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In a recent paper, [J. M. Porra, J. Masoliver, and K. Lindenberg, Phys. Rev. E 48, 951 (1993)],
we derived the equations for the mean first-passage time for systems driven by the coin-toss square
wave, a particular type of dichotomous noisy signal, to reach either one of two boundaries. The
coin-toss square wave, which we here call periodic-persistent dichotomous noise, is a random signal
that can only change its value at specified time points, where it changes its value with probability ¢
or retains its previous value with probability p = 1 — q. These time points occur periodically at time
intervals 7. Here we consider the stationary version of this signal, that is, “equilibrium” periodic-
persistent noise. We show that the mean first-passage time for systems driven by this stationary
noise does not show either the discontinuities or the oscillations found in the case of nonstationary
noise. We also discuss the existence of discontinuities in the mean first-passage time for random

one-dimensional stochastic maps.

PACS number(s): 05.40.+j, 05.60.+w, 05.20.Dd, 05.90.+m

I. INTRODUCTION

Noises that consist of signals that are randomized in
some way at fixed time intervals are ubiquitous in the-
ory and in practice. One particularly simple example is
periodic dichotomous noise. This noise can assume only
two values a and b. One or the other value is chosen at
periodic time intervals and the signal remains constant
in between. The transitions between values occur with
period 7 and are characterized by a transition matrix

(paa Pab ) (1)
Pba Pbb
that contains the probabilities p;; of a transition from
value i to value j,i,j = {a,b} [1].

Different transition matrices have been considered in
the literature. For instance, the transition matrix

pl-p
2
(2122) )
was treated a few years ago in studies of the stationary
probability distribution of a linear system driven by di-

chotomous noise [2]; such a system had also been studied
in a variety of other contexts [3]. The matrix

p 1-p

( 1-p p ) ®)
was used in the context of RC low-pass filters [4]. This
driving noise was called a “coin-toss square wave” and
has the interesting property that it introduces a correla-
tion between successive values of the noise. Recently, it
has been applied to study the influence of noise in the

logistic map [5].
These noises have also been considered indirectly in
many contexts dealing with stochastic maps: The evo-
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lution of a system driven by a coin-toss square wave is
described by two dynamics, each one corresponding to
one of the values of the noise. Because the noise does
not change during a period 7, the state X; of the system
at a time t when the noise just had the opportunity to
change and the state X;, at time ¢ + 7 define a map for
each value of the noise

Xoyr = ho(Xe), (4)

where 0 = {a,b}. Thus the evolution of the system at
times that are multiples of 7 is given by a stochastic map.
These maps have found many applications in statistical
mechanics, such as in one-dimensional random field Ising
models and neural networks [6].

In a recent paper [7], we studied the mean first-passage
time (MFPT), that is, the time that it takes a random
variable to reach either of two assigned values for the first
time, for systems driven by the coin-toss square wave.
In this paper we call this noise “periodic-persistent di-
chotomous noise” because it belongs to the general class
of noises defined above. The added name “persistent”
comes from the fact that the transition matrix (3) is
identical to the one found in the context of persistent
random walks [8]. The system variable z(t) satisfies the
stochastic equation .

&(t) = F(x(t),n(t))- (5)

A deterministic dynamic is thus associated with each of
the two values a and b = —a of the noise 7(t). We found
the equations satisfied by the MFPT and were able to
obtain the exact analytic solution for the driftless case

F(z(t),n(t)) = n(t)- (6)
For the linear case
F(z(t),n(t)) = pz(t) +n(t), (7)
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we developed approximate solutions and checked them
against simulations.

In [7], we showed that in both of these cases the MFPT
as a function of the initial position z(t = 0) exhibits
discontinuities that can be alternately positive and neg-
ative. This alternation of signs produces a remarkable
nonsmooth oscillatory behavior in the MFPT as a func-
tion of the initial position. The reason for such striking
behavior lies in the underlying periodicity of the noise
or, in other words, in the fact that the noise is not sta-
tionary. The first opportunity for the noise to change its
value comes exactly at time 7. If the process starts suf-
ficiently close to a barrier and moves toward it, then it
will cross that barrier with certainty before time 7; if, on
the other hand, the starting point is not sufficiently close
to the barrier for this to occur, then at time 7 the noise
may change the direction of the process and the barrier
crossing may not occur during the next time interval 7.
This causes the MFPT to be discontinuous.

It is interesting to consider the situation when the
periodic-persistent dichotomous noise is stationary (we
call this noise “equilibrium” periodic persistent), that is,
when the time to the first occasion that the noise may
switch is a random variable [1]. The equations satisfied
by the MFPT for the system driven by equilibrium noise
differ from those we found in our previous work. In par-
ticular, herein we derive these equations and show that
their solutions are continuous functions of the initial po-
sition.

In Sec. II we establish the equations satisfied by the
first-passage-time probability density to reach either of
two boundaries for a general periodic-persistent dichoto-
mous noise when the time to the first occasion that the
noise may switch its value is random. In Sec. III the dis-
continuities shown by the solution of the equations for the
coin-toss square signal are discussed. In Sec. IV we con-
centrate on the equilibrium periodic-persistent noise and
show that the discontinuities in the mean first-passage
time disappear. Brief conclusions are drawn in Sec. V.

II. FIRST PASSAGE-TIME EQUATIONS

At any one time our system is driven by one of two
different dynamics, each one associated with one value
of the noise. Let F(x) = F(z,n(t) = a) and F_(z) =
F(z,n(t) = —a) denote these dynamics when 7(t) = +a
and 7n(t) = —a, respectively. We are interested in sys-
tems that are able to reach either of two boundaries.
Consequently, if z¢ is the initial position of the pro-
cess, we suppose that F (zo) and F_(zo) have differ-
ent signs, e.g., we specifically consider the case where
Fy(xz0) > 0 and F_(zo) < 0. We further consider .only
systems that evolve toward asymptotically fixed stable
points under the F dynamics, specifically toward =7
when evolving under F (z) and z; when under F_(z).
Hence F(z}) = 0 and F_(z7) = 0. Moreover, we as-
sume that

Fi(z)>0 ifz; <z <z,
F_ (z)<0 ife; <z <=zt ®)

In this way, if the system is initially between the two
“natural barriers” =} and z, then the system remains
there forever. Therefore, if we calculate the first-passage
time for the process to reach certain values, say, z; or zs,
these values must lie between the two natural barriers,
ie.,

T, <z <z <z} (9)

Let us now define some quantities that will be useful
later. We call 7+ the time for the system leaving from
zo to reach the boundary z; when driven by F(z). 7~
is defined analogously for z; and F_(z). From Eq. (5),
it follows that

+ *2  dx 2 dx

= R "= Ew M

o Zo

The new position z(t) after the system has evolved for
a time ¢ under the dynamic F(z) [F_(z)] from z¢ is

zt(t, o) [z (¢,z0)], that is,
z¥ (t,20) dx z” (t,z0) dz
t= ) t= .
-/:cg Fy(z) Lo F_(x)
(11)

Successive positions after each period of time 7,
z*(t, o), define two maps

Tpy1 = mi(T, Tp) = hi(wn) (12)

in the interval [z}, z}], as discussed in the Introduction,
Eq. ( 4). From the properties of the dynamics Fy(z),
Eq. (8), it follows that both maps are monotonic in that
interval. z} is a fixed point of the map h™ and z; of
h~. The integration of Eq. (5) over a period 7 gives a
one-dimensional stochastic map that consists of random
switches between the maps A and A~. The matrix (1)
gives the probability for different transitions. The inverse
of the map h™ [h™], where it exists, will be denoted by
g% [97]- The functions g* are defined implicitly as

z dx’ /" dx’
;o , r= 2 (13
/m) 7 (@) o @

and give the position from where it takes the system a
time 7 to reach x evolving under dynamics Fy(z) or, in
other words, the preimage of z under h*. The different
dynamical quantities defined above are sketched in Fig. 1

We next define p7*(t,xo) and p™(t,zo) to be, respec-
tively, the first-passage time probability density to reach
either of the values z; and z, if initially 7(0) = +a and
7(0) = —a. The superscript m is an explicit reminder
that the time to the first opportunity for the noise to
switch may be a random variable, with probability den-
sity function % (t). The periodic-persistent dichotomous
noise, or coin-toss square signal, is recovered with the
choice 9, (t) = §(t — 7). In this paper, we are interested
in the choice of 14 (t) that causes the noise to be station-
ary. Results for this specific choice will be indicated by
the subscript eq. In the Appendix, it is shown that the
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FIG. 1. Dynamical quantities defined in Sec. III when the
driving noise 17(t) = —a. The trajectory 7 (¢,zo) approaches
its fixed point ;. The position at time ¢; is denoted by
27 (t1,%0). The functions A~ (z) and g~ () are defined in the
text. The shaded region corresponds to the region outside the
boundaries z; and 2.

appropriate choice is the uniform distribution between 0
and 7.
The equation satisfied by pT (¢, o) is

PR (t,mo) = 8(t — 77) Wy (2) (14)

+/T [ppS (¢t —t',z* (', o))
0
+qp° (t - t,, zt (tl7 wO))]¢1 (t’) dt,’

where ¥, (t) is the survival probability associated with

"pl(t)a
Ty (t) = /t T (t) dt'. (15)

The superscript o indicates that the next opportunity
for the noise to change comes exactly at a time 7 after
the previous change. The first term on the right-hand
side accounts for the probability that z, is reached at
time t before the noise has an opportunity to change
from its initial value. If the noise does change before the
process first reaches either boundary at time ¢, it does so
at some time ¢’ < t. After this change, the noise becomes
a periodic-persistent dichotomous process that can reach
a boundary in the next time interval 7+. This possibility
is embodied in the remainder of the right-hand side of
the equation. The equation for p™(¢,z¢) is obtained by
interchanging the indices (superscripts and subscripts) +
and — in Eq. (14). In order to calculate the probability
densities p%. in Eq. (14 ), we simply need to choose

P1(t) = 6(¢ —7), (16)

that is, the noise then is periodic-persistent dichotomous.

The result, with the superscript m replaced by o, is a
closed set of equations for the p°’s. Once this system is
solved, the solution (14) can be obtained. The equations
for the first-passage time probability density of a system
driven by a periodic noise with transition matrix given
by Eq. (1) can be written in a similar way.

An integral equation for the MFPT follows from the
relation

o
T*(xo) = — —p+(5,20) , (17)
( 0) 68 ° 8=0

where the superscripts + and — on T respectively distin-
guish the cases where n(0) = +a and 7(0) = —a. Here
P+ (s, o) represents the Laplace transform of py (¢, zo).
A subscript will be attached to T to differentiate between
the MFPT’s for various ;(t).

From Eq. (17), we find

+

T (z0) = [) T w ()t

+

[ T o) + e T @ (a0

xy(t') dt’. (18)

The interchange of superscripts + and — gives an equiv-
alent equation for T, (zo). Thus TX(xo) and, in gen-
eral, TX(zo) can be obtained from the results for the
MFPT for the system driven by periodic-persistent di-
chotomous noise. The relation between the MFPT of a
system driven by dichotomous noise of arbitrary statis-
tics and the MFPT when it is driven by the stationary
version of the same dichotomous noise was proved in gen-
eral in a recent paper [9].

The equation for T.F(zo) derived from Eq. (18), with
P1(t) = 8(t — 7), is equivalent to the one we found
previously [7]. However, the notation used earlier was
slightly different because there we wrote a separate equa-
tion for the boundary condition while here it is included
in Eq. (18). In fact, with ¢, (t) = §(t —7), Eq. (18) reads

T, (z0) = 7 + pT, (27 (7, 20)) + ¢T, (¢ (1, 20)) (19)
if 2y < zo <z} and

#2  dx

T, (z0) = @)

Lo

(20)

if 7 < o < 22. The value of zo that makes 7+ greater
than 7 is the solution of z; = z+(7,z0) and is denoted
by zF. Equivalently, z} is the preimage of z; under h™*.
Equation (20) was considered in our previous paper as
a boundary condition. Analogous reasoning leads to the
equations for T, (xo),

T, (zo) = 7 +pT, (27 (7,20)) + 4T, (™ (7,20)) (21)
ifz; <xzo <22 and

2 dx

F_(x)

T, (wo) =

Zo

(22)
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if 27 < o < =z7, where z7 is given implicitly by
zy = z (1,z7) . Before considering the mean first-
passage time Teiq(zo) for the stationary process, we first
discuss in the next section why T:F(z) is, in general, a
discontinuous function.

III. DISCONTINUITIES

In our previous paper [7], we discussed the appearance
of discontinuities in the MFPT as a function of initial
position in the driftless case &(t) = n(t) and also in the
linear case ©(t) = px(t) +n(t). The discontinuities occur
because there is an initialization region for the random
process z(t) around the boundaries z; and z; where the
first-passage time to the boundaries is not random. We
established the occurrence of the discontinuities analyti-
cally in the driftless case and via simulations in the linear
case and we also showed in the latter case that the value
of the largest discontinuity is in agreement with a calcu-
lation based on Egs. (19)—(22). However, we considered
neither the total number of discontinuities nor the values
of those besides the largest. Here we show that the set of
discontinuities is infinite in general and we also establish
how discontinuities at various different initial values are
related to one another.

Let us begin with discontinuities in T}, (zo). In the re-
gion zg € (21,27 ), T, (zo) is deterministic and its value
is given by Eq. ( 22). However, when zo > z7, T, (z0)
becomes a random variable because, after a time 7, the
noise may switch and make the system go away from
z1. Moreover, the change of the first-passage time to a
boundary from deterministic to random behavior in an
infinitesimal region around z_ causes T, (z) to be dis-
continuous. When z¢ is sufficiently close to but smaller
than z_, T, (zo) is essentially equal to 7. However, if
xg is close to but larger than z_, the system exits the
interval at time 7 only with probability p, while with
probability ¢, it goes away from 2z; and remains in the
interval. If this occurs, it takes at least an additional
time 7 for the noise to switch again and for the process
to go back to the barrier z; (unless it has crossed the
other barrier in the meantime). Thus the discontinuity
at xz_ is greater than g¢r.

More precisely, from Egs. (21) and (22), we find the
value of the discontinuity at =z to be

AT, (z7) = oIS (1), (23)
where we have defined
AT (y) = lim [To_(y +e) T, (y— e)] . (24)
€e—0t

It should be pointed out that in general T, (zo) is con-
tinuous from the right at point z_, that is,
T, (z7) = lim T, (z; +€). (25)

e—0t
Next we consider a point y at which T, and/or T are

discontinuous. Then, if z; < ¥y’ < zp withy' = g~ (y), T
is also discontinuous at y'. We recall that the g* were

defined earlier and give the position from where it takes
the system a time 7 to reach point y. The value of the
discontinuity follows from Eq. (21),

AT, (¥') = AT, (y) + qATS (y). (26)
Similarly, if 4" = g*(y) is within the interval (zy, z), T
has a discontinuity at y"’,

ATS (y") = pATS (y) + 4AT; (y). (27)
Earlier we demonstrated that 7, is discontinuous at =] .
Therefore, successive images of that point under g+, as
long as they are in (21, 22), become points of discontinu-
ity. In other words, preimages of z_ that are in (z;, 23)
develop into discontinuity points. If a point zg in (21, 22)
can be expressed as the result of successive applications
of g%,

zo =g 0g®to-.-0g%(z]), (28)
where o; = {+,—}, n = {1,2,...}, and all intermediate
points

y=g%o---0g™(z]) (29)
with j = {1,...,n — 1} are in (21, 22), then T, (z) is
discontinuous from the left at £ = z¢. Similarly, if

Tg=g og?lo---0g%(z]) (30)
with the same conditions as above, then T}, (z) is discon-
tinuous from the left at = = x,.

Following identical reasoning as that which led to
Eq. (23) leads to the conclusion that T+ (z¢) is discon-
tinuous from the right at 1 and that

AT (zF) = qT; (22), (31)
where AT} is defined as in Eq. (24). This discontinuity
will also generate others at points

To = g™ 0 gt o 0g%(zf), (32)
n = {1,2,...}, as long as points y = g® o --- o g*1(z})
belong to (21, 22). If a, = +, the discontinuity is in T,
otherwise it is in 7.

We have thus demonstrated that, in general, T* has an
infinite number of discontinuities in the interval (zi, z2)
and that they are related through Egs. (26) and (27). A
finite number of discontinuities arises when, after a cer-
tain number of iterations of g™ and g, there are no more
preimages inside the interval (z1,22). A necessary con-
dition for this to happen is that there exists a set inside
the interval whose preimage, under both g+ and g, is
outside (21, 22). We say in this case that g* and g~ are
nonoverlapping in (21, 2). In fact, if h* are nonoverlap-
ping in (z;,z]), i.e., there are points in (z;,z}) that
are not images of any point in that interval, then g% are
nonoverlapping for any z;,2;. On the other hand, if At
and h~ do overlap, g* become nonoverlapping or over-
lapping as z; and z; vary. This leads to the existence of
critical values of z where there is a transition from a fi-
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nite to an infinite number of discontinuities in the MFPT
as a function of z.

Preimages of z_ generate discontinuities from the left
while those produced from z} are discontinuities from
the right. A singular case arises when a point is a preim-
age of both =7 and z}. Then, successive images of this
point give points where 7)) or T, are discontinuous from
both sides.

The driftless case provides an example of such a sin-
gular case. Let us consider the MFPT to (0, L) for the
driftless system (6). We take n(t) = £1 and 7 = 1. With
this, Fx = +1 and h*(z) = z £ 1. The inverse map is
g =zF1. Thus 7 = 1and ¢f = L — 1. Succes-
sive images of 7 under g% lead to discontinuities at the
set Q; = {1,2,..., N}, where N is the integer part of L.
On the other hand, z} generates discontinuities at points
Q={L-1,L—-2,...,L — N}. If L is not an integer,
both Tt and T, are continuous from the right at points
Q,, while at points §2; they are continuous from the left.
However, when L is an integer, Q; and 2, coincide and
any integer between 1 and L — 1 is an image of both z_
and z}. Therefore, at these points discontinuities from
the right and from the left collapse and lead to isolated
discontinuous values for the MFPT [7]. This effect is seen
in Fig. 2, where we plot T,(zo), the MFPT averaged over
the initial value of the driving noise,

T, (z0) + T (20)

TO(IE()) = 2

(33)

The isolated dots are the values of T,(x¢) at integer val-
ues of £o. Note that at these points the quantity AT, (o)
defined in Eq. (24) does not vanish except at z¢ = 0.
Another property that follows from Egs. (26) and (27)
is that successive preimages of the point z (or =) gen-
erate discontinuities that are consecutively diminished by
a factor p or ¢q. Thus the greater (the minimum) n is in
the expression of a point zo as an image of z or =,
Eqgs. (28)—(32), the smaller the value of the discontinuity
at that point. When 7 goes to zero, the discontinuity at

16
12 + Vé_ﬁh\ﬁ
o I\
~ ﬁ/ N
S /
x 8 / 1\
= A I\
// \\\
L/ \
4 \
[o ) — .
-3 -2 -1 0 1 2 3
X

FIG. 2. Mean first-passage time to 2; = —3 and z; = 3 for
the driftless case, with a = 1, 7 = 1, and p = 0.5, driven by
the two noises considered: (i) the periodic-persistent dichoto-
mous noise To(xo) (solid line together with the circle sym-
bols) and (ii) the equilibrium periodic-persistent noise Teq (o)
(dot-dashed line).

z; (and similarly at z}) goes to zero provided that
gr—0=0 (34)
or
T%(z1) — 0. (35)

In both cases, the MFPT becomes a smoother func-
tion of zo. Incidentally, we remark that conditions (34)
and (35) correspond to the two limits of the periodic-
persistent dichotomous noise (see the Appendix). When
q — 0, periodic-persistent dichotomous noise converges
(in distribution) to a Markovian dichotomous noise, while
the case T+ (2z1) — 0 corresponds to the limit in which
periodic-persistent dichotomous noise becomes equiva-
lent to white noise.

For the linear case, Eq. (7), we have not been able
to obtain analytic solutions of Egs. (19)—(22). However,
values obtained by direct simulation do satisfy Eqgs. (26)
and (27) within the random errors inherent in Monte
Carlo methods. We consider the MFPT to z; = —1 and
zo = 1 for a linear system with g = 0.5. The noise again
takes the values £1, 7 is set to 0.1, and p = ¢ = 0.5.
Therefore, Fy (x) = 0.5z + 1 and

hE(z) = zb + 2(1 - b), (36)
where

b = exp(—put) = 0.951 22. (37)

Preimages are given by
gt (z) =z/bF2(1/b—1). (38)

Thus z7 = g (21) = —0.9487 and z} = g¥(z2) =
0.9487. In Fig. 3, the results of the simulation for T, (o),
the mean first-passage time averaged over initial values of
the noise are shown for zo between —1 and 0. The error
bars of the simulation are of the order of the size of the
symbols used in the figure. First, Eq. (23) is checked,
taking into account that T (z1) = 0 and that the dis-
continuity of Tt (), if it exists, will be much smaller
than that of T, (z7). As explained earlier, T, (z¢) is
discontinuous at x_ if this point results from successive
applications of g* on either 7}, Eq. (32), or z_°, Eq. (28).
In the first case, ] is a preimage of =,
z; =gt og*-to...0gt(z}),

and, from Eq. (38), it can be shown that the minimum
number n of times that g* is applied to z} to give =
is greater than n; = 22. Therefore, if £} generates a
discontinuity at z_, it will be p~22 times smaller than
AT,(zZ). On the other hand, if 7 is obtained as a
preimage of itself by alternative application of g* and g—,
it will generate a discontinuity in T\ (zo) at z;. How-
ever, n in this case will be greater than the number of
times n, that g~ has to be applied to =7 in order to
give a value greater than h*(z7). From Eq. (38), it fol-
lows that ny; = 3. In fact, we numerically generated all
preimages of z7 and z} up to n = 20 and checked that
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FIG. 3. Simulation results for the mean first-passage time
To(xo) to z2 = —z1 = 1 as a function of zo for the linear sys-
tem (7) with u = 0.5. The parameters of the noise are a = 1,
7 =1, and p = 0.5. The dashed lines show the discontinuities
of To (o) at zo = z7 = —0.949, xo = —0.895, —0.838, —0.779.
The value of the discontinuities at these points is related to
the value of T,(2z1).

z_ does not become a preimage of either z; or z for
n < 20. We thus take

AT, (x7) _ 9T (1)

AT, (z]) ~ 5 3 = qT,(21).

Upon substitution of the numerical values AT,(z, ) = 61
and T,(z1) = 119, it is proved that Eq. (23) is sat-
isfied within the errors of the simulation. The dis-
continuities at the next three preimages of =, z¢o =
—0.8948, —0.8382, —0.7786, shown in Fig. 3 by dashed
lines, are related through Eq. (26). The value of the dis-
continuities of T’} at these points is not considered for the
same reason that AT, (z. ) was disregarded. Effectively,
it follows from our simulation results that

1
AT,(—0.7786) = 5 AT,(~0.8382)
1
- i—ATO(——O.8948) = SAT,(27).

The maps h*, Eq. (36), overlap in the sense defined ear-
lier if the parameter b > 1/2 because then h*(z;) < 0.
The value of b considered in the example, Eq. (37), sat-
isfies this condition. Therefore, a critical z, z., exists
where the number of discontinuities changes from finite
to infinite. Taking z; = —29 = —z, the critical z reads

ze = 21Tb = 0.102542. (39)
If 2z < 2., the MFPT time as a function of the initial
position shows a finite number of discontinuities; if z >
Zc, this number becomes infinite.

IV. STATIONARY NOISE

In Sec. II we showed that once Toi (o) is known, the
MFPT Tt (zo) for a system driven by a general periodic-

persistent noise dichotomous can be obtained by integra-
tion [cf. Eq. (18)]. Because of the integration, the behav-
ior of T;X(zo) is smoother than that of ¥ (z,) [provided
that 1 (t) does not contain é functions] and the discon-
tinuities fade. This holds, in particular, for Tjg(:co). The
oscillatory behavior also disappears because it was a con-
sequence of the alternation of discontinuities of different
signs.

We recall here the expression for T (zo) to escape
the interval (0,L) for the driftless case: in dimension-
less units (a = 1,7 = 1) [7],

To+($0) = L—$0 +A($o)] _£j27 (40)
where
NE+ 1+£N§ [2(zo+7) — L — N +1]
Alon) HL—(j+1)<zo<N—j
(N+1)€+m[2($o+j)—L_N]

ifN—j<zo<L—j.
(41)

Here j = [L — zo] is the integer part of L — zo. The
parameter £ is defined as

q
¢=2. 42
» (42)
T, (zo) follows from the relation that applies in the drift-
less case,

Ty (20) = T (L — o). (43)

Tg(zo) is obtained by using Eq. (40) in Eq. (18). Al-
though it is a continuous function of the initial position,
the analytical expression for T (xo) is rather compli-
cated because its first derivative is discontinuous at the
same positions where T:F(zo) is discontinuous. Thus it
is not possible to avoid the use of the integer part and
the final expression becomes complex. In Fig. 4, we plot
Tt (zo) obtained by numerical integration of Eq. (18) for
some values of the parameters. The expression for 7,
simplifies when L = N, an integer, because discontinu-
ities then occur only at integer values of z¢, as discussed
in Sec. III. In this case, and for p = q = 0.5,

2N2 N—-1., N2-3N+1
T (z0) = _ ;2 ;
o (@)= 7~ NIt N+1
N—3-2
3 — 2 44
N+1 Zo, ()

if @ is not an integer. The integer part of z¢ is denoted
by i. For integer values of o, j = {0,..., N}, T; (j) co-
incides with the expression of the mean first-passage time
for a persistent random walk on a lattice with absorbing
boundaries at 0 and N when the first step of the random
walker is to the right [10],

T, (j) = 2N + (N - 2)j - j*.

Substitution of Eq. (44) into Eq. (18) yields
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FIG. 4. Mean first-passage times T (zo) (solid line) and
T:.;(:z:o) (dot-dashed line) to 2, = 0 and 2z = 5.5 for the
driftless case with a =1, 7 =1, and p = 0.5.

1 N?— (142N -1
+ — 2
Tea(®o) = — 7% + N+1 o
N
N (04 1). 45
AN+ i ) (45)

Note that Tt (5) does not contribute to the integral in Eq.
(18). Finally, the MFPT to exit the region (—N, N) for
N integer in the driftless case with p = ¢ = 0.5 averaged
over initial values of the noise is

1
_ 2 s
Teq(o) = N*+ N + INT1 1[2N_7(J+1)

—23 — 2N |wol (1 + 29)], (46)

with j = [|zo]], the integer part of the absolute value xq.
In Fig. 2, this result is plotted and compared with T, (o)
for the same parameter values.

V. CONCLUSIONS

We have revisited the problem of the mean first-
passage time to either of two barriers for systems driven
by periodic-persistent dichotomous noise. This noise
takes on one of two values that can change with prob-
ability g (or remain the same with probability 1 —q) only
at prescribed periodic time intervals 7. When ¢ — 0 the
driving signal is essentially constant; when ¢ — 1 it is
essentially periodic. If 7 — 0 with ¢ = A, the noise con-
verges to the familiar Markovian dichotomous noise, and
if 7 — 0 as the magnitude of the noise a — oo in a partic-
ular way, the signal converges to white noise. In general,
this simple noise is a model for a signal that combines
periodic and random components.

When the initial time t = 0 is precisely a time at which
the noise has an opportunity to change (the next oppor-
tunity occurring at time ¢ = 7), the noise is not station-
ary. In this case, the mean first-passage time as a func-
tion of the initial position of the process exhibits discon-
tinuities and/or oscillations. Here we extend our earlier

analysis of these unusual features. If the first opportu-
nity for the value of the noise to change occurs with equal
probability at any time within the interval 0 < ¢t <
(the next opportunity occurring at a time 7 after the
first possible change), the noise becomes stationary and
no discontinuities and/or oscillations are observed in the
mean first-passage time.
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APPENDIX: NOISE PROPERTIES

The stationary noise associated with a periodic-
persistent dichotomous noise is obtained by taking a spe-
cific probability density function, ;(t), for the time to
the first opportunity that the noise can change its value.
With this choice, the renewal process that generates the
noise becomes an equilibrium renewal process [1] and the
correlation function C(t,t') = (n(t)n(t')) depends only
on the difference |t —¢'|. The function 1(t) is related to
the probability density function (t) of the time between
switching opportunities of the noise by

1 b ! !
Ya(t) = — [ (t)dt!, (A1)

HJt
where g is the first moment of (t). For the periodic-
persistent dichotomous noise ¥ (t) = 6(t — 7) and p = T,
so that

1
P1(t) = ;@(‘r —t) (A2)

is the uniform distribution between 0 and 7. Here © is
the Heaviside function.

The Laplace transform of the correlation function can
be calculated:

A L1 A-A)1-e"T)
Cls)=a [; B 782(1 — Ae*T) :l ’ (A3)
where
A=p—gq. (A4)

This parameter measures the degree of correlation of the
noise, as explained below. C(s) can be inverted to obtain
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FIG. 5. Correlation function C(t) for different values of A:
A = —0.6 (solid line), A = —0.8 (dashed line), and A = 0.8
(dot-dashed line).

C(t) = a’AN[1 — (1 — A)(t/T — N)] (A5)
for N7 <t < (N + 1)7 with integer N. The correlation
function oscillates between positive and negative values
when A < 0 (that is, when the signal has a tendency to
change its value after every time interval 7) and remains
positive when A > 0 (that is, when the signal tends to
retain its value). The noise is not correlated for times
longer than 7 when A = 0. In Fig. 5, C(t) is shown for
three different values of A.

The correlation time 7, gives an idea of the time inter-
val over which the noisy signal is correlated. Among the
various possible definitions of 7. we choose [11]

1 [o <]
T = 6(65/0 dt|C(1)|.

Upon substitution of Eq. (A5) into this definition we ob-

(A6)

tain
Lo [3(E), a0 (A7)
(18:),  a<o
(A8)

The correlation time increases as |A| increases (regard-
less of the sign of A); this is reasonable since a greater

S(w)/z

FIG. 6. Spectral density S(w) for different values of A:
A = —0.6 (solid line), A = —0.8 (dashed line), and A = 0.8
(dot-dashed line).

deviation of A from zero increases the predictability of
the behavior of the signal [12].

A useful quantity is the spectral density S(w), the
Fourier transform of the autocorrelation function [13].
For the random signal considered here the spectral den-
sity reads

(1 — A?)[1 — cos(wT)]
mTw?[1 + A2 — 2A cos(wT)]’

S(w) = (A9)
It is worthwhile to mention that when A — —1, i.e., when
q — 1, the spectral density tends to concentrate around
w = w/7 and its odd multiples. In this limit the noise
becomes a nearly periodic signal of period 27, giving rise
to a periodic correlation function. In Fig. 6 the spectral
density is shown for three values of g.

In addition to the limit described above, the coin-toss
square wave has other interesting limits [7]. When ¢ — 0,
it is a constant signal, retaining forever its initial value.
If  — 0 while p =1 — A7 and g = A7, that is, p goes to
1 and ¢ to 0, the random signal converges in distribution
to a Markovian dichotomous noise. A is the average time
that the noise retains its value. Finally, if a - oo and
7 — 0 while D = a?7/2 remains fixed and finite, the

noise converges to white noise of intensity D, = Dp/q
and (n(t)n(t")) = 2D,4(t —t').
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