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Invaded cluster dynamics for frustrated models
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The invaded clustefIC) dynamics introduced by Machtet al. [Phys. Rev. Lett.75, 2792 (1995] is
extended to the fully frustrated Ising model on a square lattice. The properties of the dynamics that exhibits
numerical evidence of self-organized criticality are studied. The fluctuations in the IC dynamics are shown to
be intrinsic of the algorithm and the fluctuation-dissipation theorem is no longer valid. The relaxation time is
found to be very short and does not present a critical size depend&i63-651X%97)07012-§

PACS numbe(s): 64.60.Lx, 75.40.Mg, 64.60.Ak, 64.60.Fr

I. INTRODUCTION spin configuration. As the first step all the pairs of nearest-
neighbor(NN) spins are ordered randomly. Then, following
Recently, a nonstandard cluster Monte CafléC) dy- the random order, a bond is activated between the NN spin
namics, the invaded clustéiC) dynamics, based on invaded pairs only if the two spins satisfy the interaction. The set of
percolation has been introduced by Macétal. for the fer-  activated bonds partitions the lattice into clusters that are
romagnetic Ising modglL]. The IC dynamics is based on the classified every time a new bond is activated. When one of
Kastelein-Fortuin—Coniglio-KleifKF-CK) cluster formula-  the clusters spans the system the procedure is stopped and
tion of the Ising mode(2] and has been shown to be evenhe gpins belonging to each cluster are reversed all together
more efficient than the Swendsen-Waf®\) dynamics[3]  \ith probability 1/2. The spin configuration obtained can be
in eqU|I_|brat|ng the system at the critical temperature. Th_e_lgmsed as a starting point for the next application of the dy-
dynamics has the advantage that the value of the criticg|ymica) rule. Successively, the algorithm has been general-

ot e 0o KU, 1 o {260 1 ifernt Stopping .6 and o cferen mocel
self-organized criticalSOQ systems. (the Potts model7] and the Widom-Rowlinson flui9]).

The aim of this paper is to extend the IC dynamics to The rationale behind th_is rul_e is the well-known mapping
frustrated systems where KF-CK clusters percolate at atenﬁ-etween the ferromagngtlc Ising model and th'e correlated
peratureT, higher than the critical temperatufg . In par-  © ond percolatlor{Z]_ In t_hls framework bonds are mtroduceql
ticular, we will consider the fully frustratetFF) Ising model N the ferromagnetic Ising model between parallel NN pairs
on a square lattice where it has been shown numerigally ©f spins with ~probability p=1-exp(-24J), where
thatkgT,/J=1.69 (kg is the Boltzmann constant antlis ~ 8=1/kgT. The clustersKF-CK clusters, defined as maxi-
the strength of the interactipmnd T,=0. We will use two mal sets of connected bonds, represent sets of correlated
definitions of clusters. The first definition is based on thespins and percolate exactly at the critical temperature
KF-CK clusters. In this case the IC dynamics leads to a SOJ,=T.. The well-known SW cluster dynamids3] uses
percolating state at temperatufg corresponding to the per- these clusters to sample very efficiently the phase space at
colation of KF-CK clusters. The second definition is moreany temperature. In this dynamics at each MC step the
general5] and reduces to the cluster of Kandel, Ben-Av, andKF-CK clusters are constructed and the spins belonging to
Domany([6] in the FF Ising model. In this case the IC dy- each cluster are reversed altogether with probability 1/2. This
namics leads to a SOC state at the thermodynamical critic@roduces a new spin configuration on which a new cluster
temperaturel .= 0. configuration can be built. The IC dynamics is very similar

In S_eC. Il we review the deflnltlon and the results of IC to SW dynamics and differs On|y in the way clusters are
dynamics on the ferromagnetic Ising model. Then we extengonstructed. Since the dynamics rule introduced by Machta
the IC dynamics to the FF Ising model using the KF-CK gt gy puilds clusters that, by definition, percolate through the
cluster in Sec. Ill and the Kandel-Ben-Av—Domalf{BD)  gystem, it is expected that the average properties of the clus-
clusters in Sec. IV, where we study also the equilibrium reyg5 are the same as the KF-CK clusters at the critical tem-
laxation of the proposed dynamics. We present conclusionSeatyre. In fact, in Refd] it has been shown that the ratio
in Sec. V. of activated bonds to satisfied interactions, in the ldrge-
limit (L is the linear lattice sizeis very close to the critical
probability p.=1— exp(—2J/kgT.) with which KF-CK clus-
ters are constructed and it has a vanishing standard deviation.

The rules that define the IC dynamics for the ferromag-Furthermore, the estimated mean energy also tends in the
netic Ising model are very simple. Let us start from a givenlargeL limit to a value very close to the critical equilibrium

value E(T.) with the finite-size behavior expected in the

ferromagnetic Ising model at the critical point. On the other
*Permanent address: Dipartimento di Scienze Fisiche, Universitdhand, the energy fluctuatidb=(E?2)—(E)? is not related to
“Federico Il,” Mostra d’Oltremare Pad. 19, 1-80125 Napoli, Italy. the specific heat. In fact, it has been found tGBatliverges
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linearly with L and not logarithmically as the specific heat

does. The latter result points to the fact that the IC dynamics A7 r i = = =

does not sample the canonical ensemble in finite volume andh'\70,68 ;

therefore energy fluctuations and specific heat are no longer 0 oIc

related by the fluctuation-dissipation theorem. Since the fluc- 40 / . 1 /18

tuationC¥%/L2— 0 for L—, it is generally assumed that in i

the thermodynamic limit the IC ensemble is equivalent to the ¢4 [;é q

canonical ensemble even if a rigorous proof is still lacking. N T T T D
0 50 100 150 200 250 300 350

Ill. IC DYNAMICS FOR THE FF ISING MODEL
WITH KF-CK CLUSTERS

e
We now extend the IC dynamics to frustrated systems -4 EE'E‘PEIW O otT,

where the KF-CK clusters percolate at a temperalyy¢éhat . B ]
is higher than the critical on€&.. In particular, we will con- i3 ;¢ ----- teo at Ty
sider the FF Ising model on a square lattice whEL8] Tt teo at Tp
T,=1.69 andT =0 [4]. The FF Ising model is defined by e =
the Hamiltonian L A B S RN
0 50 100 150 200 250 300 350

L

FIG. 1. KF-CK clusters{a) ratio of activated bonds to the sat-
isfied interaction(f) and (b) the energy densitg versus system
sizeL for a square FF system. Squares are the IC dynamics output,
the superimposed lines are the plot of the fit functions
where§; takes the values:1 ande; ; assumes the valuel  (fy—(f) —A/L (with (f), =0.698*0.008 andA=1.2+0.2), and

on even columns and 1 otherwise. e=e.+A/INL) (with €.,=1.24+0.01 and A=0.62+0.07) for

In the simplest extension of the IC dynamics we introduce_=100; circles are the energy density values of a standard MC
bonds at random between spins satisfying the interactioflynamics at the estimated temperatilig in Table I; the dashed
(i.e., €;SS;=1) until a spanning cluster is found. As in the line is the analytical energy density for the modeTat ; the dotted
ferromagnetic case, at this point the spins belonging to eacine is the asymptotic value dt=1.69=T,; the arrows show the
cluster are reversed altogether with probability 1/2. The proasymptotic values estimated by the fits. Where not shown, the errors
cedure is iterated until equilibrium is reached. We have done@re included in the symbols; all quantities are dimensior{lz8s
simulations performing measurements ovek B MC
sweeps after discarding the first*for equilibration for sys-
tems with sizeg ranging from 16 to 300 and over 3.¥3.0°
MC sweeps after discarding the first 750 for 350.

In Fig. 1(a) we show as functions of the system siz¢he
ratio of activated bondsN, to the satisfied interaction
N =2L2%—E/2 (whereE is the energy, (f)=Ng/N, and in
Fig. 1(b) the density of energy=E/L?. Assuming the size
dependenceéf)=(f)..—A/L and e=e€,.+A/In(L) we find
(f)..=0.698+0.008 ande.=1.24+0.01, which are very
close to the valuep,=1-e 2"p=0.694 ande(T,)=1.234
at the temperaturd,=1.69. The errors of{f) and e de-
crease with increasing, meaning that théf) and thee
distributions become sharp whénr- .

_The results obtained show that the dynamics has not pg g | kr.ck clusters: numerical estimates Bfc(L) [10].
driven the system into the critical thermodynamical state at

H=—J<Z> (&,SS-1), (1)
ij

percolation11] andA=0.022+ 0.013(Fig. 2). This result is

in excellent agreement with the behavior found for KF-CK
clusters for both the critical exponent and the prefagto4].

This critical behavior drives also energy and magnetization
fluctuations in a critical regime, i.e(E?)—(E)?~L?° and
(M?)—(M)?>~L38 (Fig. 3. This result is in strong contrast
with the behavior of specific heat and magnetic susceptibility
at T=T,, which behave a&?. In fact, T, is not a critical
thermodynamic temperature and both the specific heat and
magnetic susceptibility are finite at=T,. This again
stresses the fact that the IC dynamics does not sample the
canonical ensemble in a finite volume and shows that the

T=0, but to the percolation critical state BT . In order L Tic(L) Error

to study the convergence as a functionlofwe have ex-

tracted for the IC dynamics at eathan effective tempera- 16 1.98 0.04

ture T\c(L) (see Table )l by using{f)=1—exp(=2/T\c); 50 177 0.02

then we have compared the IC energy density to the analyti- 64 1.75 0.01

cal energy density(T,c) at T\c [Fig. 1(b)]. This analysis 80 1.73 0.01

clearly show that th& — oo limit is reached in the IC dynam- 100 1.72 0.01
ics very slowly. In particular, the energy is systematically 150 1.703 0.007
larger than that obtained by SW dynamics. Furthermore, 200 1.695 0.007
since the dynamics builds, by definition, percolating clusters, 250 1.689 0.005
the mean cluster siz&/L? of IC clusters diverges as 300 1.686 0.004
S/IL?2=AL"'*, where Yp!/vp=1.78+0.11 is a good ap- 350 1.682 0.004

proximation of the exponeny,/v,=1.792 of random bond
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FIG. 4. Square FF lattice: the solidashedllines are ferromag-
netic (antiferromagneticinteractions(a) Checkerboard partition of

4T 7 a square lattice: the plaquettes withithout) a dot give a pattern.
(b) An example of plaquette with three satisfied interactions: In this
5 case we activate the two vertical bonds.

i 1 Ising spin-glas$SG) model could allow one to sample very
> L b efficiently the equilibrium spin configurations of the system
i 1 at T=T,, where the KF-CK clusters percolafé a two-
I ] dimensional2D) SG T,=1.8[4] and in a 3D SGT,=3.95
/ | i [12]] with a dynamics that exhibits self-organized criticality.

3 3.5 4 4.5 5

Sy However sinceT , is usually much larger than the spin-glass
| N ( |_> critical temperaturd g (in a 2D SGT5¢=0 and in a 3D SG

Tse=1.11[13]), any other dynamics does not suffer for
FIG. 2. KF-CK clusters: mean cluster size per sfih? for IC slowing down.

dynamics for a square FF system with- 16—350. We show the fit

over data points fok. = 150 with the best-fit parameters given in the

text (A=0.022-0.013 andy,/v,=1.78+0.11). The errors are in- IV. IC DYNAMICS FOR THE FF ISING MODEL
cluded in the symbols; all quantities are dimension[d$3. WITH KBD CLUSTERS

. , . . . . We ask now how to build up an IC dynamics able to drive
spin configurations selected by the IC dynamics with a f|n|tea system to the frustrated thermodynamical critical tempera-

probability qorrespond tp a muchilarger range of energie?ure. From the analysis and the argument given for the fer-
and magnetization than in any ordma_lry dynamics. ._..romagnetic case we understand that the cluster definition
Itis mterestlng_to note that the straightforward apphcatmnneedS to be modified in such a way that the frustrated
of the IC dynamics to more complex systems such as th‘§ystem can still be mapped onto the corresponding correlated
percolation model andi) the clusters percolate at the ther-
8 L q modynamical critical temperatufé&4]. The first condition is
6 I /%/QE always satisfied by the KF-CK clustdis5], but not the sec-
f ond one. A general procedure to construct such clusters in a
4r M/%/ O i systematic way was suggested in Ré&f. In particular, for
5 b B//E;L & ft Te . the FF model this procedure leads to the cluster algorisim
e P eo at T proposed by Kandel, Ben-Av, and Domafi6]. To define
0F the clusters in KBD dynamics one partitions the square lat-
: tice in a checkerboard way and chooses randomly one of the
two patterngFig. 4(a)]. For each plaquette, if three of four
spin pairs are satisfieth single plaquette in the FF model
/E; can have either one or three satisfied spin painge activates
A I b ~ bonds between the two spin pairs satisfying the interaction
g — O atT /E?( and facing each othefFig. 4(b)] with a probability
A 2000 - © =g p=1—exp(—4/T). Numerically it was showrn17] that the
b= i =T clusters obtained with such a procedure percolate at the ther-
N I G/ﬁﬁ%ﬁ/ modynamical critical temperatufe,=0, with critical expo-
or = < nentsv,=1 andy,=2 to be compared with the thermody-
0 a0 ee T ee T aee T oee 500 580 namical critical exponents=1 andy=3/2.
L With this idea in mind we propose the following invaded
FIG. 3. KF-CK clusters: density ofa) the energy fluctuation cluster dynamics. From the checkerboard partition we order
and (b) the magnetization fluctuation for a square FF system.ramdomIy all the square plaquettes l:')elon'glng to the chosen
Squares are the fluctuations for IC dynamics; circles are the flucP@ftern. Then plaquettes are tested in this order to see how
tuation values of a standard MC dynamics at the estimated temper&2@nY Spin pairs are satisfied and in plaquettes with three spin
ture T, in Table I; the dotted line is the analytical values for the Pairs satisfying the interaction we activate bonds between the
model atT,c. The estimated behaviors a(&?) —(E)%/L?~L%° W0 spin pairs sansfymg the mtera}ctlon.and facing each
and(M?)—(M)?/L2~L18 (the error on the exponents is on the last Other. Every time a pair of bonds is activated the cluster
digit given). Where not shown, the errors are included in the sym-Structure changes and the occurrence of a spanning cluster is
bols; all quantities are dimensionlegkd]. checked. As in the previous cases, when the first cluster per-

(CEP>—<E>%) /12

L L L P R
0 50 100 150 200 250
L
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FIG. 5. KBD clusters:(a) ratio of plaquettes with activated
bonds to plaquettes with three satisfied interacti¢fis and (b) FIG. 6. KBD clusters: mean cluster size per s@it.? for IC
energy densitye versus system size for a square FF system. dynamics for a square FF system with= 16—400. We show the
Squares are the IC dynamics output and the superimposed lines afgear fit In(SL?)=A+y,/v,In(L) over data points fot. =250 with
the plot of the fit functions(f)=(f),—A/L—B/L> (with  A=-0.8=1.5andy,/v,=1.2+0.2. The errors are included in the
(f)».=1.000£0.003, A=0.1+1.2, and B=9%+100) and symbols; all quantities are dimensionlé4§].
e=e,—A/L—B/L? (with e,=1.016-0.002, A=4.3+0.5, and
B=1.0+£0.7) for L=100; stars are the values of
pp=1—exgd—4/Ty(L)] with Ty(L) percolation temperature of
KBD clusters in a square FF system of size(from Ref.[17]); . .
circles are the energy density values of KBD dynamics at the esti- W€ have tested the proposed algorithm performing mea-
mated temperatur@,. in Table Il (the errors are asymmetric be- Surements over 0MC sweeps on square lattices of sites
cause they are derived from the indeterminatiof @) ; the dashed ranging from 16 to 200 and over>x&10° MC sweeps on
line is the analytical energy density for the modeTat ; the dotted L =250-400, after discarding the firstLbr equilibration.
line is the asymptotic value al.=0; the arrow shows the In Fig. 5@ we show the results of our simulations, which
asymptotic value estimated by the fit. Where not shown, the errorgive a situation very similar to that obtained in the ferromag-
are included in the symbols; all quantities are dimensior{l€k netic case. In fact, the ratio of plaquettes with activated
bonds N, to plaquettes with three satisfied interactions
Ns=(3L%—E)/4, (f)=N,/Ng, reaches the valup.=1 for
colates the cluster evolution is stopped and a new spin corlarge system size. At the same time the effective tempera-
figuration is obtained by reversing the spin belonging to eacfiure T,c (see Table I, obtained by(f)=1—exp(—4/Tc),
cluster altogether with probability 1/2. The dynamics pro-converges rapidly to the limit valu€;=0. In Fig. 5a) we
posed is related to the algorithm introduced by Kandel, Benshows alsgp,=1—exd —4/Ty(L)], whereT,(L) is the es-
Av, and Domany exactly as the IC dynamics by Machtatimated[17] percolation temperature of KBD clusters in a
et al. is related to the SW algorithm. square FF system of size The mean energy per spiRig.
5(b)] € tends, within the numerical precision obtained, to-
wards the thermodynamic value at the critical temperature
e(T=0)=1 with the expected size dependenee- e,

TABLE Il. KBD clusters: numerical estimates df(L) [10].

L T,o(L) Error =AL"1+BL"2 The fit of the data gives.,= 1.016+ 0.002.
The errors on(f) and e go to zero with increasing;. The

16 1.05 0.15 estimated mean cluster size exponeyysv,=1.2+0.2 (Fig.

50 0.76 0.17 6) do not coincide with the expected valugg/v,=2 [17].

64 0.71 0.12 We explain this result with the very slow convergence as a
80 0.67 0.12 function of L of the percolation quantities obtained with the
100 0.64 0.14 KBD clusters(see, for example, Fig. 8 of RdflL7]). Thus we

150 0.58 0.16 expect to recover the right behavior only for fairly large
200 0.54 0.19 sizes. We have studied the energy and magnetization fluctua-
250 0.51 0.19 tions also in this case(Fig. 70 and found that

300 0.49 0.25 (E2)—(E)2~L2Yand(M?)—(M)2~L3% These exponents,
400 0.46 0.46 as in the previous cases, do not agree with those expected for

the specific heat and magnetic susceptibility. As in the fer-




92 FRANZESE, CATAUDELLA, AND CONIGLIO 57
o TABLE Ill. Integrated autocorrelation time for IC dynamics
i q with KBD clusters andrcgp for KBD dynamics.
NQ 1.5
\l/ ’ ,,_,——%jk’/ L T TKBD
Nﬁ 0 100 1.74£0.02 2.80@:-0.008
A o Y fetoT';tT 200 1.73:0.02 2.48-0.02
ob T S A & 300 1.67-0.02 2.56-0.01
! [ [ R I B 400 1.60:0.02 2.37#0.03
0 25 50 75 100 125 150 175 200
L
”i b magnetization of the proposed IC dynamics
"A 2000
s i
| 2 "y 2\ _ 1\2\2
£ 1000 <l>('f)=<M(t ) M,(t4 V) <,'\2(2t ") , )
v (M) —(M(t")%)
O,HH\..‘\HH‘."\HH\‘H.\.H‘\HH\. . . . . .
0 50 100 150 200 250 300 350 400 where the timd is measured in MC steps. As shown in Fig.
L 8, ¢(t) vanishes in a few MC steps. The integrated autocor-

relation timer, defined as
FIG. 7. KBD clusters: the density @) the energy fluctuation

and (b) the magnetization fluctuation for a square FF system.

Squares are the fluctuations for IC dynamics; circles are the fluc- T=

tuation values of a standard MC dynamics at the estimated tempera-

ture T\c in Table Il (the errors are asymmetric because they are

derived from the indetermination of,c); the dashed line is the

analytical values for the model & . The estimated behaviors are is reported in Table Il for different values af. The depen-

(E?)—(E)?/L2~L" and (M?)—(M)?/L2~L** (the error on the dence ort, is extremely weak since reaches a plateau very

exponents is on the last digit giverWhere not shown, the errors quickly. The valuer~1.6 obtained is lower than that ob-

are included in the symbols; all quantities are dimensior{l&8k tained in the KBD dynamicsygp~2.4 and shows a weak
tendency to decrease with increasing

romagnetic case, we obtain that energy and magnetization

fluctuations are larger in the IC dynamics than in the canoni-

cal ensemble. _ o . V. CONCLUSIONS
We have also studied the equilibrium relaxation of the

Im
+ B(1), ®3)
t=1

N| =

We have shown how the IC dynamics introduced by
Machtaet al. for the ferromagnetic Ising model can be ex-

f_} —  KBD at T=0.400 and L=100 tendgd to the FF Ising quel on a square lattice. The
~ straightforward extension with KF-CK clusters shows that
< the IC dynamics leads to a self-organized critical percolating

o
(03]
p———

state at the percolation temperaturg and can be used to
produce equilibrium spin configurations at a temperature dif-
: ferent from the thermodynamical critical temperature, actu-
0.6 -3 ally at the percolation temperatuig,. The dynamics is
S IC at L=100 characterized by intrinsic diverging fluctuations and the
fluctuation-dissipation theorem is no longer valid. The exten-
sion with KBD clusters, whose percolation point coincides in
""" IC at L=400 the largek limit with the critical point of the FF system, has
properties very similar to those obtained in the ferromagnetic
model: It drives the system to the critical region without
previous knowledge of the critical temperature and gives a
reasonably good estimation of the average energy at the criti-
cal point. The estimated integrated autocorrelation time is
smaller than that obtained in the KBD dynamics. We have
o T s s e T s e o also stressed that the extension is possible since there exists a
percolation model onto which the FF square Ising model can
be exactly mapped. The extension to other frustrated sys-
FIG. 8. Magnetization correlation functions in a square FF syst€ms, such as spin glasses, in principle, can be done using the
tem for the KBD dynamic§for L =100 atT=T,(L)=0.45 and for ~ Systematic procedure suggested in RR&f. The computation
L=400 atT=T,~0.342[17]] and for IC dynamics with KBD ~was done on a DEC station 3000/500 with an Alpha proces-
clusters(for L=100 andL = 400). Timet is measured in MC steps. SOI.

---------- KBD at T=0.342 and L=400

e

0.4

0.2
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