s(T, k) = 0. We define V̂ns(T, k) in the same
manner.
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We obtain the optimal cost savings for a coalition by maximizing over the number of
machines: V̂s(T) ≡ maxk∈{1,...,n} V̂S(T, k) and V̂ns(T) ≡ maxk∈{1,...,n} V̂ns(T, k).

A public requeueing problem is a requeueing problem (N, m0, σ0, w, b) with an endogenous
number of machines where the machines are public goods. If all machines are public goods,
we call a requeueing game with an endogenous number of machines a public requeueing
game denoted by (N, V̂s) or (N, V̂ns), depending if we allow swaps or not.

We guarantee the non-emptiness of the core for public requeueing games when the initial
queue is optimal.

Theorem 5. Let (N, m0, σ0, w, b) be a public requeueing problem such that the ordering π induced
by σ0 is the optimal queue {1, 2, ..., n}, and let (N, V̂s) be the associated public requeueing game with
swaps and (N, V̂ns) be the associated public requeueing game without swaps. Then, Core(V̂s) 6= ∅
and Core(V̂ns) 6= ∅.

Proof. Given that V̂ns(S) ≤ V̂s(S) for all S ⊂ N and V̂ns(N) = V̂s(N), it suffices to show
that Core(V̂s) 6= ∅. To ease on the notation in the proof, we use V for V̂s.

Let V(S, k) be the total gain (potentially negative) when we force coalition S to use k
machines. If k > m0, we have V(S, k) = ∑l∈S

(⌈
l

m0

⌉
−
⌈

l
k

⌉)
wl − b(k−m0).

For m0 > k, we have that V(S, k) = |S|
n b(m0 − k) − ∑

l∈S

(⌈
l
k

⌉
−
⌈

l
m0

⌉)
wl which is only

feasible if coalition S contains all users of m0− k machines. We consider the value function
V(S, k) which allows S to sell any number of machines it wants and receive the full amount
for it. That is, V(S, k) = b(m0 − k)− ∑

l∈S

(⌈
l
k

⌉
−
⌈

l
m0

⌉)
wl. On the other hand, for k > m0,

we have V(S, k) = V(S, k).
Notice that for all S and k, V(S, k) ≥ V(S, k) and V(N, k) = V(N, k). Let V be the max-

imum value function over the number of machines, i.e., V(S) := max
k∈{1,...,n}

V(S, k). Then,

V(S) ≥ V(S) and V(N) = V(N). Let m(S) be the optimal number of machines for S.5 m(·)
has the same properties as m(·).

Let S ⊆ N \ {i, j} and suppose that i > j. By Lemma 2 we have that m(S ∪ {i}) ≤
m(S ∪ {j}).

By definition, V(S ∪ {i, j}) ≥ V(S ∪ {i, j}, m(S ∪ {j})), and hence

V(S ∪ {i, j}) ≥ ∑
l∈S

(⌈
l

m0

⌉
−
⌈

l
m(S ∪ {j})

⌉)
wl − b(m(S ∪ {j})−m0)

+

(⌈
i

m0

⌉
−
⌈

i
m(S ∪ {j})

⌉)
wi +

(⌈
j

m0

⌉
−
⌈

j
m(S ∪ {j})

⌉)
wj

= V(S ∪ {j}) +
(⌈

i
m0

⌉
−
⌈

i
m(S ∪ {j})

⌉)
wi

5There could be many, in which case we pick the lowest one.
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and thus

(3) V(S ∪ {i, j})−V(S ∪ {j}) ≥
(⌈

i
m0

⌉
−
⌈

i
m(S ∪ {j})

⌉)
wi.

Similarly, we have that V(S) ≥ V(S, m(S ∪ {i})), and thus

V(S) ≥ ∑
l∈S

(⌈
l

m0

⌉
−
⌈

l
m(S ∪ {i})

⌉)
wl − b(m(S ∪ {i})−m0)

and

(4) V(S ∪ {i})−V(S) ≤
(⌈

i
m0

⌉
−
⌈

i
m(S ∪ {i})

⌉)
wi.

Combining (3) and (4), we get

V(S ∪ {i, j})−V(S ∪ {j}) ≥
(⌈

i
m0

⌉
−
⌈

i
m(S ∪ {j})

⌉)
wi

≥
(⌈

i
m0

⌉
−
⌈

i
m(S ∪ {i})

⌉)
wi

≥ V(S ∪ {i})−V(S),

where the second inequality follows from m(S ∪ {i}) ≤ m(S ∪ {j}), proving that V is
convex and hence Core(V) is non-empty. Then, V(S) ≥ V(S) and V(N) = V(N) imply
that Core(V) ⊆ Core(V). Together with the non-emptiness of Core(V), it implies that
Core(V) is also non-empty which completes the proof. �

Interestingly, while the concept of public sequencing games leads naturally to the as-
sumption that a coalition getting rid of machines would only collect part of the value of
that machine, and would be severely limited in when they could sell a machine that is
publicly owned, it turns out that these assumptions are not necessary to obtain core allo-
cations. We always have core allocations, even if we eliminate all constraints on selling
machines and allow coalitions to pocket to full value of the machines it sells. Even more,
the game becomes convex with these assumptions.

The assumption that agents are ranked in an optimal way in the original schedule is
crucial in our proof, allowing us to obtain the same structure for the optimal number of
machines as when queueing without an initial allocation. For instance, if agent 1 has a
particularly large waiting cost and is initially ranked last, when he is by himself he might
prefer to buy many machines to be served earlier, while with other agents it might not be
necessary, as switching spots with other members of the coalition might allow him to be
served early without buying as many machines.

An important consequence of Theorem 5 is that whenever each agents own a machine at
the initial schedule, then the core is always non-empty.
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Corollary 1. Given a public requeueing problem (N, m0, σ0, w, b) such that m0 = |N|, the asso-
ciated public requeueing game without swaps (N, V̂ns), and with swaps (N, V̂s), has a non-empty
core.

Theorem 5 establishes the non-emptiness of the core for public requeueing games under
the assumption that the initial schedule is optimal. The next example shows that if we relax
this assumption, the core of a public requeueing game can be empty.

Example 3. Consider (N, m0, σ0, w, b) with N = {1, 2, 3, 4}, m0 = 1, and the ordering in-
duced by σ0 being π = (4, 3, 2, 1). The waiting costs per unit for agents are w = (wi)i∈N =

(13, 7, 6, 1), and the cost of a machine is b = 15.
Notice first that the initial queue (4, 3, 2, 1) is not optimal:

m1 4 3 2 1 .

Suppose that we allow agents to jump over the agents not belonging to the coalition. Let
(N, V̂s) be the associated public requeueing game. Let us illustrate how to calculate the
value of a coalition by doing it for {1, 4}. If agent 1 and agent 4 do not buy any machine,
then they switch their positions:

m1 1 3 2 4 ,

and hence the total savings for {1, 4} is (13− 1)× 3 = 36.
If they buy a new machine, since it is a public requeueing game, the queue moves in a

way such that agents 3, 4 are served first and agents 1, 2 are served second. Then, agents 1
and 4 change positions:

m1 3 2
m2 1 4

,

and hence the total savings for {1, 4} is 13× 3− 15− 1 = 23.
If they buy two new machines, the queue moves in a way such that agents 2,3,4 are

served in the first position of a machine while agent 1 is served in the second position at a
machine. Then, agents 1 and 4 switch positions:

m1 1 4
m2 3
m3 2

,

and hence the total savings for {1, 4} is 13× 3− 15× 2− 1 = 8. Finally, if they buy three
machines, all agents’ operations are processed at the first position on each machine:

m1 1
m2 2
m3 3
m4 4

,
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and hence the total savings is 13× 3− 15× 3 = −6. Then, the maximum of possible total
cost savings for {1, 4} is achieved when they do not buy any new machine, V̂s({1, 4}) =

max{36, 23, 8,−6} = 36.
Consider now coalitions {1, 4}, {2, 4}, {3, 4}, {1, 2, 3}, and {1, 2, 3, 4}. Following our

illustration, one can check that V̂s({1, 4}) = 36, V̂s({2, 4}) = 12, V̂s({3, 4}) = 5,
V̂s({1, 2, 3}) = 31, and V̂s(N) = 37. Now, suppose that there exists a core allocation
(y1, y2, y3, y4) ∈ Core(V̂s). Then, it would satisfy the core constraints y1 + y4 ≥ 36, y2 + y4 ≥
12, y3 + y4 ≥ 5, y1 + y2 + y3 ≥ 31. Nevertheless, such a payoff vector (y1, y2, y3, y4) is not
in the core since the core constraints (y1 + y4) + (y2 + y4) + (y3 + y4) + 2(y1 + y2 + y3) =

3(y1 + y2 + y3 + y4) ≥ 115 is not compatible with 3V̂s(N) = 111, and hence Core(V̂s) = ∅.

5. Concluding remarks

This paper studies queueing problems from a game theoretical point of view. The nov-
elty of this paper is that the number of machines is endogenous. For a given problem,
agents are allowed to (de)activate as many machines they want, at a cost. We have distin-
guished two types of queueing problems: without and with an initial queue. For the first
case, we have provided both a lower and an upper bound on the cost of machine to guar-
antee the non-emptiness of the core. Moreover, in some instances we have provided a full
characterization of the core by means of concavity. For the second case, although we have
shown that the core may be empty, we have guaranteed balancedness when all machines
are accessible to all agents and the initial ordering correctly ranks agents in decreasing
order of their waiting costs.

Compared to the earlier literature, our main innovations are (i) the existence of an en-
dogenous number of machines at a given queueing problem, (ii) the cost associated with a
machine to (de)activate it, (iii) the distinction between private and public queueing prob-
lems with an initial queue.

An interesting direction for future research is to study the existence of an allocation rule
that always selects a stable allocation for balanced requeueing games. Furthemore, al-
though we have a counterexample when swaps are allowed for public requeueing games
with the non-optimal initial queue, it is still an open question whether it is also the case
when swaps are not allowed.
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